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Abstract Outliers due to technical errors in water-quality data from in situ sensors can reduce data
quality and have a direct impact on inference drawn from subsequent data analysis. However, outlier
detection through manual monitoring is infeasible given the volume and velocity of data the sensors
produce. Here we introduce an automated procedure, named oddwater, that provides early detection of
outliers in water-quality data from in situ sensors caused by technical issues. Our oddwater procedure is
used to first identify the data features that differentiate outlying instances from typical behaviors. Then,
statistical transformations are applied to make the outlying instances stand out in a transformed data
space. Unsupervised outlier scoring techniques are applied to the transformed data space, and an approach
based on extreme value theory is used to calculate a threshold for each potential outlier. Using two data
sets obtained from in situ sensors in rivers flowing into the Great Barrier Reef lagoon, Australia, we show
that oddwater successfully identifies outliers involving abrupt changes in turbidity, conductivity, and river
level, including sudden spikes, sudden isolated drops, and level shifts, while maintaining very low false
detection rates. We have implemented this oddwater procedure in the open source R package oddwater.

1. Introduction
Water-quality monitoring traditionally relies on water samples collected manually. The samples are then
analyzed within laboratories to determine the water-quality variables of interest. This type of rigorous lab-
oratory analysis of field-collected samples is crucial in making natural resources management decisions
that affect human welfare and environmental conditions. However, with the rapid advances in hardware
technology, the use of in situ water-quality sensors positioned at different geographic sites is becoming an
increasingly common practice used to acquire real-time measurements of environmental and water-quality
variables. Though only a subset of the required water-quality variables can be measured by these sensors,
they have several advantages. Their ability to collect large quantities of data and to archive historic records
allows for deeper analysis of water-quality variables to improve understanding about field conditions and
water-quality processes (Glasgow et al., 2004). Near-real-time monitoring also allows operators to identify
and respond to potential issues quickly and thus manage the operations efficiently. Further, the use of in situ
sensors can greatly reduce the labor involved in field sampling and laboratory analysis.

Water-quality sensors are exposed to changing environments and extreme weather conditions and thus are
prone to errors, including failure. Automated detection of outliers in water-quality data from in situ sensors
has therefore captured the attention of many researchers both in the ecology and data science communities
(Archer et al., 2003; Hill et al., 2009; Koch & McKenna, 2010; McKenna et al., 2007; Raciti et al., 2012). This
problem of outlier detection in water-quality data from in situ sensors can be divided into two subtopics
according to their focus: (1) identifying errors in the data due to issues unrelated to water events per se, such
as technical aberrations, that make the data unreliable and untrustworthy and (2) identifying real events
(e.g., rare but sudden spikes in turbidity associated with rare but sudden high-flow events). Both problems
are equally important when making natural resource management decisions that affect human welfare and
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environmental conditions. Problem 1 can also be considered as a data preprocessing phase before addressing
Problem 2.

In this work we focus on Problem 1, that is, detecting unusual measurements caused by technical errors
that make data unreliable and untrustworthy and affect performance of any subsequent data analysis under
Problem 2. According to Yu (2012), the degree of confidence in the sensor data is one of the main require-
ments for a properly defined environmental analysis procedure. For instance, researchers and policy makers
are unable to use water-quality data containing technical outliers with confidence for decision making and
reporting purposes because erroneous conclusions regarding the quality of the water being monitored could
ensue, leading, for example, to inappropriate or unnecessary water treatment, land management, or warn-
ing alerts to the public (Kotamäki et al., 2009; Rangeti et al., 2015). Missing values and corrupted data can
also have an adverse impact on water-quality model building and calibration processes (Archer et al., 2003).
Early detection of these technical outliers will limit the use of corrupted data for subsequent analysis. For
instance, it will limit the use of corrupted data in real-time forecasting and online applications such as online
drinking water-quality monitoring and early warning systems (Storey et al., 2011), predicting algal bloom
outbreaks leading to fish kill events and potential human health impacts, forecasting water level and cur-
rents, and so on (Archer et al., 2003; Glasgow et al., 2004; Hill & Minsker, 2006). However, because data
arrive near continuously at high speed in large quantities, manual monitoring is highly unlikely to be able
to capture all the errors. These issues have therefore increased the importance of developing automated
methods for early detection of outliers in water-quality data from in situ sensors (Hill et al., 2009).

Different statistical approaches are available to detect outliers in water-quality data from in situ sensors.
For example, Hill and Minsker (2006) addressed the problem of outlier detection in environmental sensors
using regression-based time series models. In this work they addressed the scenario as a univariate problem.
Their prediction models are based on four data-driven methods: naive, clustering, perceptron, and Artificial
Neural Networks (ANNs). Measurements that fell outside the bounds of an established prediction interval
were declared as outliers. They also considered two strategies: anomaly detection and anomaly detection and
mitigation for the detection process. Anomaly detection and mitigation replaces detected outliers with the
predicted value prior to the next predictions, whereas anomaly detection simply uses the previous measure-
ments without making any alteration to the detected outliers. These types of data-driven methods develop
models using sets of training examples containing a feature set and a target output. Later, Hill et al. (2009)
addressed the problem by developing three automated anomaly detection methods using dynamic Bayesian
networks and showed that dynamic Bayesian network-based detectors, using either robust Kalman filtering
or Rao-Blackwellized particle filtering, outperformed that of Kalman filtering.

Another common approach for detecting outliers in environmental sensor data is based on residuals (the
differences between predicted and actual values). Due to the ability of ANNs to model a wide range of com-
plex nonlinear phenomena, Moatar et al. (1999) used ANN techniques to detect anomalies such as abnormal
values, discontinuities, and drifts in pH readings. After developing the pH model, the Student t test and the
cumulative Page-Hinkley test were applied to detect changes in the mean of the residuals to detect measure-
ment error occurring over short periods of time. The work was later expanded to a multivariate scenario with
some additional water-quality variables including dissolved oxygen, electrical conductivity, pH, and tem-
perature (Moatar et al., 2001). Their proposed algorithm used both deterministic and stochastic approaches
for the model building process. Observed data were then compared with the model forecasts using a set of
classical statistical tests to detect outliers, demonstrating the effectiveness and advantages of the multimodel
approach. Later, Archer et al. (2003) proposed a method to detect failures in the water-quality sensors due to
biofouling based on a sequential likelihood ratio test. Their method also had the ability to provide estimates
of biofouling onset time, which was useful for the subsequent step of outlier correction.

A common feature of all of the above methods is that they are usually employed in a supervised or semisu-
pervised context and thus require training data prelabeled with known outliers or data that are free from the
anomalous features of interest. In many cases, however, not all the possible outliers are known in advance
and can arise spontaneously as new outlying behaviors during the test phase. In such situations, supervised
methods may fail to detect those outliers. Semisupervised methods are also unsuitable for certain applica-
tions due to the unavailability of training data containing only typical instances that are free from outliers
(Goldstein & Uchida, 2016). The data sets that we consider in this paper suffer from both of these limitations
highlighting the need for a more general approach.
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Figure 1. Unsupervised feature-based procedure, named oddwater procedure , for outlier detection in water-quality data from in situ sensors. Squares
represents the main steps involved. Circles correspond to input and output.

This paper develops a method for detecting technical outliers in water-quality data derived from in situ
sensors. Prior work by Leigh et al. (2019) emphasizes the importance of different anomaly types and end
user needs and provides the starting point for constructing a framework for automated anomaly detec-
tion in high-frequency water-quality data from in situ sensors. Their work briefly introduced unsupervised
feature-based methods for detecting technical outliers in such data. The present paper differs substantially
from Leigh et al. (2019) as (1) the unsupervised feature-based procedure we present for detecting technical
outliers in high-frequency water-quality data measured by in situ sensors is its sole focus , (2) the unsu-
pervised feature-based procedure is fully elaborated in both details and depth, and (3) the experimental
results are enhanced through emphasis on the multivariate capabilities of the unsupervised feature-based
procedure. Furthermore, we focus on outliers involving abrupt changes in value, including sudden spikes,
sudden isolated drops, and level shifts (high-priority outliers as described in Leigh et al., 2019) rather than
the broader suite considered by Leigh et al. (2019).

First, we present in detail our unsupervised feature-based procedure that provides early detection of tech-
nical outliers in water-quality data from in situ sensors. Rule-based methods are also incorporated into the
procedure to flag occurrences of impossible, out-of-range, and missing values. Second, we provide a com-
parative analysis of the efficacy and reliability of both density-based and nearest neighbor distance-based
outlier scoring techniques. Third, we introduce an R (R Core Team, 2018) package, oddwater (Talagala
& Hyndman, 2019b), that implements the feature-based procedure and related functions. Further, to facili-
tate reproducibility and reusability of the results presented in this paper, we have made all of the code and
associated data sets available on zenodo (Talagala & Hyndman, 2019a).

Our feature-based procedure has many advantages: (1) It can take the correlation structure of the
water-quality variables into account when detecting outliers; (2) it can be applied to both univariate and
multivariate problems; (3) the outlier scoring techniques that we consider are unsupervised, data-driven
approaches and therefore do not require training data sets for the model building process and can be
extended easily to other time series from other sites; (4) the outlier thresholds have a probabilistic inter-
pretation as they are based on extreme value theory; (5) the approach has the ability to deal with irregular
(unevenly spaced) time series; and (6) it can easily be extended to streaming data. In contrast to a batch
scenario, which assumes that the entire data set is available prior to the analysis with the focus on detect-
ing complete events, the streaming data scenario gives many additional challenges due to high velocity,
unbounded, nonstationary data with incomplete events (Hill et al., 2009; Talagala, Hyndman, Smith-Miles,
Kandanaarachchi, et al., 2019). In this paper, although our oddwater procedure is introduced as a batch
method, it can easily be extended to streaming data such that it can provide near-real-time support using a
sliding window technique.

2. Materials and Methods
Our unsupervised feature-based procedure for detecting outliers in water-quality data from in situ sensors
has six main steps (Figure 1), and the structure of this section is organized accordingly. For easy refer-
ence, we named our unsupervised feature-based procedure as oddwater procedure, which stands for Outlier
Detection in Data from WATER-quality sensors.

2.1. Study Region and Data
To evaluate the effectiveness of our oddwater procedure, we considered a challenging real-world problem
of monitoring water-quality using in situ sensors in a natural river system. This is challenging because
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the system is susceptible to a wide range of environmental, biological, and human impacts that can lead
to variation in water quality and affect the technological performance of the sensors. For comparison, we
evaluated two study sites, Sandy Creek and Pioneer River, both in the Mackay-Whitsunday region of north-
eastern Australia (Mitchell et al., 2005). These two rivers flow into the Great Barrier Reef lagoon and have
catchment areas of 1,466 and 326 km2, respectively. In this region, the wet season typically occurs from
December to April and is dominated by higher rainfall and air temperatures, whereas the dry season typ-
ically occurs from May to November with lower rainfall and air temperatures (McInnes et al., 2015). The
sensors at these two sites are housed within monitoring stations on the river banks. Water is pumped from
the rivers to the stations approximately every 60 or 90 min to take measurements of various water-quality
variables that are logged by the sensors. Here we focused on three water-quality variables: turbidity (NTU),
conductivity (strictly, specific conductance at 25 ◦C; μS/cm), and river level (m).

The water-quality data obtained from in situ sensors located at Sandy Creek were available from 12 March
2017 to 12 March 2018. The data set included 5,402 recorded points. These time series were irregular (i.e., the
frequency of observations was not constant) with a minimum time gap of 10 min and a maximum time gap of
around 4 hr. The data obtained from Pioneer River were available from 12 March 2017 to 12 March 2018 and
included 6,303 recorded points. Many missing values were observed during the initial part of all three series,
that is, turbidity, conductivity, and river level, at Pioneer River. With the help of a group of water-quality
experts who were familiar with the study region and with over 40 years of combined knowledge of river
water quality, observations were labeled as outliers or not, with the aim of evaluating the performance of the
procedure. Our Shiny web application available through the oddwater R package was used during the label-
ing process to pinpoint observations and provide greater visual insight into the data. Using this interactive
visualization tool and expert knowledge, the ground-truth labels were decided by consensus vote.

2.2. Apply Rule-Based Approaches
Following Thottan and Ji (2003), we incorporated simple rules into our oddwater procedure to detect outliers
such as out-of-range values, impossible values (e.g., negative values), and missing values and labeled them
prior to applying the statistical transformations introduced in section 2.4.

If a sensor reading was outside the corresponding sensor detection range, it was marked as an outlier. Neg-
ative readings are also inaccurate and impossible for river turbidity, conductivity, and level. We therefore
imposed a simple constraint on the algorithm to filter these values and mark them as outliers. Missing values
are also frequently encountered in water-quality sensor data (Rangeti et al., 2015). We detected missing val-
ues by calculating the time gaps between readings. If a gap exceeded the maximum allowable time difference
between any two consecutive readings, the corresponding time stamp was then marked as an outlier due to
missingness. Here the maximum allowable time difference was set at 180 min, given that the water-quality
measurements were set to be taken at most every 90 min (measurements were often taken at higher fre-
quencies during high-flow events, e.g., every 10–15 min, and occasionally as one-off measurements at times
of interest to water managers).

2.3. Identify Data Features
After labeling out-of-range, impossible, and missing values as outliers, further investigation was done with
the remaining observations. We initiated this investigation by identifying common characteristics or patterns
of the possible types of outliers in water-quality data that would differentiate them from typical instances or
events. For turbidity, for example, “extreme” deviations upward are more likely than deviations downward
(Panguluri et al., 2009). The opposite is true for conductivity (Tutmez et al., 2006). Further, in a turbidity time
series, a sudden isolated upward shift (spike) is a point outlier (a single observation that is surprisingly large,
independent of the neighboring observations; Goldstein & Uchida, 2016), but if the sudden upward shift is
followed by a gradually decaying tail, then it becomes part of the typical behavior. For river level, rates of rise
are often fast compared with fall rates. In general, isolated data points that are outside the general trend are
outliers. Further, natural water processes under typical conditions generally tend to be comparatively slow;
sudden changes therefore mostly correspond to outlying behaviors. Hereafter, these characteristics will be
referred to as “data features.”

2.4. Apply Statistical Transformations
After identifying the data features, different statistical transformations were applied to the time series to
highlight different types of outliers focusing on sudden isolated spikes, sudden isolated drops, sudden shifts,
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Table 1
Transformation Methods Used to Highlight Different Types of Outliers in Water-Quality Sensor Data

Data feature Requirement Possible transformation Formula
High variability of the data Stabilize the variance across Log transformation log(𝑦t)

time series and make the
patterns more visible (e.g.,
level shifts)

Isolated spikes (in both positive Separate isolated spikes from First difference log(𝑦t∕𝑦t−1)
and negative directions) that the general upward/downward
are outside the general trend trend patterns
are considered as outliers.
Under typical behavior, sudden
upward (downward) shifts
are possible for turbidity
(conductivity), but their
rate of fall (rise) is generally
slower than the rate of rise
(fall).
Missing values in the data. Identify missing values Time gap Δt
The maximum allowable time
difference between
observations is 180 min.
Data are unevenly spaced Handle irregular time series First derivative xt = log(𝑦t∕𝑦t−1)∕Δt
time series. (Data points with

large gaps will get
small value. Large
gaps indicate the
lack of information to
make a claim
regarding the points.)

Extreme upward trend in Separate spikes from typical Turbidity or level min{xt , 0}
turbidity and level under upward trends.
typical behavior.
Extreme downward trend Separate isolated drops from Conductivity max{xt , 0}
in conductivity under typical typical downward trends.
behavior.
High or low variability in the Detect change points in Rate of change (yt − yt−1)∕yt

data. variance.
Natural processes are Detect sudden changes (both Relative difference yt − (1∕2)(yt−1 + yt+1)
comparatively slow. Sudden upward and downward
changes (upward or downward movements)
movements) typically
correspond to outlying instances.

Note. Let Yt represent an original series from one of the three variables: turbidity, conductivity, and level at time t.

TALAGALA ET AL. 8551
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Figure 2. Bivariate relationships between transformed series of turbidity and conductivity measured by in situ sensors at Sandy Creek. In each scatter plot,
outliers determined by water-quality experts are shown in red, while typical points are shown in black. Neighboring points are marked in green. (a) Original
series, (b) log transformation, (c) first difference, (d) first derivative, (e) one-sided derivative, (f) rate of change, (g) relative difference (for original series), and
(h) relative difference (for log-transformed series). In each scatter plot, data are normalized such that they are bounded by the unit hypercube.

and clusters of spikes (Table 1) that deviate from the typical characteristics of each variable (Leigh et al.,
2019).

In this work, we considered the outlier detection problem in a multivariate setting. By applying different
transformations on water-quality variables, we converted our original problem of outlier detection in the
temporal context to a nontemporal context through a high-dimensional data space with three dimensions
defined by the three variables: turbidity, conductivity, and river level. Different transformations were applied
on different axes of the three-dimensional data space resulting in different data patterns. We evaluated the
performance of the transformations (Dang & Wilkinson, 2014) using the maximum separability of the two
classes: outliers and typical points in the three-dimensional data space. To provide a better visual illustration,
in Figure 2, we present only the two-dimensional data space defined by turbidity and conductivity; however,
our actual data space is three dimensional. In this work our focus was to evaluate whether each point in
time is an outlier or not such that an alarm could be triggered in the presence of an outlier. However, it
was not our interest to investigate which variable(s) is (are) responsible for the outlier in time. Therefore, in
Figure 2, a point is marked as an outlier in the two-dimensional space if at least one variable corresponding
to that point was labeled as an outlier by the water-quality experts.

When the transformation involves both the current value, Yt, and the lagged value, Yt−1 (as in the first dif-
ference and first derivative), both the outlier and immediate neighbor are highlighted in the transformed
space. For example, if an outlier occurs at time point t, then the two values derived from the first deriva-
tive transformation ((yt − yt−1) and (yt+1 − yt)) are highlighted as outlying values, because they both involve
yt. Therefore, each outlying instance is now represented by two consecutive values under the first deriva-
tive or first difference transformation. As a result, one outlying instance is now represented by two points
in the transformed data space (Figures 2c and 2d). The goal of the one-sided derivative transformation is
to select only one high value as a representative point for each outlying instance. However, the high values

TALAGALA ET AL. 8552
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obtained could correspond to either the actual outlying time point or the neighboring time point, because
each transformed value is derived from two consecutive observations. For example, in the data obtained from
Sandy Creek, the one-sided derivative transformation (Figure 2e) clearly separates all of the target outlying
instances from the typical points using only one point for each outlying instance, shown as either red trian-
gles (corresponding to outliers) or green squares (corresponding to the immediate neighbors of outliers). The
second representative member of each outlying instance mingles with the typical points, allowing only one
point to standout on behalf of the corresponding outlying instance. If the primary focus of detecting tech-
nical outliers is to alert managers of sensor failures, then it will be inconsequential if the alarm is triggered
either at the actual time point corresponding to the outlier or at the next immediate time point. However, if
the purpose is different, such as producing a trustworthy data set by labeling or correcting detected outliers,
then additional conditions should be imposed to ensure that the time points declared as outliers correspond
to the actual outlying points and not to their immediate neighboring points.

2.5. Calculate Outlier Scores
We considered eight commonly used, unsupervised outlier scoring techniques for high-dimensional
data involving nearest neighbor distances or densities of the observations and applied them to the
three-dimensional data space defined by the three variables: turbidity, conductivity, and river level. Methods
based on k-nearest neighbor distances (where k ∈ Z+) were the NN-HD algorithm (details of this algorithm,
which was inspired by HDoutliers algorithm, Wilkinson, 2018, are provided in supporting information S1),
KNN-AGG and KNN-SUM algorithms (Angiulli & Pizzuti, 2002; Madsen, 2018), and Local Distance-based
Outlier Factor (LDOF) algorithm (Zhang et al., 2009), which calculate the outlier score under the assump-
tion that any outlying point (or outlying clusters of points) in the data space is (are) isolated; therefore,
the outliers are those points having the largest k-nearest neighbor distances. In contrast, the density-based
Local Outlier Factor (LOF; Breunig et al., 2000), Connectivity-based Outlier Factor (COF; Tang et al., 2002),
Influenced Outlierness (INFLO; Jin et al., 2006), and Robust Kernel-based Outlier Factor (Gao et al., 2011)
algorithms calculate an outlier score based on how isolated a point is with respect to its surrounding neigh-
bors, and therefore, the outliers are those points having the lowest densities (see supporting information S1
for detail). Each algorithm assigns outlier scores for all of the data points in the high-dimensional space that
describe the degree of outlierness of the individual data points such that outliers are those points having the
largest scores (Kriegel et al., 2010; Shahid et al., 2015). This step allowed us to set a data-driven threshold
(section 2.6) for the outlier scores to select the most relevant outliers (Chandola et al., 2009).

2.6. Calculate Outlier Threshold
Following Schwarz (2008), Burridge and Taylor (2006), and Wilkinson (2018), we used extreme value theory
to calculate a separate outlier threshold for each set of outlier scores calculated using a given unsupervised
outlier scoring technique (introduced in section 2.5) and assign a bivariate label for each point either as an
outlier or typical point. Thus, eight outlier scoring techniques resulted eight different thresholds for a given
data set. The threshold calculation process started from a subset of data containing 50% of observations
with the smallest outlier scores, under the assumption that this subset contained the outlier scores corre-
sponding to typical data points and the remaining subset contained the scores corresponding to the possible
candidates for outliers. Following Weissman's (1978) spacing theorem, the algorithm then fit an exponen-
tial distribution to the upper tail of the outlier scores of the first subset and computed the upper 1 − 𝛼 (in
this work 𝛼 was set to 0.05) points of the fitted cumulative distribution function, thereby defining an outly-
ing threshold for the next outlier score. From the remaining subset, the algorithm then selected the point
with the smallest outlier score. If this outlier score exceeded the cutoff point, all the points in the remain-
ing subset were flagged as outliers and searching for outliers ceased. Otherwise, the point was declared as
a nonoutlier and was added to the subset of the typical points. The threshold was then updated by includ-
ing the latest addition. The searching algorithm continued until an outlier score was found that exceeded
the latest threshold (Schwarz, 2008). We performed this threshold calculation under the assumption that
the distribution of outlier scores produced by each of the eight unsupervised outlier scoring techniques for
high-dimensional data was in the maximum domain of attraction of the Gumbel distribution, which con-
sists of distribution functions with exponentially decaying tails including the exponential, gamma, normal,
and log-normal (Embrechts et al., 2013).

2.7. Performance Evaluation
In this paper, we focused on high-priority outliers as described in Leigh et al. (2019) in which importance
ranking of different outlier types was done by taking into account the end user goals and the potential impact
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of outliers going undetected. However, it is beyond the scope of this paper to discuss in detail the different
types of outliers and their importance ranking. For more detail, we refer the reader to Leigh et al. (2019).
We performed an experimental evaluation on the accuracy and computational efficiency of our oddwater
procedure with respect to the eight outlier scoring techniques using the different transformations (Table 1)
and different combinations of variables (turbidity, conductivity, and river level). These experimental com-
binations were evaluated with respect to common measures for binary classification based on the values of
the confusion matrix, which summarizes the false positives (FP; i.e., when a typical observation is misclas-
sified as an outlier), false negatives (FN; i.e., when an actual outlier is misclassified as a typical observation),
true positives (TP; i.e., when an actual outlier is correctly classified), and true negatives (TN; i.e., when an
observation is correctly classified as a typical point). In this work, FP and FN are equally undesirable as FP
may demand unnecessary and/or expensive actions for corrections and refinement, and FN greatly reduce
confidence in the data and results derived from them. The measures we considered include accuracy

accurac𝑦 = (TP + TN)∕(TP + FP + FN + TN), (1)

which explains the overall effectiveness of a classifier; and geometric mean

GM =
√

TP ∗ TN, (2)

which explains the relative balance of TP and TN of the classifier (Sokolova & Lapalme, 2009). According
to Hossin and Sulaiman (2015), these measures are not enough to capture the poor performance of the clas-
sifiers in the presence of imbalanced data sets where the size of the typical class (positive class) is much
larger than the outlying class (negative class). The data sets obtained from in situ sensors were highly imbal-
anced and negatively dependent (i.e., containing many more typical observations than outliers). Therefore,
we used three additional measures that are recommended for imbalanced problems with only two classes
(i.e., typical and outlying) by Ranawana and Palade (2006): the negative predictive value

NPV = TN∕(FN + TN), (3)

which measures the probability of a negatively predicted pattern actually being negative; positive predictive
value

PPV = TP∕(TP + FP), (4)

which measures the probability of a positively predicted pattern actually being positive; and optimized pre-
cision, which is a combination of accuracy, sensitivity, and specificity metrics (Ranawana & Palade, 2006).
The optimized precision is calculated as

OP = P − RI, (5)

where
P = SpNn + SnNp, (6)

RI = |Sp − Sn|∕(Sp + Sn), (7)

Sp = TN∕(TN + FP), (8)

Sn = TP∕(TP + FN), (9)

and Np and Nn represent the proportion of positives (outliers) and negatives (typical) within the entire
data set.

To evaluate the performance of our oddwater procedure, we incorporated additional steps after detecting
the outlying time points using the outlying threshold based on extreme value theory. This was done because
the time points declared as outliers by the outlying threshold could correspond to either the actual outlying
points or to their neighbors. Once the time points were declared as outliers, the corresponding points in the
three-dimensional space were further investigated by comparing their positions with respect to the median
of the typical points declared by the oddwater procedure. This step allowed us to find the most influential
variable for each outlying point. For example, in Figure 2e, the isolated point in the first quadrant is an
outlier in the two-dimensional space due to the outlying behavior of the conductivity measurement. This
allowed us because the deviation of this point from the median of the typical points (around (0, 0)) happens
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primarily along the conductivity axis. In contrast, the four isolated points in the third quadrant are outliers
due to the outlying behavior of the turbidity measurement because the deviations of the four points from
the median of the typical points (around (0, 0)) happen primarily along the turbidity axis. After detecting the
most influential variable for each outlying instance in the three-dimensional space, further investigations
were carried out separately for each individual outlying instance with respect to the most influential variable
detected. This allowed us to see whether the outlying instance was due to a sudden spike or a sudden drop
by comparing the direction of the detected points with respect to the mean of its two immediate surrounding
neighbors and itself. These additional steps in the oddwater procedure allowed us to trigger an alarm at the
actual outlying point in time if the neighboring points were declared as outliers instead of the actual outliers.
However, we acknowledge that these additional steps select only the most influential variable, not all of
the influential variables in the presence of more than one influential variable. The additional steps were
incorporated solely to measure the performance of the oddwater procedure. In practice, because the goal is
to trigger an alarm in an occurrence of a technical outlier, it is inconsequential if the alarm is triggered either
at the actual time point or at the immediate neighboring time points corresponding to the actual outlier. As
such, users of the oddwater procedure can ignore these additional steps.

Using the outlier threshold, our oddwater procedure assigns a bivariate label (either as outlier or typical
point) to each observed time point and thereby creates a vector of predicted class labels. That is, if a time point
is declared as an outlier by oddwater procedure, then that could be due to at least one variable in the data
set. We also declared each time point as an outlier or not based on the labels assigned by the water-quality
experts. At a given time point, if at least one variable was labeled as an outlier by the water-quality experts,
then the corresponding time point was marked as an outlier, thereby creating a vector of ground-truth labels.
Then, the performance measures were calculated based on these two vectors of ground-truth labels and
predicted class labels. Thus, this performance evaluation was done with respect to the algorithm's ability to
label a point in time as an outlier or not (i.e., a point in time is an outlier if the observed value for any one
or more of the three variables measured at that point in time are outliers).

2.8. Software Implementation
The oddwater procedure was implemented in the open source R package oddwater (Talagala & Hyndman,
2019b), which provides a growing list of transformation and outlier scoring methods for high-dimensional
data together with visualization and performance evaluation techniques. In addition to the implementa-
tions available through oddwater package, DDoutlier package (Madsen, 2018) was also used for outlier
score calculations. We measured the computation time (mean execution time) using the microbench-
mark package (Mersmann, 2018) for different combinations of algorithms, transformations, and variable
combinations on 28 core Xeon-E5-2680-v4 @ 2.40GHz servers. We also developed an R Shiny web applica-
tion (available via oddwater R package) to provide interactive visual analytic tools to gain greater insight
into the data and perform preliminary investigations of the relationships between water-quality variables at
different sites. To facilitate reproducibility of the results presented herein, we have archived a snapshot of
version 0.7.0 of the R package on zenodo (Talagala & Hyndman, 2019a) along with the code and data sets
used. The latest version and ongoing development of the oddwater R package are available from Github
(https://github.com/pridiltal/oddwater).

3. Results
3.1. Analysis of Water-Quality Data From In Situ Sensors at Sandy Creek
A negative relationship was clearly visible between the water-quality variables turbidity and conductivity
and also between conductivity and river level measured by in situ sensors at Sandy Creek (Figures 3a(i),
3b(i), 3c(i)), 4a, and 4c)). Further, no clear separation was observed between the target outliers and the typi-
cal points in the original data space (Figures 4a–4c). However, a clear separation was apparent between the
two sets of points once the one-sided derivative transformation (an appropriate transformation for unevenly
spaced data) was applied to the original series (Figures 4d–4f, 3a(ii), 3b(ii), and 3c(ii)). KNN-AGG and
KNN-SUM algorithms performed on all three water-quality variables together using the one-sided derivative
transformation gave the highest OP (0.83) and NPV (0.9996) values, which are the most recommended mea-
surements for negatively dependent data where the focus is more on sensitivity (the proportion of positive
patterns being correctly recognized as being positive) than specificity (Ranawana & Palade, 2006).

Based on OP values, the one-sided derivative transformation outperformed the first derivative transfor-
mation (Table 2, Rows 1 and 2 compared to Rows 3 and 4). Further, the distance-based outlier detection
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Figure 3. Time series for (a(i)) turbidity (NTU), (b(i)) conductivity (μS/cm), and (c(i)) river level (m) measured by in situ sensors at Sandy Creek. Transformed
series (one-sided derivatives) of (a(ii)) turbidity (NTU), (b(ii)) conductivity (𝜇S/cm), and (c(ii)) river level (m) measured by in situ sensors at Sandy Creek. In
each plot, outliers determined by water-quality experts are shown in red, while typical points are shown in black. Neighboring points are marked in green.

TALAGALA ET AL. 8556

 19447973, 2019, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2019W

R
024906 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [23/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research 10.1029/2019WR024906

Figure 4. (a–c) Bivariate relationships between original water-quality variables (turbidity [NTU], conductivity [μS/cm], and river level [m]) measured by in situ
sensors at Sandy Creek. (d–f) Bivariate relationships between transformed series (one-sided derivative) of turbidity (NTU), conductivity (μS/cm), and river level
(m) measured by in situ sensors at Sandy Creek. In each scatter plot, outliers determined by water-quality experts are shown in red, while typical points are
shown in black. Neighboring points are marked in green.

algorithms NN-HD, KNN-AGG, and KNN-SUM outperformed all others (Table 2, Rows 1–10 compared to
Rows 11–48). Among the three methods, the performance of k-nearest neighbor distance-based algorithms
were only slightly higher (OP = 0.83) than the NN-HD algorithm (OP = 0.80), which is based only on the
nearest neighbor distance. The algorithm combinations with the two highest OP values also had highest
NPV (0.9996) and PPV (approximately 0.83). Furthermore, considering river level for the detection of out-
liers in the water-quality sensors slightly improved the performance (OP = 0.83). Among the analysis with
transformed series, LOF with the first derivative transformation performed the least well (OP = 0.25). For
most of the outlier detection algorithms (KNN-SUM, KNN-AGG, NN-HD, COF, LOF, and INFLO), the poor-
est performances were associated with the untransformed original series, having the lowest OP and NPV
values, highlighting how data transformation can improve the ability of outlier detection algorithms while
maintaining low false detection rates.

The three outlier detection algorithms that demonstrated the highest level of accuracy (NN-HD, KNN-AGG,
and KNN-SUM) also outperformed the others with respect to computational time. NN-HD algorithm

TALAGALA ET AL. 8557
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Table 2
Performance Metrics of Outlier Detection Algorithms Performed on Multivariate Water-Quality Time Series Data (T = Turbidity; C = Conductivity; L = River Level)
From In Situ Sensors at Sandy Creek, Arranged in Descending Order of OP Values

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)
1 T-C-L One-sided derivative KNN-AGG 0.9994 164.23 0.83 0.83 0.9996 404.0
2 T-C-L One-sided derivative KNN-SUM 0.9994 164.23 0.83 0.83 0.9996 186.8
3 T-C First derivative NN-HD 0.9991 146.87 0.80 0.57 0.9996 45.0
4 T-C First derivative KNN-AGG 0.9989 146.86 0.80 0.50 0.9996 415.8
5 T-C One-sided derivative NN-HD 0.9996 146.91 0.80 1.00 0.9996 112.9
6 T-C One-sided derivative KNN-AGG 0.9994 146.90 0.80 0.80 0.9996 411.7
7 T-C One-sided derivative KNN-SUM 0.9994 146.90 0.80 0.80 0.9996 190.4
8 T-C-L First derivative KNN-AGG 0.9993 127.22 0.60 1.00 0.9993 404.4
9 T-C-L First derivative KNN-SUM 0.9993 127.22 0.60 1.00 0.9993 188.9
10 T-C First derivative KNN-SUM 0.9993 103.88 0.50 1.00 0.9993 189.5
11 T-C First derivative LDOF 0.9991 103.87 0.50 0.67 0.9993 17,444.7
12 T-C One-sided derivative LDOF 0.9991 103.87 0.50 0.67 0.9993 17,253.8
13 T-C-L First derivative NN-HD 0.9991 103.87 0.44 1.00 0.9991 52.5
14 T-C-L First derivative INFLO 0.9965 103.74 0.44 0.12 0.9991 1,107.9
15 T-C-L First derivative COF 0.9987 103.86 0.44 0.50 0.9991 5,939.8
16 T-C-L First derivative RKOF 0.9963 103.73 0.44 0.12 0.9991 369.7
17 T-C-L One-sided derivative NN-HD 0.9991 103.87 0.44 1.00 0.9991 118.2
18 T-C-L One-sided derivative INFLO 0.9985 103.85 0.44 0.40 0.9991 1,113.6
19 T-C-L One-sided derivative COF 0.9987 103.86 0.44 0.50 0.9991 5,787.4
20 T-C-L One-sided derivative LDOF 0.9985 103.85 0.44 0.40 0.9991 17,261.9
21 T-C-L One-sided derivative LOF 0.9985 103.85 0.44 0.40 0.9991 516.9
22 T-C-L One-sided derivative RKOF 0.9976 103.80 0.44 0.20 0.9991 370.5
23 T-C-L Original series KNN-AGG 0.9989 103.87 0.44 0.67 0.9991 391.6
24 T-C-L Original series INFLO 0.9974 103.79 0.44 0.18 0.9991 1,070.7
25 T-C-L Original series LDOF 0.9987 103.86 0.44 0.50 0.9991 17,156.9
26 T-C-L Original series RKOF 0.9985 103.85 0.44 0.40 0.9991 354.0
27 T-C First derivative INFLO 0.9983 73.43 0.28 0.20 0.9991 1,194.9
28 T-C First derivative COF 0.9991 73.46 0.28 1.00 0.9991 5,991.8
29 T-C First derivative LOF 0.9987 73.44 0.28 0.33 0.9991 512.3
30 T-C First derivative RKOF 0.9983 73.43 0.28 0.20 0.9991 363.2
31 T-C One-sided derivative INFLO 0.9987 73.44 0.28 0.33 0.9991 1,207.0
32 T-C One-sided derivative COF 0.9987 73.44 0.28 0.33 0.9991 5,880.8
33 T-C One-sided derivative LOF 0.9969 73.38 0.28 0.08 0.9991 511.3
34 T-C One-sided derivative RKOF 0.9961 73.35 0.28 0.06 0.9991 368.3
35 T-C Original series KNN-AGG 0.9989 73.45 0.28 0.50 0.9991 405.1
36 T-C Original series INFLO 0.9974 73.40 0.28 0.10 0.9991 1,143.6
37 T-C Original series LDOF 0.9987 73.44 0.28 0.33 0.9991 17,022.9
38 T-C Original series RKOF 0.9985 73.44 0.28 0.25 0.9991 351.8
39 T-C-L First derivative LDOF 0.9989 73.45 0.25 1.00 0.9989 17,323.2
40 T-C-L First derivative LOF 0.9989 73.45 0.25 1.00 0.9989 517.1
41 T-C-L Original series NN-HD 0.9987 73.44 0.25 0.50 0.9989 48.6
42 T-C-L Original series KNN-SUM 0.9989 73.45 0.25 1.00 0.9989 177.3
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Table 2 (continued)

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)
43 T-C-L Original series COF 0.9989 73.45 0.25 1.00 0.9989 5,931.7
44 T-C-L Original series LOF 0.9989 73.45 0.25 1.00 0.9989 505.0
45 T-C Original series NN-HD 0.9987 0.00 0.00 0.00 0.9989 41.7
46 T-C Original series KNN-SUM 0.9989 0.00 0.00 NaN 0.9989 184.6
47 T-C Original series COF 0.9989 0.00 0.00 NaN 0.9989 5,896.4
48 T-C Original series LOF 0.9989 0.00 0.00 NaN 0.9989 502.7

Note. See sections 2.7 and 2.8 for performance metric codes and details.

required the least computational time. Among the remaining two, the mean computational time of
KNN-AGG (≈400 ms) was twice that of KNN-SUM's (<200 ms). LOF and its extensions (INFLO, COF, and
LDOF) demonstrated the poorest performance with respect computational time (>500 ms on average).

Only KNN-SUM and KNN-AGG assigned high scores to most of the targeted outliers in turbidity, conductiv-
ity, and level data transformed using the one-sided derivative (Figures 5a and 5b). For each outlying instance,
however, the next immediate neighboring point was assigned the high outlier score instead of the true outly-
ing point. After determining the most influential variable using the additional steps of the algorithm (section
2.7), adjustments were made to correct this to the actual outlier. Because of this correction, the first orange
triangle for the True Positive in Figures 5a–5h, for instance, is always plotted next to the high outlier score
(corresponding to the neighboring point), pointing to the actual outlier instead of the neighboring point.
The outlier scores produced by LOF and COF (Figures 5d and 5e) were unable to capture the outly-
ing behaviors correctly and demonstrated high scattering. In comparison to other outlier scoring algo-
rithms, KNN-SUM algorithm displayed a good compromise between accuracy and computational efficiency
(Table 2).

3.2. Analysis of Water-Quality Data From In Situ Sensors at Pioneer River
Compared to Sandy Creek where the river level is mostly less than 1 m with occasional bursts of atypical
spikes and flow events resulting in levels up to 14.8 m (Figures 3c–3i), Pioneer River is much deeper with
the river level ranging between 13.9 and 16.5 m during the period of study (Figures 6c–6i). Two small dense
clusters of points gathered around zero were observed for all three variables from late March to mid-April in
2017 (Figure 6). These co-occurrences of values around zero are atypical behavior and may have been due to
technical issues with the sensor equipment. These type of anomalies can be easily detected by incorporating
rule-based methods.

Some of the target outliers in the data obtained from the in situ sensors at Pioneer River only deviated
slightly from the general trend (Figures 6a–6i), making outlier detection challenging. A negative relation-
ship was clearly visible between turbidity and conductivity (Figure 7a); however, the relationship between
level and conductivity was complex (Figure 7c). Most of the target outliers were masked by the typical points
in the original space (Figures 7a–7c). Similar to Sandy Creek, data obtained from the sensors at Pioneer
River showed good separation between outliers and typical points under the one-sided derivative transfor-
mation (Figures 7d–7f, 6a(ii), 6b(ii), and 6c(ii)). However, the sudden spikes in turbidity labeled as outliers
by water-quality experts could not be separated from the majority by a large distance and were only visi-
ble as a small group (microcluster; Goldstein & Uchida, 2016) in the boundary defined by the typical points
(Figures 7d and 7e).

From the performance analysis, it was observed that turbidity and conductivity together produced better
results (Table 3, Rows 1–8) than when combined with river level, which tended to reduce the performance
(i.e., generating lower OP and NPV values) while increasing the false negative rate (Table 3, Rows 9–13).
KNN-AGG and KNN-SUM (Table 3, Rows 2 and 3) had the highest accuracy (0.9978), highest geomet-
ric means (492.8012), highest OP (0.88), and highest NPV (0.9984). Despite the challenge given by the
small spikes which could not be clearly separated from the typical points, KNN-AGG, KNN-SUM, and
NN-HD with one-sided derivatives of turbidity and conductivity still detected some of those points as
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Water Resources Research 10.1029/2019WR024906

Figure 5. Classification of outlier scores produced from different algorithms as true negatives (TN), true positives (TP), false negatives (FN), and false positives
(FP). The top three panels (i–iii) correspond to the original series (turbidity, conductivity, and river level) measured by in situ sensors at Sandy Creek. The target
outliers (detected by water-quality experts) are shown in red, while typical points are shown in black. (a)–(h) give outlier scores produced by different outlier
detection algorithms for high-dimensional data when applied to the transformed series (one-sided derivative) of the three variables: turbidity, conductivity, and
level. Through different outlier scoring algorithms (a–h), we are evaluating whether each point in time is an outlier or not. Therefore, (a)–(h), if the outlier
scoring algorithm is effective, then there should be either TP or TN at each point in time when either a red triangle is plotted in at least one of the three panels
(i–iii) or black dots are plotted in all of the top three panels (i–iii). Because outlier scores are nonnegative and are mostly clustered near zero, with some
occasional high values, a square root transformation was applied to reduce skewness of the data in (a) to (h).
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Figure 6. Time series for (a(i)) turbidity (NTU), (b(i)) conductivity (μS/cm), and (c(i)) river level (m) measured by in situ sensors at Pioneer River. Transformed
series (one-sided derivatives) of (a(ii)) turbidity (NTU), (b(ii)) conductivity (μS/cm), and (c(ii)) river level (m) measured by in situ sensors at Pioneer River. In
each plot, outliers determined by water-quality experts are shown in red, while typical points are shown in black. Neighboring points are marked in green.
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Figure 7. (a–c) Bivariate relationships between original water-quality variables (turbidity [NTU], conductivity [μS/cm], and river level [m]) measured by in situ
sensors at Pioneer River. (d–f) Bivariate relationships between transformed series (one-sided derivative) of turbidity (NTU), conductivity (μS/cm), and river
level (m) measured by in situ sensors at Pioneer River. In each scatter plot, outliers determined by water-quality experts are shown in red, while typical points
are shown in black. Neighboring points are marked in green.

outliers while maintaining low false negative and false positive rates (Figure 8). Similar to Sandy Creek,
NN-HD (<200 ms on average) and KNN-SUM (<230 milliseconds on average) demonstrated the highest
computational efficiency for the data obtained from Pioneer River.

4. Discussion
We introduced a new procedure, named oddwater procedure, for the detection of outliers in water-quality
data from in situ sensors, where outliers were specifically defined as due to technical errors that make the
data unreliable and untrustworthy. We showed that our oddwater procedure, with carefully selected data
transformation methods derived from data features, can greatly assist in increasing the performance of a
range of existing outlier detection algorithms. Our oddwater procedure and analysis using data obtained
from in situ sensors positioned at two study sites, Sandy Creek and Pioneer River, performed well with out-
lier types such as sudden isolated spikes, sudden isolated drops, and level shifts while maintaining low false
detection rates. As an unsupervised procedure, our approach can be easily extended to other water-quality
variables, other sites, and also to other outlier detection tasks in other application domains. The only
requirement is to select suitable transformation methods according to the data features that differentiate the
outlying instances from the typical behaviors of a given system.

TALAGALA ET AL. 8562
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Figure 8. Classification of outlier scores produced from different algorithms as true negatives (TN), true positives (TP), false negatives (FN), and false positives
(FP). The top two panels (i and ii) correspond to the original series (turbidity and conductivity) measured by in situ sensors at Pioneer River. The target outliers
(detected by water-quality experts) are shown in red, while typical points are shown in black. (a)–(h) give outlier scores produced by different outlier detection
algorithms for high-dimensional data when applied to the transformed series (one-sided derivative) of the two variables: turbidity and conductivity. Through
different outlier scoring algorithms (a–h), we are evaluating whether each point in time is an outlier or not. Therefore, from (a)–(h), if the outlier scoring
algorithm is effective, then there should be either TP or TN at each point in time when either a red triangle is plotted in at least one of the two panels (i and ii)
or black dots are plotted in both of the top two panels (i and ii). Because outlier scores are nonnegative and are mostly clustered near zero, with some occasional
high values, a square root transformation was applied to reduce skewness of the data in (a) to (h).
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Table 3
Performance Metrics of Outlier Detection Algorithms Performed on Multivariate Water-Quality Time Series Data (T = Turbidity; C = Conductivity; L = River Level)
From In Situ Sensors at Pioneer River, Arranged in Descending Order of OP Values

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)
1 T-C One-sided derivative NN-HD 0.9976 492.76 0.88 0.89 0.9984 136.5
2 T-C One-sided derivative KNN-AGG 0.9978 492.80 0.88 0.91 0.9984 478.8
3 T-C One-sided derivative KNN-SUM 0.9978 492.80 0.88 0.91 0.9984 222.2
4 T-C First derivative NN-HD 0.9978 480.08 0.86 0.95 0.9981 182.0
5 T-C First derivative KNN-AGG 0.9978 480.08 0.86 0.95 0.9981 488.5
6 T-C First derivative KNN-SUM 0.9978 480.08 0.86 0.95 0.9981 225.3
7 T-C First derivative INFLO 0.9971 479.92 0.86 0.86 0.9981 1,525.0
8 T-C First derivative RKOF 0.9970 479.88 0.86 0.84 0.9981 430.4
9 T-C-L One-sided derivative KNN-AGG 0.9975 492.72 0.86 0.91 0.9981 465.2
10 T-C-L One-sided derivative KNN-SUM 0.9975 492.72 0.86 0.91 0.9981 214.5
11 T-C-L First derivative RKOF 0.9951 485.82 0.85 0.68 0.9979 425.9
12 T-C-L First derivative KNN-AGG 0.9975 480.00 0.84 0.95 0.9978 478.0
13 T-C-L First derivative KNN-SUM 0.9975 480.00 0.84 0.95 0.9978 220.0
14 T-C First derivative COF 0.9978 473.58 0.84 0.97 0.9979 7,908.2
15 T-C First derivative LDOF 0.9978 473.58 0.84 0.97 0.9979 23,435.7
16 T-C First derivative LOF 0.9975 473.51 0.84 0.92 0.9979 594.4
17 T-C One-sided derivative INFLO 0.9973 473.47 0.84 0.90 0.9979 1,559.9
18 T-C One-sided derivative COF 0.9976 473.54 0.84 0.95 0.9979 7,505.5
19 T-C One-sided derivative LDOF 0.9975 473.51 0.84 0.92 0.9979 22,986.0
20 T-C One-sided derivative LOF 0.9975 473.51 0.84 0.92 0.9979 596.9
21 T-C One-sided derivative RKOF 0.9960 473.16 0.84 0.75 0.9979 419.7
22 T-C Original series INFLO 0.9973 473.47 0.84 0.90 0.9979 1,498.5
23 T-C-L First derivative COF 0.9975 473.51 0.83 0.97 0.9976 7,910.7
24 T-C-L First derivative LDOF 0.9975 473.51 0.83 0.97 0.9976 23,357.7
25 T-C-L One-sided derivative NN-HD 0.9975 473.51 0.83 0.97 0.9976 131.9
26 T-C Original series NN-HD 0.9976 466.96 0.83 0.97 0.9978 171.0
27 T-C Original series KNN-AGG 0.9970 466.81 0.83 0.88 0.9978 468.7
28 T-C Original series KNN-SUM 0.9970 466.81 0.83 0.88 0.9978 211.6
29 T-C Original series COF 0.9978 467.00 0.83 1.00 0.9978 7,617.6
30 T-C Original series LDOF 0.9978 467.00 0.83 1.00 0.9978 22,910.4
31 T-C Original series LOF 0.9978 467.00 0.83 1.00 0.9978 579.1
32 T-C Original series RKOF 0.9963 466.66 0.83 0.80 0.9978 401.9
33 T-C-L First derivative NN-HD 0.9973 473.47 0.82 0.95 0.9976 167.1
34 T-C-L One-sided derivative INFLO 0.9971 473.43 0.82 0.92 0.9976 1,418.8
35 T-C-L One-sided derivative COF 0.9973 473.47 0.82 0.95 0.9976 7,497.9
36 T-C-L One-sided derivative LDOF 0.9973 473.47 0.82 0.95 0.9976 23,090.7
37 T-C-L One-sided derivative RKOF 0.9952 472.97 0.82 0.71 0.9976 422.1
38 T-C-L First derivative INFLO 0.9975 466.92 0.81 1.00 0.9974 1,398.3
39 T-C-L First derivative LOF 0.9975 466.92 0.81 1.00 0.9974 600.7
40 T-C-L One-sided derivative LOF 0.9965 466.70 0.81 0.85 0.9974 596.1
41 T-C-L Original series NN-HD 0.9973 466.88 0.81 0.97 0.9974 163.0
42 T-C-L Original series KNN-AGG 0.9967 466.73 0.81 0.88 0.9974 456.3
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Table 3 (continued)

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)
43 T-C-L Original series KNN-SUM 0.9967 466.73 0.81 0.88 0.9974 201.4
44 T-C-L Original series INFLO 0.9975 466.92 0.81 1.00 0.9974 1,372.8
45 T-C-L Original series COF 0.9975 466.92 0.81 1.00 0.9974 7,707.2
46 T-C-L Original series LDOF 0.9975 466.92 0.81 1.00 0.9974 127,337.1
47 T-C-L Original series LOF 0.9975 466.92 0.81 1.00 0.9974 580.9
48 T-C-L Original series RKOF 0.9955 466.47 0.81 0.74 0.9974 406.8

Note. See sections 2.7 and 2.8 for performance metric codes and details.

Studies have shown that transforming variables affects densities, relative distances, and orientation of points
within the data space and therefore can improve the ability to perceive patterns in the data which are
not clearly visible in the original data space (Dang & Wilkinson, 2014). This was the case in our study
where no clear separation was visible between outliers and typical data points in the original data space,
but a clear separation was obtained between the two sets of points once the one-sided derivative trans-
formation was applied to the original series. Having this type of a separation between outliers and typical
points is important before applying unsupervised outlier detection algorithms for high-dimensional data
because the methods are usually based on the definition of outliers in terms of distance or density (Talagala,
Hyndman, Smith-Miles, Kandanaarachchi, et al., 2019). Most of the outlier detection algorithms
(KNN-SUM, KNN-AGG, NN-HD, COF, LOF, and INFLO) performed least well with the untransformed orig-
inal series, demonstrating how data transformation methods can assist in improving the ability of outlier
detection algorithms while maintaining low false detection rates.

In our modified algorithm, the NN-HD algorithm, we did not incorporate the clustering step of the HDout-
liers algorithm because the data obtained from the two study sites are free from microclusters (Talagala,
Hyndman, Smith-Miles, et al., 2019) and therefore free from the masking problem. Because the data sets
have only local and global outliers, incorporating a clustering step that forms small clusters using a small
ball with a fixed radius (the Leader Algorithm in Wilkinson, 2018) does not significantly change the struc-
ture of the data points in the high-dimensional data space. Furthermore, because NN-HD has the additional
requirement of isolation in addition to clear separation between outlying points and typical points, it per-
formed poorly in comparison to the two KNN distance-based algorithms (KNN-AGG and KNN-SUM) which
are not restricted to the single most nearest neighbor (Talagala, Hyndman, Smith-Miles, et al., 2019). For
the current work, k was set to 10, the maximum default value of k in Madsen (2018), because too large a
value of k could skew the focus toward global outliers (points that deviates significantly from the rest of the
data set) alone (Zhang et al., 2009) and make the algorithms computationally inefficient. On the other hand,
too small a value of k could incorporate an additional assumption of isolation into the algorithm, as in the
NN-HD algorithm where k = 1. Among the analyses using transformed series, LOF with the first derivative
transformation performed the least well, which could also be due to its additional assumption of isolation
(Tang et al., 2002). However, using the same k across all algorithms may bias direct comparison because the
performance of the algorithms can depend on the value of k and algorithms can reach their peak perfor-
mance for different choices of k (Campos et al., 2016). Therefore, performing an optimization to select the
best k is nontrivial, and we leave it for future work.

We took the correlation structure between the variables into account when detecting outliers given some
were apparent only in the high-dimensional space but not when each variable was considered indepen-
dently (Ben-Gal, 2005). A negative relationship was observed between conductivity and turbidity and also
between conductivity and level for the Sandy Creek data. However, for Pioneer River, no clear relationship
was observed between level and the remaining two variables, turbidity, and conductivity. This could be one
reason why the variable combination with river level gave poor results for the Pioneer River data set, while
results for other combinations were similar to those of Sandy Creek. The one-sided derivative transformation
outperformed the derivative transformation. This was expected, because in an occurrence of a sudden spike
or isolated drop, the first derivative assigns high values to two consecutive points, the actual outlying point
and the neighboring point, and therefore increases the false positive rate (because the neighboring points
that are declared to be outliers actually correspond to typical points in the original data space). Therefore, to
detect technical outliers in water-quality data from Sandy Creek and Pioneer River, the one-sided derivative
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transformation is recommended because it outperformed the other transformations during the comparative
analysis. For Sandy Creek, all three water-quality variables together with the one-sided derivative transfor-
mation is recommended. However, for Pioneer River, the use of river level is not advisable due its complex
relationships with the other variables and its temporal variability. For both rivers, the use of KNN-SUM
algorithm is recommended because it provides a good compromise between accuracy and computational
efficiency.

In this study, our goal was to detect suitable transformations, combinations of variables, and the algorithms
for outlier score calculation for the data from two study sites. Results may depend on the characteristics of
the time series (site and time dependent for example), and what is best for one site may not be the best for
another site. Therefore, care should be taken to select transformations most suitable for the problem at hand.
According to Dang and Wilkinson (2014), any transformation used on a data set must be evaluated in terms
of a figure of merit (i.e., a numerical quantity used to characterize the performance of a method, relative to its
alternatives). For our work on detecting outliers, the figure of merit was the maximum separability of the two
classes generated by outliers and typical points. However, we acknowledge that the set of transformations
that we used for this work was relatively limited and influenced by the data obtained from the two study
sites. Therefore, the set of transformations we considered (Table 1) should be viewed only as an illustration
of our oddwater procedure for detecting outliers. We expect that the set of transformations will expand
over time as the oddwater procedure is used for other data from other study sites and for applications to
other fields.

For the current work, we selected transformation methods that could highlight abrupt changes in the
water-quality data. We hope to expand the ability of oddwater procedure so that it can detect other outlier
types not previously targeted but commonly observed in water-quality data (e.g., low/high variability and
drift as per Leigh et al., 2019). One possibility is to consider the residuals at each point, defined as the differ-
ence between the actual values and the fitted values (similar to Schwarz, 2008) or the difference between the
actual values and the predicted values (similar to Hill & Minsker, 2006), as a transformation and apply out-
lier detection algorithms to the high-dimensional space defined by those residuals. Here the challenge will
be to identify the appropriate curve fitting and prediction models to generate the residual series. In this way,
continuous subsequences of high values could correspond to other kinds of technical outliers such as high
variability or drift. However, the range of applications and the space of the transformations are extremely
diverse, which makes it challenging to provide a structured formal vision that covers all of the possible trans-
formations that could be considered. The transformations we present in this paper were mainly chosen as
appropriate to the data collected from Sandy Creek and Pioneer River. We observed that different transfor-
mations can lead to entirely different data structures and that the selection of suitable transformations is
directed by the data features and typical patterns imposed by a given application. Domain specific knowl-
edge plays a vital role when selecting suitable transformations and, as such, defining structured guidelines
for the selection of suitable transformations remains problematic.

Not surprisingly, NN-HD algorithm required the least computational time given the outlying score calcu-
lation only involves searching for the single most nearest neighbors of each test point (Wilkinson, 2018).
The mean computational time of KNN-AGG was twice as high as that of KNN-SUM because the KNN-AGG
algorithm has the additional requirement of calculating weights that assign nearest neighbors higher weight
relative to the neighbors farther apart (Angiulli & Pizzuti, 2002). LOF and its extensions (INFLO, COF, and
LDOF) required the most computational time; all four algorithms involve a two-step searching mechanism
at each test point when calculating the corresponding outlying score. This means that at each test point,
each algorithm searches its k nearest neighbors as well those of the detected nearest neighbors for the outlier
score calculation (Breunig et al., 2000; Jin et al., 2006; Tang et al., 2002; Zhang et al., 2009).

Assessing performance of the detection methods based on the classification criteria, while traditional,
has limitations . During performance evaluation, we observed that some outliers were detected by all the
approaches, some were detected as outliers only by certain methods, and some were identified by no method.
Therefore, incorporating ensemble methods as proposed in Unwin (2019) would assist in selecting the best
performing approaches for a particular outlier type and enable further insight into the results obtained from
the oddwater procedure.

We hope to extend our multivariate outlier detection framework into space and time so that it can deal with
the spatiotemporal correlation structure along branching river networks. Further, in the current paper, we
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have introduced our oddwater procedure as a batch method. However, due to the unsupervised nature of
our oddwater procedure, it can be easily extended to a streaming data scenario with the help of a sliding
window of fixed length. A streaming data scenario always demands a near-real-time support. Therefore,
one significant challenge is to find efficient methods that allow us to update outlier scores taking account of
the newest observations and removing the oldest observations introduced by overlapping sliding windows,
rather than recalculating scores corresponding to observations which are not affected by either new arrivals
or the oldest observations (that are no longer covered by the latest window). Further work will be needed to
investigate the efficient computation of regenerating nearest neighbors in a data streaming context.

Notation
FP False positives (i.e., when a typical observation is misclassified as an outlier)
FN False negatives (i.e., when an actual outlier is misclassified as a typical observation)
TP True positives (i.e., when an actual outlier is correctly classified)
TN True negatives (i.e., when an observation is correctly classified as a typical point)
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