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a b s t r a c t

High-frequency water quality monitoring systems provide valuable measurements for predicting the
trend of water quality, warning of abnormal activities or operating hydrological models. However,
missing values are prevalent due to network miscommunication, device replacement or failure.
Applying datasets with missing values can lead to biased results in statistical analysis or hydrological
modelling work. We develop a cloud-based data processing system combining advanced algorithms
to impute monitoring data in near real-time. The system provides high compatibility for supporting
different water quality variables, imputation algorithms and extensive scalability to support numerous
data streams. Based on the proposed approach, we review various imputation methods which can be
applied to water quality data. Overall, this work provides a systematic design of a water quality data
imputation system, explores the advantages and limitations of selected data imputation methods and
analyses the imputation performance of two real-time water quality monitoring systems located in
both the USA and Australia. The results provide practical guidelines for data imputation applications
in water quality data.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Real-time water quality monitoring data is valuable for con-
tructing innovative studies that respond to dynamic temporal
ariations, such as water quality prediction, water quality assess-
ent and environmental management [1]. The high-frequency
easurements enable scientists to gain a comprehensive un-
erstanding of the dynamic temporal variations, which usually
annot be revealed by traditional sampling methods. However,
he issue of missing data is ubiquitous in real-time water quality
onitoring, which is often caused by equipment failure, network
overage or data corruption [2].
Missing data are a pervasive issue in data-driven modelling.

he absence of data could cause bias in the statistical analy-
is, leading to invalid conclusions [3]. Moreover, the lost data
akes many data modelling techniques ineffective because they
resume complete information for all the variables included [4].
ence, efficient ways of handling the missing data are urgently
eeded.
Common known methods to deal with missing values range

rom data omission to sophisticated imputation algorithms [5].
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The data omission method discards samples with missing values
from further analysis. Though it is easy to apply, it decreases the
effective sample size dramatically. Moreover, deleting samples
would cause discontinuous time-series data, which brings more
difficulties in analysing temporal information.

Statistical analysis is another commonly used approach in
estimating missing water quality sensor data. Kabir et al. [6]
applied the mean, median and linear-based imputation meth-
ods in estimating the missing data from the water distribution
network of the City of Calgary. Their experiments demonstrate
that mean and median imputation tend to underestimate the
variance of the data. Srebotnjak et al. [7] introduced the hot-
deck imputation method to improve the European Environmental
Agency water quality database. In their approach, water quality
domain knowledge is critical to identify the complete samples
that match the missing samples closely. Overall, for statistical-
based imputation methods, integrating specific domain knowl-
edge into the imputation process is essential to achieve promising
performance.

Vast quantities of water quality sensor data afford one new op-
portunity for data-driven discovery. Unlike process-based mod-
els that are based on well established mathematical or phys-

ical laws, data-driven models build relationships between the
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ystem state variables without explicit knowledge of the phys-
cal behaviour of the system [8]. Ratolojanahary et al. [9] eval-
ated different imputation methods such as K-Nearest Neigh-
ours (KNN), Random Forest (RF) and Multivariate Imputations
y Chained Equations (MICE) for handling high rate missingness
n a water quality dataset collected from France. The experimen-
al results demonstrated that hybridization of multiple machine
earning algorithms could achieve better performance than the
riginal MICE taken alone. Kim et al. [10] compared imputation
ethods such as feedforward neural network and self-organizing
ap in estimating streamflow observations from the Taehwa
iver, Korea. The machine learning-based methods show promis-
ng performance in processing high-flow events. However, most
ata-driven methods treat water quality sensor data as a se-
uence of numeric values. Considering many water quality vari-
bles have predictable temporal variability, ignoring the temporal
nformation can reduce the imputation accuracy significantly.

Neural networks with recurrent units have been widely used
n processing time series data due to its capability to exhibit
emporal dynamic behaviour. Many studies applied recurrent
eural network such as Long Short-Term Memory (LSTM) or
ated Recurrent Unit (GRU) in estimating time series data. Zhang
t al. [11] designed an imputation network based on GRU and
esidual shortcut connection. Experimental results show that the
odel provides higher accuracy of missing data imputation than

he baseline methods. Verma and Kumar [12] proposed an accu-
ate missing data prediction method based on the LSTM model.
he LSTM based model performs well as compared to linear
egression and Gaussian Process Regression on a health care
ataset.
Most current studies develop imputation methods for spe-

ific water quality variables. The experimental results indicate
uperior performance for the proposed methods under certain
ircumstances. However, it is hard to determine which imputa-
ion method consistently performs best in a large spectrum of
pplication scenarios [13]. In particular, most benchmarks do not
ystematically describe the workflow to process realistic moni-
oring data, making it hard to conduct repeatable experiments to
valuate different imputation methods.
Different from previous review studies, we firstly design a

ovel data imputation system that provides high compatibility
n implementing various data imputation algorithms. Then, using
his system, we evaluated the selected imputation algorithms on
ata from two real-time water quality monitoring systems. The
ain contributions of this article are summarized as follows.

1. We review the state-of-the-art imputation methods, anal-
yse their advantages and limitations, and discuss the
method selection in water quality data imputation. More-
over, we evaluate these selected methods on two water
quality datasets collected from America and Australia.

2. We design a novel cloud-based missing data imputation
system that can work with different imputation algorithms.
The designed system is able to recover missing data in near
real-time. It supports processing multiple water quality
monitoring streams simultaneously.

The remainder of this article is organized as follows. Sec-
ion 2 reviews related work and motivates the research. Sec-
ion 3 presents the statistical concepts of the imputation problem.
ection 4 covers a detailed description and components of the
roposed imputation system. Section 5 introduced a selected
umber of imputation algorithms. Section 6 shows the validity
s well as the penalization of the selected imputation algorithms.
ections 7 and 8 evaluate the imputation performance of the
elected algorithms. Finally, Section 9 concludes the article.
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2. Related work

The successive missing measurements reduce the quality and
performance of real-time environmental monitoring and the effi-
ciency of data analysis. To handle missing data in environmental
monitoring, a number of data imputation methods were applied
on different water quality variables.

Chen et al. [14] proposed TrAdaBoost-LSTM, which can cap-
ture the long-term dependencies among time series and leverage
the related knowledge from complete datasets to fill in con-
secutive missing data. The results indicate that the proposed
method improves the imputation accuracy by around 20% com-
pared with alternative benchmarks. Lamrini et al. [15] applied
self-organizing map (SOM)-based methods to reconstruct miss-
ing data in a drinking water treatment. Experimental results
showed the efficiency and soundness of SOM algorithm. Sre-
botnjak et al. [7] explains the motivation and methodology of
the Environmental Performance Index (EPI) Water Quality In-
dex (WATQI) and applies hot-deck methods to impute missing
WATQI in broader geographical regions. The imputation results
expand the original WATQI by 39 countries to 131 countries,
thereby increasing geographical coverage by 42%. Though various
methods are developed to infill water quality missing data, they
are evaluated only by specific water quality variables. Hence, a
systematic way to implement these imputation methods to large
scale monitoring data is highly needed.

Alternatively, many studies focus on comparing different im-
putation methods on water quality data. For example, Ratolo-
janahary et al. [9] combined MICE (Multivariate Imputations by
Chained Equations) with Random Forest (RF), Boosted Regression
Trees (BRT), K-Nearest Neighbours (KNN) and Support Vector
Regression (SVR) to address the issue of data imputation, in
the context of water quality assessment. The results showed
that MICE-SVR is the best in that it converges faster than the
three others and provides the best performance. Betrie et al. [16]
compared three imputation methods such as iterative robust
model-based imputation (IRMI), multiple imputations of incom-
plete multivariate data (AMELIA), and sequential imputation for
missing values (IMPSEQ) on infilling water quality data collected
from copper–molybdenum–gold–silver–rhenium mine site. The
results showed that IMPSEQ and IRMI are suitable to impute
missing values in water-quality databases at mine sites, whereas
AMELIA is not. Tabari and Talaee [17] examined the efficiency of
the multilayer perceptron (MLP) and radial basis function (RBF)
networks for recovering the missing values of 13 water quality
parameters based on data from five stations located along the
Maroon River, Iran. It was also found that the MLP models were
superior to the RBF models to reconstruct water quality missing
data. To the best of our knowledge, most of the benchmark stud-
ies do not cover the advanced neural network-based imputation
models. Considering deep neural network models outperforms
traditional imputation methods in many studies [2,18–21], ig-
noring this type of method cannot provide the comprehensive
performance evaluation for imputing water quality data under
realistic use cases.

In contrast to the previous studies, in this paper we propose
a cloud-based missing data imputation system that can support
different imputation algorithms. This offers the user a systemic
approach to run imputation tasks on large scale water quality
monitoring data. Furthermore, we review a select number of im-
putation methods, which covers the statistical-based, data-driven
model-based and neural network-based solutions.
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Fig. 1. An example of missing data in the water quality monitoring system. This
system measures seven water quality variables such as water temperature (WT),
pH, electric conductivity (EC), dissolved oxygen (DO), chlorophyll-a (Chl-a) and
nitrate (NO3). The while gap and grey block represent the missing data and
vailable data.

. Water quality data missing problem

The quality of statistical analytic can be highly affected by
he proportion of missing data [22]. According to the study pro-
osed by Rubin [23], missing data are often categorized into the
ollowing three types:

• Missing Completely At Random (MCAR). If every measure-
ment in the dataset has the same probability of being miss-
ing, the datasets is defined to be missing completely at
random. This implies that the causes of the missing data are
unrelated to the data. MCAR is an ideal assumption but it
rarely occurs in practice.

• Missing At Random (MAR). Suppose only groups of measure-
ments in the datasets have the same probability of being
missing, and the observed data define the probability. In that
case, we define the dataset to be missing at random. MAR is
a more general and realistic assumption than MCAR. Under
this assumption, the missingness can be modelled by using
the observed data.

• Missing Not At Random (MNAR). This refers to the case
when neither MCAR nor MAR holds. When the dataset is
MNAR, the fact that the data are missing is systematically
related to the unobserved data. It is hard to handle this
missing data type because it will require strong assumptions
about the patterns of missingness.

It is worth noting that missing water quality data tends to fol-
ow the MAR mechanism [24]. Hence, it is reasonable to estimate
issing water quality information by applying different analytical
nd modelling approaches.
Fig. 1 illustrates how data was missing in East Russell River

tation from North Queensland, Australia [25]. This station is part
f the Great Barrier Reef catchment loads monitoring program,
hich will be described in Section 7.1. As can be seen, each
ariable had monitoring data missed. Among these variables,
ome variables such as DO, NO3 and EC have a larger number of
missing data than other variables. Missing a consecutive number
of data cross multiple variables bring significant challenges in
estimating water quality monitoring data accurately.

4. Data imputation system

In this paper, we designed and implemented a novel missing
data imputation system. Unlike previous studies designed for
specific imputation algorithms [26,27], we abstracted the critical
processing steps in data imputation and built the system based
on modular design principles (Fig. 2).

The system uses PyTorch as the backend engine for deep learn-
ing models and python imputation package like impyute [28] as
65
Fig. 2. Cloud-based Data Imputation System. The system takes raw water quality
measurements as inputs. It works with a data cleaning system to remove obvious
outliers. After selecting the data imputation algorithm and fetching the cleaned
data, a data processing step is required to generate inputs for the algorithm.
Followed by this, the model infills missing gaps accordingly.

the backend engine for none deep learning algorithms. The sys-
tem is developed on the Amazon Cloud to scale up for hundreds
of environmental monitoring data streams.

A detailed explanation of the main steps illustrated in Fig. 2
for using the system is:

1. Water Quality Monitoring Data Cleaning: The inputs of
the system are raw monitoring data steams. There are
many noises, or error information got involved during the
data collection. Considering data imputation algorithms
need good quality inputs, we first pass the input datasets
through a data cleaning system. It provides basic cleaning
functions by using thresholds filtering and sensor refer-
ence value check. The water quality experts set maximum
and minimum thresholds for different variables to exclude
outliers. Many sensor manufacturers such as NICO [29]
provide the sensor reference value to indicate the quality
of the measurement. Hence, it is also used to remove
invalid measurements. In this system, every data stream
is attached with its metadata configuration, and the data
cleaning process is automatically triggered when there are
enough incoming data collected.

2. Imputation System Initialization: In this step, the system
loads the selected data imputation algorithm. Each data
stream can apply different imputation methods regarding
its configuration. Also, the cleaned data are fetched through
the data API during the initialization.

3. Data Preprocessing: Data normalization is essential for
data-driven modelling. It rescaled different input variables
into the same range, which is necessary for measurements
with different units. Moreover, the system also labelled
all the gaps in the input data. Followed by this, a sliding
window strategy is applied to generate the algorithms’
inputs.

4. Imputation Data Generation: With the selected data im-
putation algorithm and input data, the imputation value
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can be generated for each missing gaps. With the gap
information collected in step 3, the system can infill value
to the corresponding gaps and output the final complete
data.

In the design above, the data cleaning system ensures that
here are no outliers in the raw data. It is essential for data
mputation because outliers with extreme values can heavily mis-
ead the imputation results [30]. In the data imputation system,
ach imputation method works as a plugin, providing flexibility
o extend the system in supporting more advanced imputation
lgorithms.
Based on this proposed system, we can implement differ-

nt data imputation algorithms and evaluate their performance
ccording to the imputed results.

. Overview of imputation methods

In this section, we listed and described popularly used imputa-
ion methods in estimating water quality data. They can be clas-
ified into three groups: statistical-based methods, model-based
ethods and neural network-based methods.

.1. Statistical based

Deterministic imputation replaces the missing data with plau-
ible values, which can be derived by substituting values from the
vailable observed variables [31]. Here, we listed three popular
sed imputation methods: mean imputation, last observation
arried forward (LOCF) and linear imputation.

.1.1. Mean imputation
Mean imputation involves replacing the missing value with

he arithmetic mean of all the other available values.

ˆ =
1
n

n∑
i=1

xi (1)

5.1.2. Last observation carried forward
Last Observation Carried Forward (LOCF) is commonly used for

dealing with missing values. In this method, the missing value is
imputed from the last observation in the dataset. This method
makes the unrealistic assumption that there is no change at all
since the last measured observation [32]. LOCF method is often
used in dealing continuous value under MCAR condition.

5.1.3. Linear imputation
Linear interpolation estimates missing values based on the ad-

jacent available values. It is preferred for estimating continuously
missing data over a short time interval. For a missing value yi,
inear interpolation generates the estimation based on the closest
receding and succeeding available values yh and yj,

î = yh +
yj − yh
xj − xh

(x − xh), xh < xi < xj. (2)

where xh, xi and xj represent the preceding, current and succeed-
ing value of x.

Linear imputation is simple, fast, and requires only two avail-
able samples to impute each missing data period. On the other
hand, the accuracy of Linear imputation typically decreases as the
length of the missing data period increases.

5.2. Model based

Model-based imputation aims to build the predictive models
for each target variable that contains missing values. Several
commonly-used imputation methods are explained in this sub-
section. This includes Expectation-Maximization, Multiple impu-
tations by chained equations, and the k-nearest neighbour.
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5.2.1. Expectation-maximization
Expectation-Maximization (EM) is a parametric method to

impute missing values based on the maximum likelihood estima-
tion. The EM generates estimated values for missing data through
the expectation and maximization steps.

In the expectation step, the missing data is estimated based on
all the observed data and the current estimate model parameters.
Mathematically, the calculation can be expressed as:

Q (θ |θ i) =

∫
l(θ |Y )f (Ymis|Yobs, θ

i)dYmis (3)

where l(θ |Y ) is log likelihood function of complete data, l(θ |Yobs)
s log likelihood function of observed data, and
(Ymis|Yobs, θ ) is the predictive distribution of missing data given
.
In the maximization step, the expectation of the complete data

og likelihood from the previous estimation step is maximized to
elp get the next guess of θ :
i+1

= argmax
θ

Q (θ |θ i) (4)

This two-step process iterates until convergent and the miss-
ing data can be finally estimated.

5.2.2. Multiple imputations by chained equations
Multiple imputations by chained equations (MICE) is one prin-

cipled method of addressing missing data. The three stages of
MICE are described as below:

In the beginning, all missing values are filled by random sam-
pling data with replacement from the existing values. The first
variable with missing values x1 is generated based on all other
variables x2, . . . , xk, restricted to individuals with the observed
x1. Missing values in x1 are replaced by simulated draws from
the corresponding posterior predictive distribution of x1. Then,
the next variable with missing values x2 is regressed based on
all other variables x1, x3, . . . , xk, restricted to individuals with the
observed x2, and using the imputed values of x1. Again, missing
values in x2 are replaced by draws from the posterior predictive
distribution of x2. The process is applied to all other variables with
missing values. This procedure would repeated for several turns
to produce a single imputed dataset.

5.2.3. K-nearest neighbours
The k-nearest neighbour (KNN) is a popular approach in data

processing applications. It is designed to replace missing values
by using k-most similar non-missing data. A categorical missing
value is imputed with the majority among its k nearest neigh-
bours, and the numerical missing value is filled by calculating the
average value of the k nearest neighbours.

To select k number of nearest neighbours, the similarity be-
tween the data and its nearest neighbours should be maximal.
Various distance functions have been used to measure the dis-
tance between data A and B. The Euclidean distance function is
selected in most studies. For example A = (x1, x2, . . . , xm) and B
= (y1, y2, . . . , ym), where m is the feature space dimensionality.
To calculate the distance between points A and B, the normalized
Euclidean metric is calculated as:

dist(xi, xj) =

√∑n
p=1(x

p
i − xpj )2

n
(5)

In addition, the usually used method is Minkowski distance (or
its variants) as follows:

dist(xi, xj) = (
n∑

p=1

|xpi − xpj |
r )

1
r (6)

where r is a non-negative integer called Minkowski coefficient.
Minkowski distance is regarded as Manhattan distance while r =

1 and as Euclidean distance while r = 2.
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Fig. 3. Sequence-to-Sequence model for data imputation.

5.3. Neural network based

Deep Neural Networks (DNNs) have recently achieved state-
f-the-art performance on various speech recognition and com-
uter vision tasks. This motivates one to investigate applying
NNs in estimating missing data. Here, we listed data imputa-
ion models with two mainstream architectures: Sequence-to-
equence Model, and Recurrent Neural Network.

.3.1. Sequence-to-sequence model
Sequence-to-sequence learning emerges as an effective

aradigm for dealing with variable-length inputs and outputs.
t aims to directly model the conditional probability p(y|x) of
mapping an input sequence, x1, . . . , xn, into an output sequence,
y1, . . . , ym [33]. This process is undertaken by the encoder–
decoder framework proposed by Cho et al. [34]. Since missing val-
ues can randomly happen during the data collection, generating
an arbitrary number of estimated values is important.

Fig. 3 illustrates the standard sequence-to-sequence model for
imputation tasks. In Fig. 3, the encoder computes a representation
s for each input sequence. Based on this input representation, the
decoder generates an output sequence, one unit at a time. In this
approach, the conditional probability is decomposed as:

log p(y|x) =

m∑
j=1

logp(yj|y<j, x, s) (7)

where x and y are the input and output sequences, s denotes the
representation for each input sequence.

When it comes to the imputation problem, the input is the
sequence of available data points around the missing gap. The
output of the model is the estimation of values at each time
index of the missing gap. In the sequence-to-sequence model,
recurrent neural network (RNN) units are applied in the encoder
and decoder components to process time series data. Also, the
attention mechanism enables the model to learn how to focus on
a specific range of the input sequence for the differing outputs.

1. SSIM

Sequence-to-Sequence Imputation Model (SSIM) [2] is the
first data imputation model based on the sequence-to-
sequence architecture and attention mechanism. SSIM uses
the long short-term memory network (LSTM) to capture
the available temporal information between gaps, and the
global attention mechanism is applied to let SSIM focus on
specific parts of the input for estimating different missing
values.
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2. Dual-SSIM

The Dual-SSIM [18] extends the conventional SSIM model
by having two separate encoders to process the input se-
quence around the missing gap. The Gated Recurrent Unit
(GRU) based encoders can split the information before and
after the missing gap naturally. Hence, no extra gap vectors
need to be created to locate the missing values’ locations.
In addition, the global attention mechanism is extended to
support processing temporal representations learned from
two different encoders.

5.3.2. Recurrent neural network
Instead of imputing missing values directly, another idea is to

estimate missing data when computing other correlated predic-
tion tasks. This idea is popularly applied in practical applications
such as health care and biology [19]. By combining the impu-
tation process with prediction tasks, the accuracy of estimating
missing values can be improved with the guide of the correlated
prediction tasks.

In this approach, a recurrent component and a regression
component work together for generating imputation outputs.
Usually, the recurrent component is achieved by a recurrent
neural network and the regression component is achieved by a
fully-connected network. A standard recurrent network can be
represented as:

ht = σ (Whht−1 + Uhxt + bh) (8)

where σ is the sigmoid function, Wh, Uh and bh are model param-
eters, and ht is the hidden state of previous time steps.

For the imputation problem, xt may have missing values so
one cannot use xt as the input directly as in the above equation.
Instead, many studies [19–21] use a ‘complement’ input xct when
xt is missing. xct can be calculated in different strategies such as
mean of the dataset, same as its last measurement or others or
intermediate outputs inside the model. Here, we take the third
strategy as an example. In this case, the input xct can be calculate
as follows:

x̂t = Wxht−1 + bx, (9)

xct = mt ⊙ xt + (1 − mt ) ⊙ x̂t (10)

where x̂t is the estimated vector based on the hidden state ht−1. ⊙
represents the element-wise multiplication. mt denotes whether
the input is missing at time step t . Wx, bx are model parameters.

Fig. 4 depicts the customized recurrent neural network model
for handling time series with missing values. In this approach, the
inputs with missing values are used to train the model for the
prediction task. To get the prediction results, the model needs to
estimate the missing values as the intermediate outputs.

In order to help the model identify the gaps in the inputs,
additional time interval and masking vectors need to be provided
as supplementary information. Time interval vector is designed
to measure the distance for each variable since its last observa-
tion. Masking vector m is applied to indicate which variables are
missing at time step t .

1. BRITS

BRITS [20] is a recurrent neural network based method for
missing value imputation in time series data. By adapting
the recurrent neural network, BRITS treats missing values
as variables of the computation graph and updates the es-
timations during the backpropagation process. In this way,
gradients information from both forward and backward
directions are used together to update the missing value,
which leads to a more accurate estimation.

BRITS uses a data-driven imputation procedure to esti-
mate missing data. To use BRITS, the data imputation task
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Table 1
Strength and limitations of the methods listed in Section 5.
Method Strength Limitation

Mean Imputation The variability in the data is reduced;the standard
deviations and the variance estimates may get

LOCF Easy to understand, underestimated [35],
Efficient to apply The assumption is mostly unrealistic [36],

Linear Imputation There should be a linear relationship between the predictor
and response variables

EM Good Interpretability, High risk to overfit the training data
MICE Lazy Learning, do not build Computationally expensive for large datasets
KNN models from training data

SSIM Can capture and use the Black box method,
Dual-SSIM temporal information, Performance heavily relies on
BRITS Deep architecture brings hyperparameters tuning,
M-RNN strong representation learning High computational cost to build the model
Fig. 4. Customized recurrent neural network model for data imputation.

and prediction tasks are usually implemented jointly. Ex-
periments demonstrate that this strategy can boosts the
imputation accuracy and classification task’s accuracy sig-
nificantly.

2. M-RNN

M-RNN [21] is a Multi-directional Recurrent Neural Net-
work. It uses information within the same data stream to
interpolate data, and also imputes missing values across
data streams. It contains an interpolation block and an
imputation block. The interpolation block constructs an in-
terpolation function that operates within the data stream.
The imputation block constructs an imputation function
that operates across streams. M-RNN overperforms several
benchmarks on five real-world medical datasets.

. Advantages and limitations

In this section, we summarized the main relative advantages
nd limitations of these imputation techniques, as well as their
uitability to modelling purpose (see Table 1).

1. Statistical-based Methods

When using statistical-based methods, missing values are
replaced by a value defined by a certain rule. This approach
is computationally simple but ignores the relationship be-
tween variables in the datasets. Hence, it often underesti-
mate the variability because each unobserved value carries
the same weight in the analysis as the known observed val-
ues [37]. Moreover, some statistical-based methods assume
all the missing data follow a constant pattern. For example,
68
they are all close to the medium value (Mean Imputa-
tion) or the preceding available value (LOCF). Therefore, the
statistical-based methods are often potentially biased and
should be used with great caution [38].

2. Model-based Methods

Model-based imputation takes into account the relation-
ship between different variables by building regression
models for missing features that take the non-missing fea-
tures as inputs [39]. However, it has significant computa-
tional overhead. First, the run-time cost of applying the
model on large scale datasets can be prohibitive. Second,
it depends heavily on the type and nature of the data, and
cannot be used as an out-of-the-box pre-processing step.

3. Neural Network-based Methods

Neural networks with recurrent architecture have the abil-
ity to capture long-term temporal dependencies and
variable-length observations, which cannot be supported
by other imputation modelling technologies. However, neu-
ral
network-based models have the following limitations: (1)
due to the multilayer nonlinear structure, neural network
models are often criticized for being non-transparent and
the outputs not traceable by humans [40]. (2) with the
rapid increase in the volumes of data, the time required
to train the neural network is increasing accordingly [41].
(3) compared with traditional machine learning algorithms,
deep learning is highly dependent on hyper-parameter
tuning [42]. Hence, getting insights into the neural net-
work’s mechanism is necessary to provide trustworthy
imputation solutions.

7. Experimental cases

7.1. Water quality monitoring networks

In the experimental section, we choose to evaluate the data
imputation methods by using water quality measurements col-
lected from two water quality monitoring systems located in both
the USA and Australia (see Fig. 5).

7.1.1. Iowa water quality information system
The Iowa Water Quality Information System (IWQIS) [43] is

a water quality monitoring network across the state of Iowa,
USA. It offers real-time measurements for water quality variables
such as NOx concentration, pH, turbidity, electric conductance,
dissolved oxygen, and temperature. The data used in this section
were collected from one monitoring station located in Clear Creek
Watershed.
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Fig. 5. Two water quality monitoring systems in the USA and Australia.
M

able 2
ater quality data collected from two monitoring systems.
Variables Unit Min Max Mean Std Dev

IWQIS
Water Temperature ◦C 2.2 29.6 18.9 7.4
Conductivity µS/cm 265.8 683.7 554.7 68.9
Nitrate mg/L 1.9 14.9 7.8 2.5

GBR
Water Temperature ◦C 15.7 33.7 24.4 3.4
Conductivity µS/cm 61.9 1021.4 403.3 205.9
Nitrate mg/L 0.002 3.3 0.3 0.3

7.1.2. GBR catchment loads monitoring program
The Great Barrier Reef catchment loads monitoring program

ims to help track long-term and short-term water quality trends
n North Queensland, Australia [44]. The program monitors all
ntensive land use catchments. It includes 43 monitored sites
cross 20 key catchment areas for monitoring sediments and
utrients, and 20 sites for pesticides.

.2. Water quality monitoring data

Three water quality variables such as water temperature, con-
uctivity and nitrate are measured in both systems (Table 2). In
he following section, we choose to estimate the missing data
or water temperature and nitrate concentration. The sensor data
as normalized and cleaned to remove obvious outliers. In addi-
ion, we resampled the water quality measurements to one hour
ime interval in this experiment. In addition, all three variables
re used as inputs when imputing water temperature and nitrate
oncentration. One thing worth mentioning here is that we design
o impute missing measurements in a few hours because the
nputs data are collected hourly. When weekly, monthly or yearly
69
data are fed, the models in this paper could generate imputations
at corresponding time scale, respectively.

To evaluate the imputation accuracy, we first prepare the
training and testing data without missing values by selecting
different periods from the data mentioned in Table 2.

Then, a sliding window algorithm is used to generate all the
samples. For each sample, we mask a consecutive number of data
as the groundtruth so we can measure how good the imputation
results are.

7.3. Evaluation metrics

We evaluate the performance of recovering missing data based
on the root mean square error (RMSE) and mean absolute error
(MAE).

RMSE =

√1
n

n∑
i=1

(|fi − f̂i|)2, (11)

AE =
1
n

n∑
i=1

|fi − f̂i|, (12)

where fi and f̂i are the true and estimated values of a water quality
variable under monitoring, respectively.

8. Results

8.1. Water temperature data

Table 3 compares the performance of estimating the missing
water temperature for ten different imputation methods. Both
RMSE and MAE are used in quantifying the imputation accuracy.
It is clear that the Dual-SSIM achieves the best performance for
both RMSE and MAE in two different datasets. For example, the
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able 3
mputation Accuracy For Water Temperature with Gap Size 6.

Water Temperature

USA AU

RMSE MAE RMSE MAE

Mean Imputation 0.48 (± 0.041) 0.4 (± 0.063) 0.409 (± 0.062) 0.348 (± 0.05)
LOCF 0.479 (± 0.042) 0.399 (± 0.064) 0.413 (± 0.06) 0.351 (± 0.048)
Linear Imputation 0.48 (± 0.04) 0.4 (± 0.062) 0.413 (± 0.062) 0.353 (± 0.051)
EM 0.48 (± 0.042) 0.4 (± 0.064) 0.417 (± 0.052) 0.356 (± 0.04)
MICE 0.48 (± 0.041) 0.4 (± 0.063) 0.409 (± 0.062) 0.348 (± 0.05)
KNN 0.649 (± 0.015) 0.583 (± 0.038) 0.552 (± 0.166) 0.483 (± 0.227)
Dual-SSIM 0.004 (± 0.001) 0.004 (± 0.001) 0.015 (± 0.004) 0.013 (± 0.004)
SSIM 0.007 (± 0.004) 0.007 (± 0.004) 0.031 (± 0.017) 0.028 (± 0.016)
BRITS 0.007 (± 0.004) 0.006 (± 0.003) 0.03 (± 0.009) 0.022 (± 0.008)
M-RNN 0.026 (± 0.002) 0.021 (± 0.001) 0.066 (± 0.007) 0.056 (± 0.004)
Dual-SSIM gets 0.004 and 0.015 RMSE scores in processing the
data collected from the USA and AU monitoring systems, respec-
tively. The next best imputation models are neural network-based
methods like SSIM, BRITS and M-RNN which outperform both
the statistical and model-based solutions significantly. The results
in Table 3 demonstrate that neural network-based imputation
methods are able to utilize the strong temporal patterns appeared
in many water quality variables.

On the contrary, imputation methods such as mean imputa-
ion, LOCF and linear imputation did not perform well in imputing
issing water temperature data. These methods ignore the tem-
oral patterns, and most of them assume a linear relationship
appened among the water quality variables. Hence, they have
ow imputation accuracy in the experiments.

.2. Nitrate data

Compared to water temperature, the nitrate concentration
oes not follow a clear changing pattern in the daily or weekly
ime scale. The temporal variations of the nitrate concentration
an only be identified when checking the trend throughout sev-
ral months. Hence, it is very challenging in estimating missing
itrate measurements.
Table 4 summarizes the imputation accuracy for the nitrate

oncentration measured in both the USA and AU monitoring
ystems. In this experiment, the Dual-SSIM still performs the best
or both RMSE and MAE scores. It has 0.002 and 0.041 RMSE
cores for both USA and AU data, respectively. The imputation
ccuracy varies among these two datasets. The two monitoring
ystems are running in different climate zones and affected by
arious types of land use and agricultural activities. Hence, the
itrate concentration would not always follow a similar pattern,
nd the imputation model should be specific for different water
uality datasets.
When imputing nitrate data, some straightforward methods

uch as mean imputation can get better performance than mod-
lling methods like linear imputation, EM and KNN. For example,
ean imputation has an RMSE score of 0.007 when applied to the
SA data, while linear imputation and EM get 0.012 and 0.023
MSE scores, respectively. This result indicates that data-driven
odelling methods may not achieve the expected performance if

he temporal information is not fully utilized.
In Fig. 6, we compared the imputation results of all the meth-

ds analysed in this paper. The concentration of nitrate fluctuated
uring this period, which is usually driven by the fertilizing activi-
ies. In this example, 6 successive data points around the peak are
issing. The gap is infilled by using different imputation meth-
ds. It is evident that LOCF, Mean and KNN all generate a straight
ine, indicating poor imputation accuracy. Linear imputation is
lso not suitable when values vary during the period. Among the
eural network-based methods, the Dual-SSIM generates impu-
ations with the correct trend. Most methods underestimate the
ange of missing values significantly.
70
Fig. 6. Model outputs in imputing 6 consecutive missing values for nitrate con-
centration from GBR monitoring network. The solid red-brown line represents
the ground truth data. Other lines represent the imputation results generated
by different models. 20 available data before and after the gap are used as the
model’s input.

Fig. 7. Imputation accuracy for estimating data with different size by different
methods.

8.3. Effect of data gap size

The size of missing water quality data may affect the imputa-
tion accuracy significantly. The longer the data gaps are, the less
help the available data can provide. Hence, we evaluated how the
imputation accuracy changes when estimating missing data with
different size.

Fig. 7 shows how the imputation model performs when es-
timating missing data with different size. In the experimental
setting, nine imputation methods were evaluated on missing gaps
of size 2, 4 and 6, respectively. In general, the imputation bias
increases when the size of the missing data is growing.

The imputation methods have close performance when deal-
ing with missing data of size 2. Supported by a large amount of
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able 4
mputation Accuracy For Nitrate Concentration with Gap Size 6.

Nitrate

USA AU

RMSE MAE RMSE MAE

Mean Imputation 0.007 (± 0.002) 0.005 (± 0.001) 0.149 (± 0.07) 0.096 (± 0.05)
LOCF 0.011 (± 0.003) 0.007 (± 0.002) 0.155 (± 0.07) 0.084 (± 0.04)
Linear Imputation 0.012 (± 0.001) 0.007 (± 0.001) 0.144 (± 0.044) 0.086 (± 0.027)
EM 0.023 (± 0.006) 0.015 (± 0.003) 0.194 (± 0.089) 0.122 (± 0.058)
MICE 0.007 (± 0.002) 0.005 (± 0.001) 0.149 (± 0.07) 0.096 (± 0.05)
KNN 0.712 (± 0.123) 0.661 (± 0.166) 0.552 (± 0.166) 0.483 (± 0.227)
Dual-SSIM 0.002 (± 0.001) 0.002 (± 0.001) 0.078 (± 0.067) 0.069 (± 0.06)
SSIM 0.003 (± 0.001) 0.003 (± 0.001) 0.098 (± 0.083) 0.089 (± 0.076)
BRITS 0.005 (± 0.002) 0.004 (± 0.002) 0.117 (± 0.107) 0.077 (± 0.072)
M-RNN 0.035 (± 0.021) 0.029 (± 0.017) 0.269 (± 0.009) 0.233 (± 0.044)
available information, most imputation methods can handle the
small amount of missing data efficiently.

When doubling the gap size to 4, the neural network-based
ethods still offer high accuracy for imputing missing data. In

his case, the neural network-based models can still learn the
emporal patterns from the available data, which provide a strong
uide to infill the missing data. On the contrary, linear imputa-
ion, LOCF and EM show dramatical performance downgrade.

By keep increasing the size of missing data, the imputation
ccuracy of neural network-based methods still maintains on the
ow level. However, statistical and model-based methods could
ot achieve encouraging performance. For time-series data, the
issing value has less relevance to the available information
t time steps far away from the gap. If the imputation model
oes not have a strong capability in capturing the temporal pat-
erns from the available data, imputing missing data without
round-truth at nearby time steps can be difficult.

. Conclusion

This paper provides a review of popularly used data imputa-
ion methods and qualitatively compares their respective advan-
ages and disadvantages of being used in water quality measure-
ents.
The imputation techniques listed in this paper can be grouped

nto three different types. The statistical-based imputation meth-
ds infill missing data based on statistical analyses of the time
eries data. The model-based methods infill missing value using
egression models. The neural network-based methods build spe-
ific neural network models in predicting the missing data. Im-
utation methods built on different mechanisms have their own
dvantages and limitations. Hence, suitable imputation methods
eed to be chosen for specific circumstances.
In summary, the size of the missing data affects the imputation

ccuracy significantly. Most imputation methods perform well in
nfilling missing data in a short period. For instance, only 1 or 2
ata are missing in one period. When there are a greater number
f missing values in the datasets, imputation methods which
annot utilize the temporal information have significantly poorer
erformance. Because they benefit from the recurrent architec-
ure, the neural network-based methods show the promising
esults in processing datasets with large gaps.
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