

Deltares

Modelling long-term morphological development of the NL Wadden Sea

Application and development of the aggregated model ASMITA

Ymkje Huismans, Carola Seyfert, Zheng Bing Wang

Quirijn Lodder, Bert Jagers, Edwin Elias, ...

Content

- Introduction various modelling approaches
- Application ASMITA models for the Wadden Sea
- Model development / improvement ASMITA
 - Implementation of mud
 - Extension with saltmarsh element
 - Calibration
- Hybrid model Delft3D-ASMITA
 - Model formulation
 - Implementation
 - First applications
 - Future plan
- Concluding discussions & outlook

Modelling approaches for long-term morphological development in tidal systems

Two existing modelling approaches

ASMITA

(Aggregated Scale Morphological Interaction between Tidal basin and Adjacent coast)

Various types models

- Process-based vs (semi-) empirical
- Detailed vs Aggregated
- Complex vs Reduced complexity

Realistic vs Idealized

Predictability morphodynamics related to scales & modelling approaches

History model development at Deltares (/Delft Hydraulics)

Morphostatic models based on EMPREL • hydrodynamic model from others TRISULA – DelMor 1989 Delft3D-MOR ESTMORF ٠ Delft3D-RAM ASMITA Delft3D-SedOnline Delft3D FM / D-Morphology **Delft3D-ASMITA** 2024

Deltares

Mormerge

•

٠

٠

٠

٠

٠

ASMITA application to Wadden Sea

- Sediment exchange between North Sea and Wadden Sea
- Development of intertidal areas under various rates of SLR

ASMITA history

- Developed since end last century
- First applied in the EIA study for gas mining
- Evaluation effect of SLR (van Goor e.a., 2003)
- Morphological time scales (Kragtwijk e.a., 2004)
- Integrale bodemdalingsstudie
- EIA salt mining
- PONTOS-ASMITA
- Applications elsewhere (than NL Wadden Sea)
- Kustgenese 2.0 (Lodders e.a., 2019, 2023; Huismans e.a., 2022)
- ZSS Zandige kust
- ...

Response to sea level rise

Ymkje Huismans ^{a, b} 옷 찜, Ad van der Spek ^{b, d} 찜, Quirijn Lodder ^{a, c}찜, Robert Zijlstra ^c찜, Edwin Elias ^b찜, Zheng Bing Wang ^{a, b} 찜

Modelling for future transport to Wadden Sea (Lodder e.a., 2023)

- Delayed response to acceleration SLR
- Different responses by the different tidal inlet systems due to
 - Difference in size of the system, thus in morphological time scales
 - Difference in morphological state with respect to equilibrium
- The differences in the projected import rates between the five sea level rise scenarios until 2100 are not as large as the differences in sea level rise rates may suggest.
- The projected increase of the import rate until 2100 with respect to the present situation (2020) is significant but not substantial.

Deltares

Delft University of Technology

Effect on the tidal flats (Huismans e.a. 2022)

Highlights

- Sensitive to the rate of sea level rise:
 - 2x SLR rate \rightarrow ~2x losses
- Intertidal flats larger basins most vulnerable.
- Larger basins: area, smaller basins: height.
- Largest losses in areas furthest from inlet.
- Texel and Vlie: 40% loss in area for 17mm/yr in 2100

Insights from theoretical analysis

Dimensionless sea level rise rate r=R/Rc

- Dynamic equilibrium only if SLR rate lower than a critical level
- Critical SLR rate different for different tidal inlet systems
- Dimensionless SLR rate (= SLR rate / critical SLR rate) determines the development. Different parts of the Wadden Sea will show different response to accelerated SLR
- Time to achieve dynamic equilibrium increases non-linearly with SLR rate
- Similar (drowning) behaviour for SLR rate above ~80% of critical level
- Linear behaviour for SLR rate below ~40% of critical level

Deltares

Delft University of Technology

More extreme SLR scenarios & Simulations for new scenarios till 2200

Predict the bathymetry of the Wadden Sea after 1m, 2m and 5m SLR, to determine the hydraulic boudary conditions for flood defense design

Simulated sediment import to Wadden Sea

- The import rate develops to a maximum when drowning occurred.
- The maximum value depends on SLR development. Higher maximum value for lower SLR scenario (causing later drowning)
- The maximum import just before drowning is thus not the transport capacity of the system.

16

Effect of tidal range change

Increase of tidal range reduces sediment demand in the Wadden Sea

Deltares

Empirical relation for the equilibrium channel volume What should be used in ASMITA ?

- Channel volume proportional to a power around 1.5 of tidal prism, derived from field data of various tidal basins
- The 1.5th power is supported by theoretical consideration based on geometric law
- However, this relation should not be used in the (present) ASMITA models!
- A linear relation between equilibrium channel volume and tidal prism is used.

Deltares

LT development tidal range

Deltares

SLR → morphological development ⇔ tidal range change

TUDelft

Projected sediment import to NL Wadden Sea

Constant tidal range

Increasing tidal range

Deltares

TUDelft Delft University of Technology Delft University of Technology

Update critical SLR for drowning

Bekken	Marsdiep	Eierlandse	Vlie	Amelander	Pinkegat	Zoutkamp
		Gat		Zeegat		er-laag
C _E (-)	0,0002	0,0002	0,000	0,0002	0,0002	0,0002
			2			
w _{sf} (m/s)	0,0001	0,0001	0,000	0,0001	0,0001	0,0001
			1			
S _f (km ²)	133	105	328	178	38.1	65
S_c (km ²)	522	52.7	387	98.3	11.5	40
S _d (km²)	92.53	37.8	106	74.7	34	78
	1550	1500	1770	1500	1060	1060
ิ⊿ _{dc} (m³/s)	2450	1500	2560	1500	1290	1290
	980	1000	1300	1000	840	840
R _c (mm/jr)	7,0	18,0	6,3	10,4	32,7	17,1

Wang e.a. (2018)

Deltares

- Complete model calibration only for Zoutkamperlaag
- Parameter setting revisited based on the theoretical analysis by Wang e.a. (2008), and geometric relations
- → Critical SLR rate less sensitive to basin size than earlier published

$$\delta_{cf} \propto \sqrt{S_b} \qquad \qquad \delta_{dc} \propto S_b$$

Bekken	Marsdiep	Eierlandse	Vlie	Amelander	Pinkegat	Zoutkamper-
		Gat		Zeegat		laag
	7317	1762	7987	3087	673	1290
	2001	982	2090	1299	607	840
<i>R_c</i> (mm/jr)	9,7	18,7	8,8	13,4	25,6	17,1

ASMITA model development

- 1) sand & mud
- 2) marshes

$$V_{equilibrium} = \alpha P^{\beta}$$

$$c_e = c_E \left(\frac{V_{equilibrium}}{V}\right)^n$$

Validation of mud-implementation

Ana Colina Alonso Ymkje Huismans Zhe

-10

2.2

×10⁵

Zheng Bing Wang

+ various others for valuable advice!

Hindcast: case

Validation of mud-implementation

+ various others for valuable

advice!

Hindcast: case & data

Data: corings

Ana Colina Alonso Ymkje Huismans Zhe

Zheng Bing Wang

+ various others for valuable advice!

Schematization: area and volume of each element

Ana Colina Alonso Ymkje Huismans Zhe

Zheng Bing Wang

+ various others for valuable advice!

Schematization: area and volume of each element

Hydrodynamics: tidal range and SLR

Ana Colina Alonso Ymkje Huismans Zhe

Zheng Bing Wang + various others

for valuable advice!

Schematization: area and volume of each element

Hydrodynamics: tidal range and SLR

Equilibrium parameters: from literature & hindcast

Ana Colina Alonso Ymkje Huismans Zho

Zheng Bing Wang + various others

for valuable advice!

Schematization: area and volume of each element

Hydrodynamics: tidal range and SLR

Equilibrium parameters: from literature & hindcast

Sediment concentration: field data & calibration

Ana Colina Alonso Ymkje Huismans Zhe

Zheng Bing Wang

+ various others for valuable advice!

Schematization: area and volume of each element

Hydrodynamics: tidal range and SLR

Equilibrium parameters: from literature & hindcast

Sediment concentration: field data & calibration

Sediment size: sand = 100-150 um, mud = 35 um
Parameter choices

Ana Colina Alonso Ymkje Huismans Zheng Bing Wang

+ various others for valuable advice!

Schematization: area and volume of each element

Hydrodynamics: tidal range and SLR

Equilibrium parameters: from literature & hindcast

Sediment concentration: field data & calibration

Sediment size: sand = 100-150 um, mud = 35 um

Horizontal exchange: from basin dimension & calibration

$$\frac{D}{UH} = \varepsilon \frac{U}{w_s} \qquad \delta = \frac{DA}{L}$$

Validation of mud-implementation

+ various others for valuable advice!

2040

Validation of mud-implementation

Delta

2000

Asmita: sand

Asmita: mud

measured: sand

2020

delta

Asmita

2040

Ana Colina Alonso Ymkje Huismans Zheng Bing Wang + various others for valuable

advice!

Implementation of marshes

Marloes Bonenkamp Ymkje Huismans Zheng Bing Wang Jasper Dijkstra Peter Herman Master student @ TUD

Implementation of marshes

Marloes Bonenkamp Ymkje Huismans Zheng Bing Wang Jasper Dijkstra Peter Herman Master student @ TUD

Salt marsh development depends on horizontal and vertical processes.

Salt marsh development depends on horizontal and vertical processes.

Vertical salt marsh development (accretion) consists of three processes.

Mineral sedimentation is the largest contributor to accretion.

Range of contributions to salt marsh accretion

Salt marsh development depends on horizontal and vertical processes.

Deltares

Horizontal salt marsh development is excluded from the ASMITA model extension.

Implementation of marshes

Study-area

Hindcast data ~1995 - present

1. SEB-plots: point measurements for changes in height and sedimentation for period 1995 - present

2. AHN (LIDAR): DTMs for

AHN1: 1997-2004 || AHN2: 2007-2012 || AHN 3: 2014-2019 || AHN 4: 2021-2022 Limited relevance, likely because of poor filtering vegetation height.

1-element model: background on implementation

Volume of water flowing onto the marsh (derived from 10-years of water level data)

1-element model: flattening of the marsh

1-element model: Validation

Results for a sediment concentration of fine sediment (mud) of 0.5 mg Cl/l

(b) c = 0.5 g/L

1-element model: Sensitivity analysis

A lot less sedimentation?!

A lot less sedimentation?!

In the basin: tidally averaged conditions for sediment concentration

A lot less sedimentation?!

In the basin: tidally averaged conditions for sediment concentration On the marsh: extreme conditions for sediment concentration

3+1 element model

The salt marsh element has a negligible impact on the morphological development in the tidal inlet system.

For a larger salt marsh element, the effect of the outgoing sediment flux becomes more evident.

Conclusions

 Salt marsh development by mineral sedimentation can be modelled by the ASMITA model, provided that information on the sediment concentration is present.

Conclusions

 Salt marsh development by mineral sedimentation can be modelled by the ASMITA model, provided that information on the sediment concentration is present.

2. For the Dutch Wadden Sea,

and limited SLR rates, salt marshes have a **limited impact** on the morphological development in the rest of the tidal inlet system.

Conclusions

 Salt marsh development by mineral sedimentation can be modelled by the ASMITA model, provided that information on the sediment concentration is present.

and limited SLR rates, salt marshes have a **limited impact** on the morphological development in the rest of the tidal inlet system.

3. The model can be used to gain quick insight in global long-term salt marsh morphodynamics, but does not provide a detailed description.

Recommendations

Correlation between water levels and sediment concentration

Recommendations

Correlation between water levels and sediment concentration

Improve marsh implementation 1) an integrated 4 element model 2) add cliff erosion

Recommendations

Correlation between water levels and sediment concentration Improve marsh implementation 1) an integrated 4 element model 2) add cliff erosion **1**

Measurements on sediment concentration and marsh elevation

Outlook

2024: Reporting on validation of mud

2024-2028: PhD within WadSed (NWO perspectief).

- Improve processes river discharge, sediment fractions, marshes, changing basin area, ...
- Higher spatial resolution Delft3D-Asmita hybrid, more elements Asmita
- Probabilistic modelling
- International cases Likely US, collaboration USGS?
- Coupling with ecology and flood safety

Delft3D-ASMITA hybrid model

- Model principle, formulation & implementation
- Application to the Wadden Sea

Setting up the hybrid model: start simple

Setting up the hybrid model: start simple, add water

Setting up the hybrid model: add a grid (from Delft3D)

Setting up the hybrid model: introduce equilibrium (from ASMITA)

Disturbed equilibrium

Disturbed equilibrium

Disturbed equilibrium

Disturbed equilibrium

 \rightarrow equilibrium bed level for each grid cell: limits applicability, but works very well for e.g. SLR scenarios

 \rightarrow equilibrium bed level for each grid cell: limits applicability, but works very well for e.g. SLR scenarios

→ ASMITA formulation for the sediment exchange between bed and water column: empirical relation based on *morphological equilibrium* instead of empirical formulation based on sediment transport capacity

 \rightarrow equilibrium bed level for each grid cell: limits applicability, but works very well for e.g. SLR scenarios

→ ASMITA formulation for the sediment exchange between bed and water column: empirical relation based on *morphological equilibrium* instead of empirical formulation based on sediment transport capacity

 \rightarrow Delft3D hydrodynamic module and suspended sediment transport module

$$\frac{\partial h\overline{c}}{\partial t} + \frac{\partial \alpha_x \overline{u} h\overline{c}}{\partial x} + \frac{\partial \alpha_y \overline{v} h\overline{c}}{\partial y} - \frac{\partial}{\partial x} \left(D_x h \frac{\partial \overline{c}}{\partial x} \right) - \frac{\partial}{\partial y} \left(D_y h \frac{\partial \overline{c}}{\partial y} \right) = E \quad \text{with} \quad E = \gamma w_s \left(c_e - c \right)$$

where instead of $c_e = F(u, ..., D_{50}, ...)$ used for regular Delft3D simulations, we use $c_e = C_E\left(\frac{h_e}{h}\right)$

for Hybrid modelling

 \rightarrow equilibrium bed level for each grid cell: limits applicability, but works very well for e.g. SLR scenarios

$$\rightarrow \text{ASMITA formulation}$$

$$\Rightarrow \text{ASMITA formulation}$$

$$\text{based on morphologic}$$

$$\text{capacity}$$

$$\Rightarrow \text{Delft3D hydrodyna}$$

$$\frac{\partial h \overline{c}}{\partial t} + \frac{\partial \alpha_x \overline{u} h \overline{c}}{\partial x} + \frac{1}{2}$$

$$\text{Equivalent to running a normal Delft3D simulation}$$

$$\dots \text{ just using a different transport formula concept}$$

$$\text{where instead of } c_e = F(u, ..., D_{50}, ...) \text{ used for regular Delft3D simulations, we use } c_e = C_E \left(\frac{h_e}{h}\right)^n$$

$$\text{for Hybrid modelling}$$

Hybrid concept: stable SLR implementation

- ASMITA equilibrium relations are only valid in the tidal inlet system.
- Sediment import only happens through open boundaries.
- Raising water levels at boundaries: sediment gets deposited offshore (close to the open boundaries).
- Sea level rise can also be modelled as subsidence: only apply subsidence where ASMITA is valid.
- Subsidence in foreshores: smooth transition.
 Nourish in foreshores to counteract SLR.

Hybrid model: some results (work in progress)

constant Sea Level Rise: 10.4 mm/y over two centuries

Hybrid model: some results (work in progress)

ramping up SLR: from 2 mm/y to 10.4 mm/y (by 2070) over a century in total

 \rightarrow 68.5 cm SLR in total

Functionalities currently under development

Functionality	working	under development	planned
time varying SLR	Х		

Functionalities currently under development

Functionality	working	under development	planned
time varying SLR	Х		
two sediment fractions		Х	

Hybrid model: extend to the Wadden Sea

Hybrid concept: first results for the Wadden Sea model

2 mm SLR over two centuries ("business as usual").

Slow sand, settling velocity: 0.1 mm/s Equilibrium concentration: 320 g/m^3

91

Functionalities currently under development

Functionality	working	under development	planned
time varying SLR	Х		
two sediment fractions		Х	
cross-sectional analysis (watersheds)			Х

Functionalities currently under development

Functionality	working	under development	planned
time varying SLR	Х		
two sediment fractions		Х	
cross-sectional analysis (watersheds)			Х
spatially varying equilibrium bathymetry			Х

Concluding discussions & outlook

Summary

- Model application
 - − Sediment exchange North Sea coast Wadden Sea → Nourishment requirement & LT strategy
 - Future (e.g. after 2 m SLR) bathymetry of the Wadden Sea → Future flood defense
 - Future development of intertidal flat → ecological value
 - Effects of subsidence due to gas and salt extraction
- Model development
 - Adding functionalities
 - Narrowing the gap with process-based models
- Fundamental research
 - On model concept for supporting model development
 - Obtain system understanding using the model

The aggregated models are competitive but complementary to the process-based models

WadSED

Pathways for Realising Climate Adaptation in the Wadden Sea - PaRCA

INterventions for a sustainable Wadden Sea

A joint NL-D-DK initiative

NIOZ

for Sea Research

Rijkswaterstaat, Staatsbosbeheer, Waddenvereniging, Ecoshape, NLWKN Brake-Oldenburg, NLWKN Norden, LKN.SH, WSA Weser-Jade-Nordsee, GDWS, NPV LS, WWF Wadden Sea Office, WSF, BfG (Federal Institute of Hydrology), Danish Coastal Authority, Uni Rostock

Royal Netherlands Institute SENCKENBERG

Deltares

C A U OGlobal Climate Forum

Measures / Interventions

Management Options

- Indirect nourishments of the tidal flats a)
- b) direct beach and basin nourishments)
- combination with coastal realignment c) (islands and mainland).

Sediment pathways

Intertidal areas

Subtidal areas

Extraction areas

Concluding discussions & outlook

- Extended ASMITA with mud and marshes
- A new LT morphodynamic modelling approach implemented in Delft3D, combining process-based and aggregated (semi-empirical) approaches, meant for studying effects of relative sea-level rise. The first results look promising.
- Advantage & disadvantages
 - Compared to ASMITA: (+) it provide more detailed info concerning e.g. spatial variation of the effect of subsidence caused by gas or salt mining; (-) no ready to use empirical relations for morphological equilibrium available.
 - Compared to (process-based) Delft3D: (+) robustness, saving computational time as coarser grid can be used; (+) no spin-up problem; (-) fixed channel-shoal structure, cannot simulate e.g. channel migration.

- Many things about the new approach still need to be explored
 - Response coastal area (seawards of the inlet) to SLR
 - Influence depth within the basin on response to SLR
 - Multi-fraction sediment
 - Further aggregation in time (tide-averaged mode)
- Studying the relation between Delft3D and ASMITA
 - Determining dispersion coefficient in tide-averaged mode

parameter	value	unit
Δt	3	days
w_s	1e-3	m/s
$ ho_s$	2650	kg/m ³
n	0.80	-
A_{marsh}	1.01e7	m^2
δ_0	7.60	m³/s

Deltares

The salt marsh model extension has a different computational procedure compared to the existing ASMITA model.

Model Extension

Results & Discussion

Deltares

The salt marsh model extension has a different computational procedure compared to the existing ASMITA model.

Model Extension

Results & Discussion

TUDelft

Deltares

Research Goal

For the salt marsh, the tidally averaged hydrodynamic conditions can not be employed for the morphological equilibrium condition.

Model Extension

Results & Discussion

106

Deltares

The model extension is based on c_e = 0: all sediment that flows onto the salt marsh is captured.

Model Extension

TUDelft

Deltares

Deltares

The morphological change is calculated based on the aggregated advection-diffusion equation.

Model Extension

The marsh volume change depends on sedimentation and sea level rise.

salt marsh volume change sedimentation

sea level rise
The governing model parameters for sedimentation are δ, w_s and $c_{\text{E}}.$

salt marsh volume change sedimentation

sea level rise

Deltares

1-element model: how the sediment is distributed over the marsh

112