

3-D spatial and temporal structure of Temperature and Salinity fields in the German Bight: comparisons of numerical results with observations

J. Schulz-Stellenfleth, J. Staneva, S. Grayek, R. Riethmüller, E.V. Stanev

GKSS Research Centre Geesthacht, Germany

COSYNA Implementation – Moving Systems

North Sea Scale

German Bight Scale

Regular FerryBox Routes

Regular transects for fluxes

at the open boundaries with AUV
inside the bight with FerryBox

On demand representativity & internal dynamics

Scanfish — Glider

SCANFISH

The SCANFISH is towed behind the ship. It is conneced by an eletrical cable and is fitted with sensors for temperature, conductivity, turbidity and chlorophyll-a-fluorescence.

7 kn

GETM German Bight setup

- 3D primitive equation model
- 1 km resolution
- 21 vertical layers
- DWD meteo forcing
- River input
- Boundary values are provided by a coarser
 6 NM North Sea/Baltic model

First Comparisons of SCANFISH with numerical model

Heincke 303 campaign

SCANFISH temperature

GETM temperature

Nearest neighbour co-location with hourly GETM output. Model has 21 sigma layers and 1 km horizontal resolution.

First Comparisons of SCANFISH with numerical modelss

Heincke 303 campaign

SCANFISH salinity

GETM salinity

Nearest neighbour co-location with hourly GETM output. Model has 21 sigma layers and 1 km horizontal resolution.

in der HELMHOLTZ-GEMEINSCHAFT

T/S Diagrams

GETM
SEATMSO Deptat along track 16.05.-24.05.

GETM ······

SCANFISH

T/S Plots

HF Radar Measurements in COSYNA

Comparison of HF radar and Model radial surface current components 1/2

Comparison of HF radar and Model radial surface current components 2/2

Maximum of radial component comes later in model

Relationship of current vector phase and radial current phase

Two tidal ellipses with identical major axis. Even if we assume that the current vectors are exactly in phase, the radial components will be phase shifted due to different ellipticities.

Conclusions/Outlook

- Reasonable agreement of spatial salinity and temperature patterns between model and observations
- Basic stratification features resproduced by model
- Lower model salinity values in near coastal areas have to be further investigated
- HF radar radial components in overall good agreement with model
- Phase shifts could be due to errors in ellipticity in the modell
- Relationship with errors in salinity will be investigated