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σ-coordinate ocean models

Vertical coordinates follow the terrain

x∗ = x y∗ = y σ =
z − η
H + η

t∗ = t
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σ-coordinate ocean models

Advantageous when dealing with large variations in
topography

Bottom and top boundary layers represented accurately

E.g. Princeton Ocean Model (POM), Regional Ocean
Model System (ROMS), Bergen Ocean Model (BOM)
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A problem

The transformation to σ-coordinates introduces an error in the
internal pressure force
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The internal pressure gradient error

The horizontal internal pressure gradient in the x-direction
becomes

∂pint

∂x
= gD

∫ 0

σ

(
∂ρ

∂x∗
− σ

D
∂ρ

∂σ

∂D
∂x∗

)
dσ

Near steep topography, the two terms of the integrand can
be large, comparable in magnitude, and opposite of sign
Very sensitive to truncation errors
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The story

Haney [1991] introduced the concept of hydrostatic
consistency for ocean models
For a hydrostatically consistent scheme∣∣∣∣ σδσ δDD

∣∣∣∣ < 1 (1)

When δσ approaches zero, (1) will be violated closer to the
bottom boundary
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The story: Mellor et al. [1994]

Condition of hydrostatic consistency is quite restrictive
[Mellor et al. 1994]

The discretisation error is given by

E
(
δxb
δx

)
=

D
4
δxD
δx

(
∂2b
∂z2

)[
(δσ)2 − σ2

(
δxD
D

)2
]

The error decreases if δσ and δx D
D goes to zero

Hydrostatic consistency is accordingly not a meaningful
concept [Berntsen and Oey, 2010]
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The story: Consolation

Mellor et al. [1994] concluded: The error is not numerically
divergent, and therefore not of great concern
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The story: SEFK and SESK

Beckmann and Haidvogel [1993]

Treated the seamount case
Experienced growing errors

Mellor et al. [1998] – Two kinds of errors

Sigma Errors of the First Kind (SEFK): 2D errors, will die
out
Sigma Errors of the Second Kind (SESK): Vorticity 3D
errors, will not die out
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Possible remedies

Subtract a background stratification, ρ(z)
[Gary, 1973]

Add viscosity
[Mellor, 1998]

Smooth the topography
[Barnier et al., 1998]
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Possible remedies, cont.

Interpolate back to z-levels
[Stelling and van Kester, 1994]

Higher order schemes
[McCalpin, 1994], [Chu and Fan, 1997]

Green’s theorem approach
[Shchepetkin and McWilliams, 2003]

Rotate grid 45 degrees and weight
[Thiem and Berntsen, 2006]
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It is still desirable to find a solution to this problem
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The new approaches

The following will be investigated:

Finite volume approach for pressure computation

Higher order schemes

Expanded computational stencils

Weighting of different methods
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The model and the test case

Linearised version of the Princeton Ocean Model
The seamount test case
No forcing, horizontal isopycnals –
true solution is zero velocities
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The finite volume approach

Estimating pressure forces over fixed volumes
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Discretising the following integral
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Method A

The standard 2nd order POM method can be interpreted
as the simplest in a family of finite volume methods

•× ×

↑

→

y

x
uρ,D

Figure: Points ρ, D (×) and u (•) at a σ-level used in the standard 2nd
order POM method, Method A.
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The new methods
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The rotated grid

Consistent Methods A, C, and D were successfully created

For the stencils of the Methods B and E, a new approach is
needed: Rotated grid [Thiem and Berntsen, 2006]

Helene Hisken Pedersen The Finite Volume and Optimal Weighting Approaches



The rotated grid
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The rotated grid: A connection

Using the stencil of Method B –, it can be shown that the
rotated approach is a 2nd order finite volume method

The rotated approach can be weighted with the 2nd order
POM method, with a fixed weight, to reduce the errors
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The rotated grid: A fixed weight

The optimal fixed weight can be found by experiment
The same can be done for the stencil of Method E

Figure: The kinetic energy after 10 days as a function of α for the
Method Bα experiments.
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Method Bα and Method Eα

The two resulting methods, defined by an optimal fixed
weight, are called Method Bα and Method Eα

End up with five consistent methods
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Studying the SESK

SESK (Sigma Errors of the Second Kind) are related to
vorticity [Mellor et al. 1998]

Initial SESK closely connected with the later errors

The vertically integrated initial acceleration of the vorticity
is studied
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The initial vorticity error, different methods

(a) Method A (b) Method Bα (c) Method C

(d) Method D (e) Method Eα
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The performance of the methods

The maximum velocity, 180 days run
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The optimal weighting

Possible to find a field of optimal weights?

Two estimates of the internal pressure gradient,
interpolated to give the exact result in each point

Weights αx (x , y , σ) and αy (x , y , σ) fixed in time

For our case, the result should be zero

αx (x , y , σ) ·
(
∂ρ

∂x

)
1

+ [1− αx (x , y , σ)] ·
(
∂ρ

∂x

)
2

= 0
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Results: The optimal weighting

For interpolation, we need estimates of oppsite signs
The optimal weighting not complete
Leads to discontinuities, and instability

(a) (b)
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The way forward

New pair of methods

Optimal weighting also time-dependent?

Weighting in the vertical
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Concluding remarks

The σ-coordinate system is still being used

Many advantages to the terrain-following approach

The severity of the internal pressure gradient problem
diminishes with higher resolution
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Thank you for your attention!
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