Investigating the internal pressure gradient error in σ -coordinate ocean models

Helene Hisken Pedersen Supervised by Professor Jarle Berntsen

Department of Mathematics, University of Bergen, Norway

JONSMOD 2010 Delft, the Netherlands 10 May

σ -coordinate ocean models

• Vertical coordinates follow the terrain

$$x^* = x$$
 $y^* = y$ $\sigma = \frac{z - \eta}{H + \eta}$ $t^* = t$

- Advantageous when dealing with large variations in topography
- Bottom and top boundary layers represented accurately
- E.g. Princeton Ocean Model (POM), Regional Ocean Model System (ROMS), Bergen Ocean Model (BOM)

The transformation to σ -coordinates introduces an error in the *internal* pressure force

э

ъ

The internal pressure gradient error

 The horizontal internal pressure gradient in the x-direction becomes

$$\frac{\partial p_{int}}{\partial x} = gD \int_{\sigma}^{0} \left(\frac{\partial \rho}{\partial x^*} - \frac{\sigma}{D} \frac{\partial \rho}{\partial \sigma} \frac{\partial D}{\partial x^*} \right) d\sigma$$

- Near steep topography, the two terms of the integrand can be large, comparable in magnitude, and opposite of sign
- Very sensitive to truncation errors

- Haney [1991] introduced the concept of *hydrostatic consistency* for ocean models
- For a hydrostatically consistent scheme

$$\left|\frac{\sigma}{\delta\sigma}\frac{\delta D}{D}\right| < 1 \tag{1}$$

• When $\delta\sigma$ approaches zero, (1) will be violated closer to the bottom boundary

The story: Mellor et al. [1994]

- Condition of hydrostatic consistency is quite restrictive [Mellor et al. 1994]
- The discretisation error is given by

$$E\left(\frac{\delta_{x}b}{\delta x}\right) = \frac{D}{4}\frac{\delta_{x}D}{\delta x}\left(\frac{\partial^{2}b}{\partial z^{2}}\right)\left[\left(\delta\sigma\right)^{2} - \sigma^{2}\left(\frac{\delta_{x}D}{D}\right)^{2}\right]$$

- The error decreases if $\delta\sigma$ and $\frac{\delta_{\chi}D}{D}$ goes to zero
- Hydrostatic consistency is accordingly not a meaningful concept [Berntsen and Oey, 2010]

Mellor et al. [1994] concluded: The error is not numerically divergent, and therefore *not of great concern*

Beckmann and Haidvogel [1993]

- Treated the seamount case
- Experienced growing errors

Mellor et al. [1998] - Two kinds of errors

- Sigma Errors of the First Kind (SEFK): 2D errors, will die out
- Sigma Errors of the Second Kind (SESK): Vorticity 3D errors, will not die out

- Subtract a background stratification, ρ(z) [Gary, 1973]
- Add viscosity [Mellor, 1998]
- Smooth the topography [Barnier et al., 1998]

Possible remedies, cont.

- Interpolate back to z-levels
 [Stelling and van Kester, 1994]
- Higher order schemes [McCalpin, 1994], [Chu and Fan, 1997]
- Green's theorem approach [Shchepetkin and McWilliams, 2003]
- Rotate grid 45 degrees and weight [Thiem and Berntsen, 2006]

It is still desirable to find a solution to this problem

The following will be investigated:

- Finite volume approach for pressure computation
- Higher order schemes
- Expanded computational stencils
- Weighting of different methods

The model and the test case

- Linearised version of the Princeton Ocean Model
- The seamount test case
- No forcing, horizontal isopycnals true solution is zero velocities

The finite volume approach

• Estimating pressure forces over fixed volumes

Discretising the following integral

$$\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{x}} = \boldsymbol{g} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left[\int_{\sigma}^{0} \left(\boldsymbol{D} \frac{\partial \rho}{\partial \boldsymbol{x}} + \frac{\partial \boldsymbol{D}}{\partial \boldsymbol{x}} \rho \right) d\sigma + \sigma \rho \frac{\partial \boldsymbol{D}}{\partial \boldsymbol{x}} \right] d\boldsymbol{x} d\boldsymbol{y}$$

• The standard 2nd order POM method can be interpreted as the simplest in a family of finite volume methods

Figure: Points ρ , D (×) and u (•) at a σ -level used in the standard 2nd order POM method, Method A.

The new methods

- Consistent Methods A, C, and D were successfully created
- For the stencils of the Methods B and E, a new approach is needed: Rotated grid [Thiem and Berntsen, 2006]

The rotated grid

æ

▶ ★ 臣 ▶

- Using the stencil of Method B –, it can be shown that the rotated approach is a 2nd order finite volume method
- The rotated approach can be weighted with the 2nd order POM method, with a *fixed* weight, to reduce the errors

The rotated grid: A fixed weight

- The optimal fixed weight can be found by experiment
- The same can be done for the stencil of Method E

Figure: The kinetic energy after 10 days as a function of α for the Method B_{α} experiments.

- The two resulting methods, defined by an optimal fixed weight, are called Method B_α and Method E_α
- End up with five consistent methods

< 🗇 🕨 🔸

- SESK (Sigma Errors of the Second Kind) are related to vorticity [Mellor et al. 1998]
- Initial SESK closely connected with the later errors
- The vertically integrated initial acceleration of the vorticity is studied

The initial vorticity error, different methods

Helene Hisken Pedersen

The Finite Volume and Optimal Weighting Approaches

The performance of the methods

The maximum velocity, 180 days run

- Possible to find a field of optimal weights?
- Two estimates of the internal pressure gradient, interpolated to give the exact result in each point
- Weights $\alpha_x(x, y, \sigma)$ and $\alpha_y(x, y, \sigma)$ fixed in time
- For our case, the result should be zero

$$\alpha_{\mathbf{x}}(\mathbf{x},\mathbf{y},\sigma)\cdot\left(\frac{\partial\rho}{\partial\mathbf{x}}\right)_{1}+\left[1-\alpha_{\mathbf{x}}(\mathbf{x},\mathbf{y},\sigma)\right]\cdot\left(\frac{\partial\rho}{\partial\mathbf{x}}\right)_{2} = \mathbf{0}$$

Results: The optimal weighting

- For interpolation, we need estimates of oppsite signs
- The optimal weighting not complete
- Leads to discontinuities, and instability

- New pair of methods
- Optimal weighting also time-dependent?
- Weighting in the vertical

э

- The σ-coordinate system is still being used
- Many advantages to the terrain-following approach
- The severity of the internal pressure gradient problem diminishes with higher resolution

Thank you for your attention!

