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*What controls the maximum elevation within a given region during
a given time period!?

*Boundary conditions (e.g. wind forcing)
*Physical parameters (e.g. bottom drag coefficient)
*[nitial conditions (e.g. tidal phase errors)
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Ql.What are the relative roles of boundary conditions, physical parameterizations

and initial conditions on the predicted tide+surge!

Q2. How does the sensitivity of maximum tide+surge to wind depend on the

ocean initial condition, etc?
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huge ensemble!

model state consists of
millions of degrees of freedom

trajectory describes time-evolution
of model state



Model state space and sensitivity
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Adjoint sensitivity simplify the problem using an adjoint

reduce the number of degrees of

freedom in the sensitivity by defining a

scalar cost function (tailored to the
time question in hand)
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e.g. J=maximum sea surface elevation in domain

J(u)

J(v) sensitivities calculated within the model via
‘automatic differentiation’, where the effect
of each line of code on the model operator, 77, is

considered
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Example from Losch and Heimbach, 2007
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. Develop shelf seas storm surge forward model

MITgcm tide model established (. Xing; S. Legg), but for 2D x-z

Starting from example experiments, closest variants ‘natl_box’, ‘barotropic gyre’

*Modify domain to match that of POL CS3X model

*|/6 X |/9 degree lon X lat

*|dealised (Gaussian island) and realistic topography (from ETOPQOY)
*6 level PE, | level Shallow Water Equations

*Prescribe tidal boundary conditions for velocity



|dealised Gaussian topographic elevation (m)
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Boundary conditions and tidal forcing

Can’t use tide from realistic models, tidal atlases for idealised domain
Excite Kelvin wave around island topography

Plane wave not in geostrophic balance

Insert Kelvin wave as meridional barotropic velocity at northern and southern
periodic boundaries

v=V, exp(X — x/L) sin(wt)
Vi=15m/s L=30km @ =21 /12 hours

Impose zero normal velocity at eastern and western boundaries



ing spin-up
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Movie of free surface elevation (m) over first 10 days
| frame==1I hour;frame rate = 30 fps
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Realistic domain - like CS3X model

Shallow water equations, shaved cell topography
Forced by boundary currents from tide-only run of CS3X

Snapshot of tide-only MITgcm elevation (m)
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2. Basic forward model experiments
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where these terms are only evaluated immediately above topography. r, (bottomDragLinear) has units
of ms—! and a typical value of the order 0.0002 ms—!. Cy (bottomDragQuadratic) is dimensionless
with typical values in the range 0.001-0.003.
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Sensitivity estimate from || member ensemble of forward model
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3. Build adjoint model Trickier than | thought

Automatic differentiation performed by

*TAMC, TAF (Ralf Gierling) ~ not free
*OpenAD ~ free

Routines parse the code line by line, evaluating the Jacobian of 7

Patrick Heimbach (MIT), Jean Utke (Argonne National Lab.) leading development of
OpenAD with MITgecm

Still deciding on a standard Fortran compiler for OS X
Jean previously used Opené4, but that has its pitfalls

Looking likely that Intel/TAF will be necessary - also recommended by Oxford group



cwi@noc.ac.uk




260 CHAPTER 5. AUTOMATIC DIFFERENTIATION
Two routes may be followed to determine the sensitivity of the output variable ¥ to its input .

5.1.1 Forward or direct sensitivity

Consider a perturbation to the input variables d4 (typically a single component 6@ = du; €;). Their effect
on the output may be obtained via the linear approximation of the model M in terms of its Jacobian
matrix M, evaluated in the point u(?) according to

67 = M|y 61 (5.2)

with resulting output perturbation 6¢. In components M;; = OM;/Ju;, it reads
OM;

ov; = z

R

Eq. (5.2) is the tangent linear model (TLM). In contrast to the full nonlinear model M, the operator M
is just a matrix which can readily be used to find the forward sensitivity of ¢’ to perturbations in u, but
if there are very many input variables (3> O(10°) for large-scale oceanographic application), it quickly
becomes prohibitive to proceed directly as in (5.2), if the impact of each component e; is to be assessed.

u(0)

5.1.2 Reverse or adjoint sensitivity

Let us consider the special case of a scalar objective function J(¥) of the model output (e.g. the total
meridional heat transport, the total uptake of C'Os in the Southern Ocean over a time interval, or a
measure of some model-to-data misfit)

g = Vo= R (5.4)
iU — T=M1) — J(@)=JTM())
The perturbation of J around a fixed point Jo,
J =00 +6J
can be expressed in both bases of @ and ¢’ w.r.t. their corresponding inner product ( , )
T = Tlago + (VuT a0 , 6@ ) + O(53?) (5.5)

= TJlgo + (VoI |50, 67) + O(57%)
(note, that the gradient V[ is a co-vector, therefore its transpose is required in the above inner product).
Then, using the representation of 6.7 = < V. JT, 6w >, the definition of an adjoint operator A* of a given
operator A,
(A%, §) = (&, AY)
which for finite-dimensional vector spaces is just the transpose of A,
A* = AT

and from eq. (5.2), (5.5), we note that (omitting |’s):

8T = (V,J",60) = (V,J", Méi)y = (M"V,J", i) (5.6)
With the identity (5.5), we then find that the gradient V,J can be readily inferred by invoking the
adjoint M* of the tangent linear model M

VoI g = M"z- VT |z

M| - 60 (5.7)

= ou”

Eq. (5.7) is the adjoint model (ADM), in which M7 is the adjoint (here, the transpose) of the tangent
linear operator M, 6™ the adjoint variable of the model state ¥, and éu* the adjoint variable of the
control variable .



