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•What controls the maximum elevation within a given region during 
a given time period?

•Boundary conditions (e.g. wind forcing)
•Physical parameters (e.g. bottom drag coefficient)
•Initial conditions (e.g. tidal phase errors)
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Q1. What are the relative roles of boundary conditions, physical parameterizations
and initial conditions on the predicted tide+surge?

Q2. How does the sensitivity of maximum tide+surge to wind depend on the
 ocean initial condition, etc?
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huge ensemble!

model state consists of 
millions of degrees of freedom

trajectory describes time-evolution
of model state
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u v
  u v = M(u)
perturbations to 
can be approximated by the
Tangent Linear Model,
the Taylor Series expansion of M
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Model state space and sensitivity

Forward sensitivity



time

simplify the problem using an adjoint

reduce the number of degrees of 
freedom in the sensitivity by defining a
scalar cost function (tailored to the 
question in hand)

calculate sensitivity of cost function
to perturbations of model state
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e.g. J=maximum sea surface elevation in domain
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sensitivities calculated within the model via 
‘automatic differentiation’, where the effect 
of each line of code on the model operator, M, is 
considered 

Adjoint sensitivity

~ (number of degrees of freedom)1



the average of the product of the bottom pressure and
the gradient of the topography (Olbers 1998). Decreas-
ing the horizontal (along streamline) topography gra-
dient reduces the form stress term so that less momen-
tum is taken out of the system than is added, thus in-
creasing the transport. In the Drake Passage, the
situation is not so obvious, but the sensitivities can be
understood using the same arguments. The ACC turns
north onto the Argentinean Plateau just after the
Drake Passage. Decreasing the topographic gradient
along its streamlines can be achieved either by increas-
ing the height of the topography (positive sensitivity)
directly in the passage and across the Scotia Ridge
where the ocean is deepest or by decreasing the height
near South Georgia island and at the southern rim of
the shallow Argentinean Plateau. Therefore, the sensi-
tivities have opposite signs in this region. The positive
sensitivities at 50°S and 50°–46°W correspond to a
sharp drop in topography (cf. Fig. 3).

b. Atlantic meridional overturning streamfunction

The adjoint sensitivity of the strength of the Atlantic
meridional overturning circulation (MOC) averaged

over the last year of a 100-yr integration is shown in Fig.
2b. We define the strength of the MOC as the maxi-
mum value of the overturning streamfunction at 32°N,
which happens to be at 1080-m depth (the bottom of
the seventh model layer). The MOC is somewhat over-

FIG. 3. Depth (thin dashed line; m) and sensitivity (thick solid
line; Sv m!1) of the Drake Passage transport to topography along
50°S.

FIG. 2. Adjoint sensitivity with respect to the topography of (a) the volume transport through Drake Passage, (b) the Atlantic
MOC, (c) the Deacon cell, and (d) the heat transport across 32°S. In all cases, the integration period is 100 yr.
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Fig 2 live 4/C

Example from Losch and Heimbach, 2007

MITgcm designed be run in both forward and adjoint modes

•Develop shelf seas storm surge forward model
•Run perturbed parameter ensemble experiments
•Run adjoint model and compare surge sensitivity with ensembles



1. Develop shelf seas storm surge forward model

MITgcm tide model established (J. Xing; S. Legg), but for 2D x-z

Starting from example experiments, closest variants ‘natl_box’, ‘barotropic gyre’

•Modify domain to match that of POL CS3X model

•1/6 X 1/9 degree lon X lat
•Idealised (Gaussian island) and realistic topography (from ETOPO5)
•6 level PE, 1 level Shallow Water Equations 

•Prescribe tidal boundary conditions for velocity



Idealised Gaussian topographic elevation (m)

dz:
10 m
25 m
25 m
70 m
70 m
100 m

Unstratified
T=S=constant



Boundary conditions and tidal forcing

Can’t use tide from realistic models, tidal atlases for idealised domain

Excite Kelvin wave around island topography

Plane wave not in geostrophic balance

Insert Kelvin wave as meridional barotropic velocity at northern and southern 
periodic boundaries

v = V0 exp(X − x L) sin(ωt)

Impose zero normal velocity at eastern and western boundaries

V0 = 1.5 m / s L = 30 km ω = 2π / 12 hours



Sequence of snapshots of free surface elevation (m) showing spin-up
t=2 hours t=4 hours

t=6 hours t=8 hours

t=20 hours t=100 hours



Movie of free surface elevation (m) over first 10 days
1 frame==1 hour; frame rate = 30 fps
Tide-only, no wind forcing



Realistic domain - like CS3X model

Shallow water equations, shaved cell topography
Forced by boundary currents from tide-only run of CS3X

Snapshot of tide-only MITgcm elevation (m)



2. Basic forward model experiments
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2. Basic forward model experiments
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Sensitivity estimate from 11 member ensemble of forward model
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3. Build adjoint model

Automatic differentiation performed by

•TAMC, TAF (Ralf Gierling) ~ not free
•OpenAD ~ free

Routines parse the code line by line, evaluating the Jacobian of M

Patrick Heimbach (MIT), Jean Utke (Argonne National Lab.) leading development of 
OpenAD with MITgcm

Trickier than I thought

Still deciding on a standard Fortran compiler for OS X
Jean previously used Open64, but that has its pitfalls

Looking likely that Intel/TAF will be necessary - also recommended by Oxford group



Summary

•Adjoint models are useful for answering questions about forecast sensitivity

•MITgcm is carefully constructed to allow Auto Differentiation tools to build adjoint
•needs to be setup for tide-surge modelling on NW European shelf

•Promising results
•OpenAD problems need to be overcome

cwi@noc.ac.uk



260 CHAPTER 5. AUTOMATIC DIFFERENTIATION

Two routes may be followed to determine the sensitivity of the output variable !v to its input !u.

5.1.1 Forward or direct sensitivity

Consider a perturbation to the input variables δ!u (typically a single component δ!u = δui !ei). Their effect
on the output may be obtained via the linear approximation of the model M in terms of its Jacobian
matrix M , evaluated in the point u(0) according to

δ!v = M |!u(0) δ!u (5.2)

with resulting output perturbation δ!v. In components Mji = ∂Mj/∂ui, it reads

δvj =
∑

i

∂Mj

∂ui

∣∣∣∣
u(0)

δui (5.3)

Eq. (5.2) is the tangent linear model (TLM). In contrast to the full nonlinear model M, the operator M
is just a matrix which can readily be used to find the forward sensitivity of !v to perturbations in u, but
if there are very many input variables (! O(106) for large-scale oceanographic application), it quickly
becomes prohibitive to proceed directly as in (5.2), if the impact of each component ei is to be assessed.

5.1.2 Reverse or adjoint sensitivity

Let us consider the special case of a scalar objective function J (!v) of the model output (e.g. the total
meridional heat transport, the total uptake of CO2 in the Southern Ocean over a time interval, or a
measure of some model-to-data misfit)

J : U −→ V −→ IR
!u $−→ !v = M(!u) $−→ J (!u) = J (M(!u))

(5.4)

The perturbation of J around a fixed point J0,

J = J0 + δJ

can be expressed in both bases of !u and !v w.r.t. their corresponding inner product 〈 , 〉

J = J |!u(0) +
〈
∇uJ T |!u(0) , δ!u

〉
+ O(δ!u2)

= J |!v(0) +
〈
∇vJ T |!v(0) , δ!v

〉
+ O(δ!v2)

(5.5)

(note, that the gradient ∇f is a co-vector, therefore its transpose is required in the above inner product).
Then, using the representation of δJ =

〈
∇vJ T , δ!v

〉
, the definition of an adjoint operator A∗ of a given

operator A,
〈A∗!x , !y 〉 = 〈 !x , A!y 〉

which for finite-dimensional vector spaces is just the transpose of A,

A∗ = AT

and from eq. (5.2), (5.5), we note that (omitting |’s):

δJ =
〈
∇vJ T , δ!v

〉
=

〈
∇vJ T , M δ!u

〉
=

〈
MT ∇vJ T , δ!u

〉
(5.6)

With the identity (5.5), we then find that the gradient ∇uJ can be readily inferred by invoking the
adjoint M∗ of the tangent linear model M

∇uJ T |!u = MT |!u ·∇vJ T |!v
= MT |!u · δ!v∗

= δ!u∗

(5.7)

Eq. (5.7) is the adjoint model (ADM), in which MT is the adjoint (here, the transpose) of the tangent
linear operator M , δ!v∗ the adjoint variable of the model state !v, and δ!u∗ the adjoint variable of the
control variable !u.


