An unstructured-grid, finite-volume model of the Irish Sea and Celtic Sea: Application to tides, surges, and temperature evolution.

Jiuxing Xing, Alan Davies, Phil Hall and Eric Jones National Oceanography Centre, Liverpool (NOC)

Introduction

Advantages of unstructured girds;

Applications of finite element models at NOC

(e.g., TELEMAC, ADCIRC, ICOMS);

A model of Irish Sea and Celtic Sea based on FVCOM (ICS-FVCOM).

An introduction to FVCOM

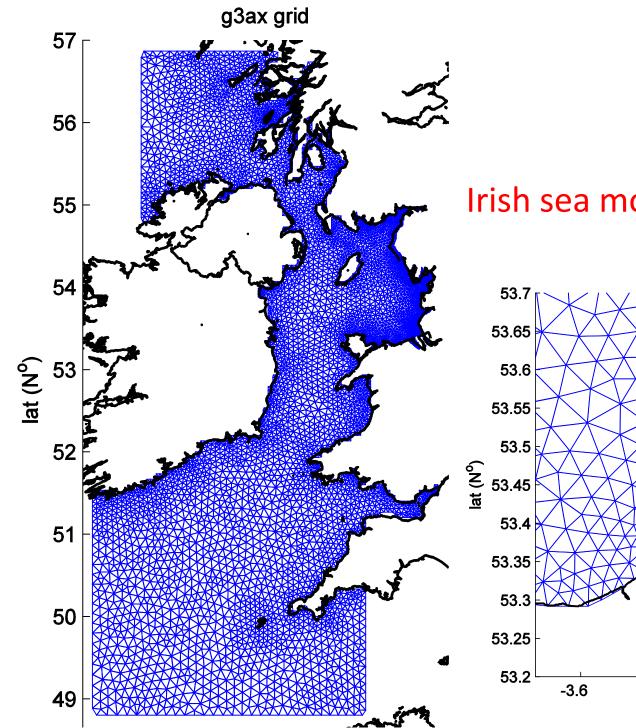
Developed at Massachusetts-Dartmouth (Chen et al, 2003);

- Hydrostatic, terrain-following σ co-ordinate (similar to POM, BOM or POLCOMS);
- Finite-volume method on triangle grids;
- Tracer advection: MPDATA (Smolarkiewicz 2005); Mellor-Yamada turbulence closure;
- Advantages including grid flexibility at complex coastal line, better conservation, etc. ;
- Many modules: sediment, ecosystem, wind waves, ice, etc.,

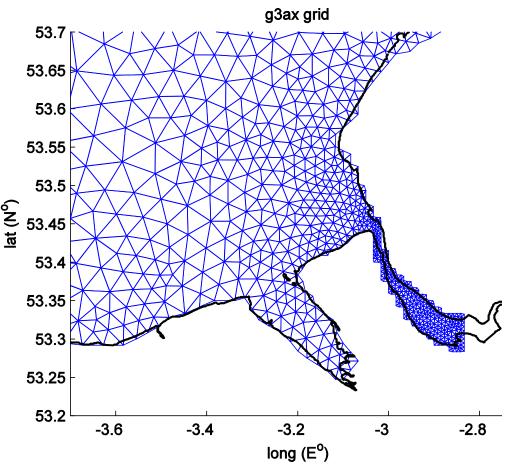
Long-term integration of the model has not been tested; Improvements are made for the model of the Irish Sea.

Application to tides, surges and temperature evolution in the Irish Sea and Celtic Sea

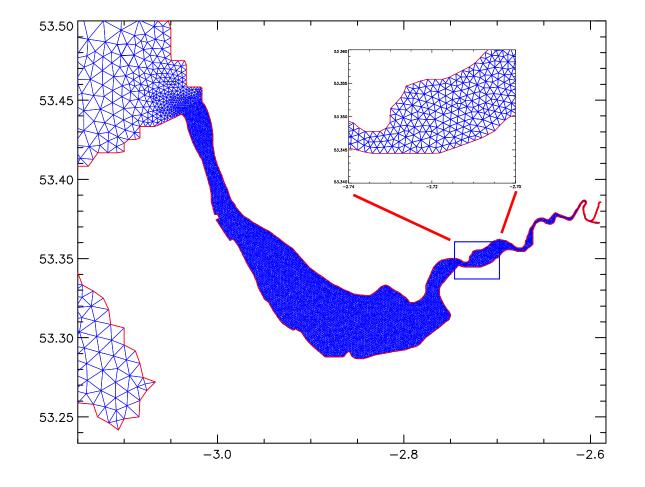
- Bartropic tides: forced at the open boundary
 Jones + Davies (Ocean Modelling, 2007);
- 2. Idealized wind force of 1 N/m^2 (effects of breaking wases)
- Realistic meteorological forcing due to wind and heating and tides (temperature evolution);
- 4. ROFI in Liverpool Bay .



Irish sea model grids (g3ax)



Refined grids in river Mersey



M2 tide:

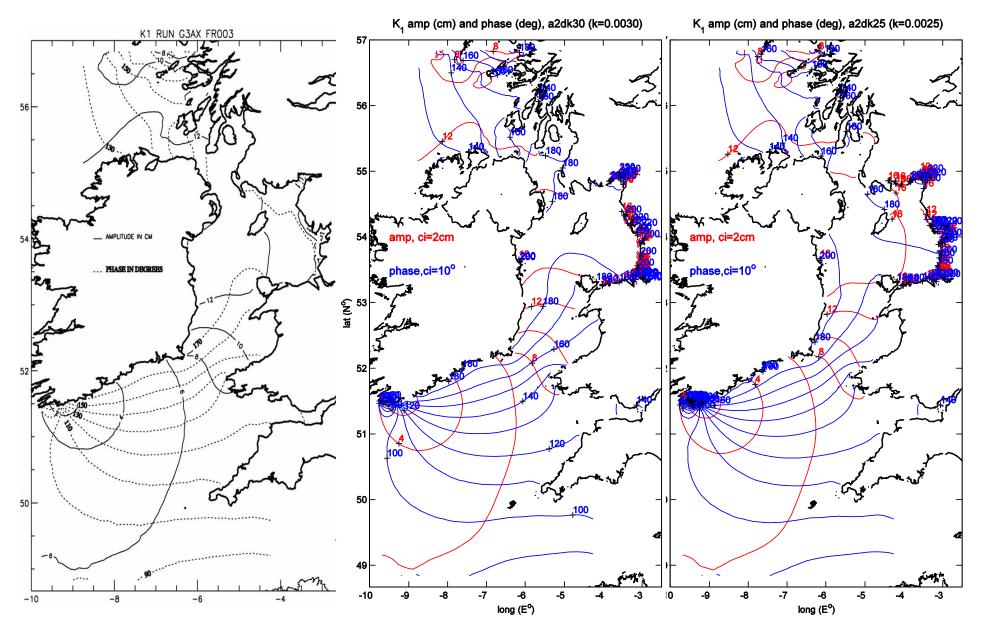
TELMAC 2D (k=0.003) ICS-FVCOM (k=0.003) ICS-FVCOM(k=0.0025) M₂ amp (cm) and phase (deg), a2dk30 (k=0.0030) M₂ amp (cm) and phase (deg), a2dk25 (k=0.0025) M2 RUN G3AX FR003 57 56 55 55 54 amp, ci=20cm amp, ci=20cm AMPLITUDE IN CM phase,ci=10° phase,ci=10^o ... PHASE IN DEGREES 53 (N) 53 51 51 160 50 50 120 120 49 49 -10 -7 -10 -7 -8 -3 -5 -3 -6 -5 -9 -8 -6 -4 -8 -6 10

long (E^o)

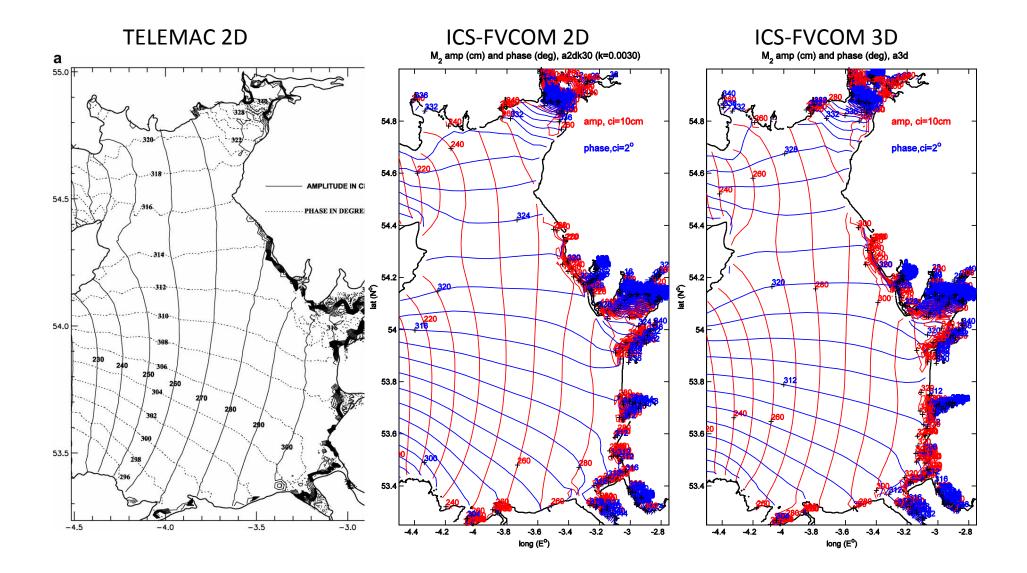
long (E^o)

К1

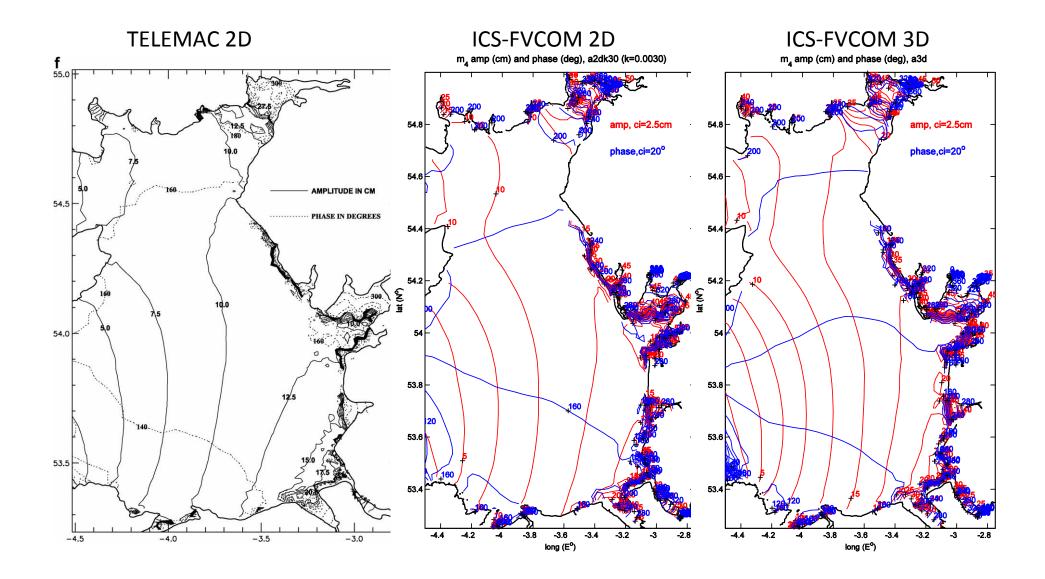
TELMAC 2D (k=0.003) ICS-FVCOM (k=0.003) ICS-FVCOM(k=0.0025



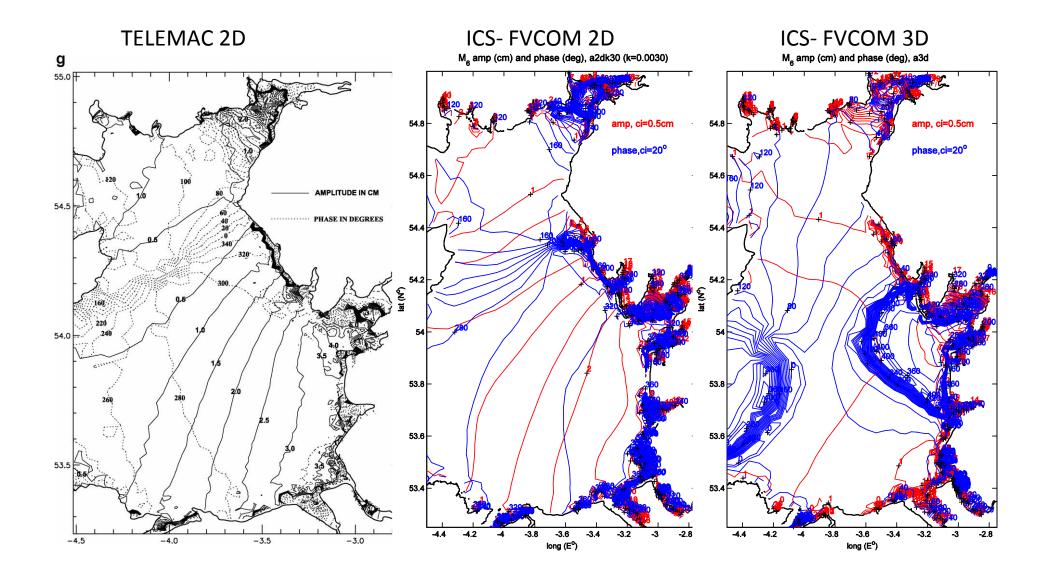
Computed M2 tide in the Eastern Irish Sea



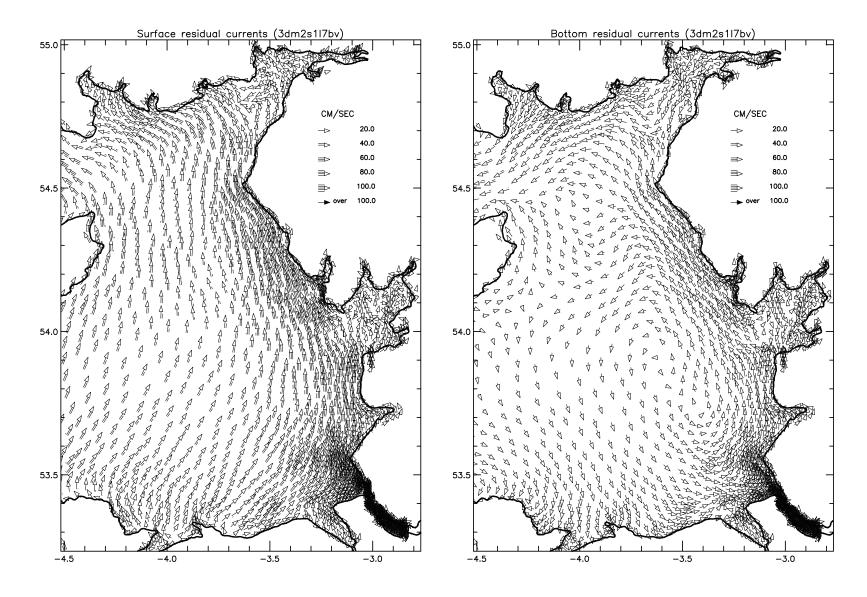
Computed M4 tide in the Eastern Irish Sea



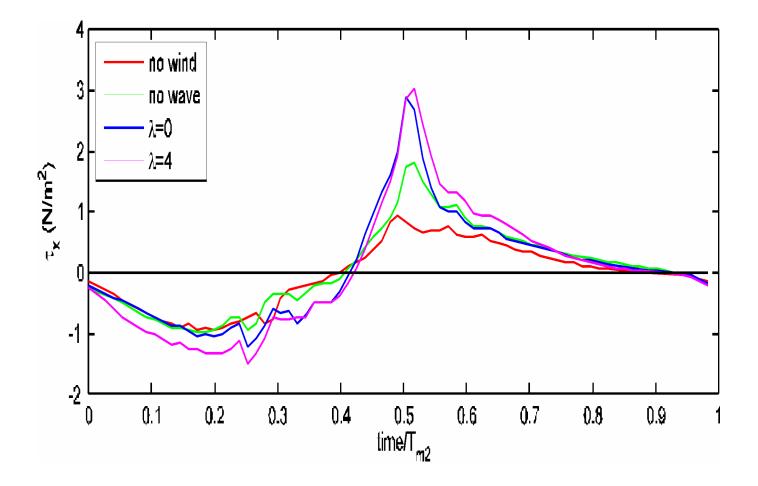
Computed M6 tide in the Eastern Irish Sea



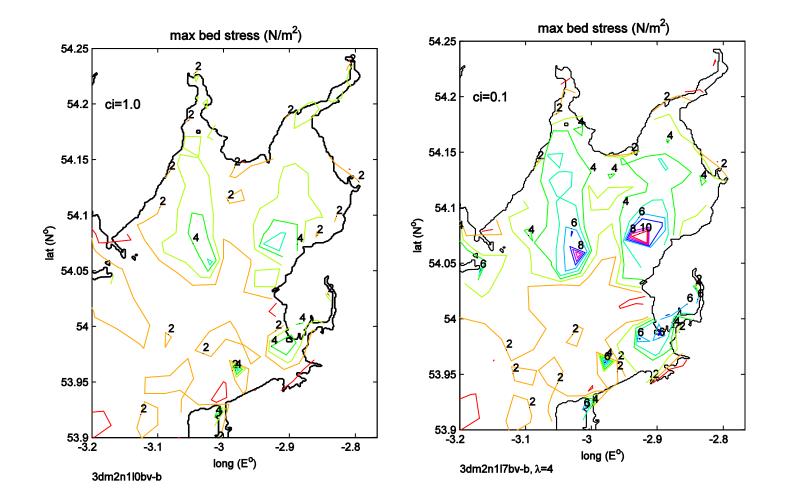
Surface and bottom currents (south wind stress 1pa)



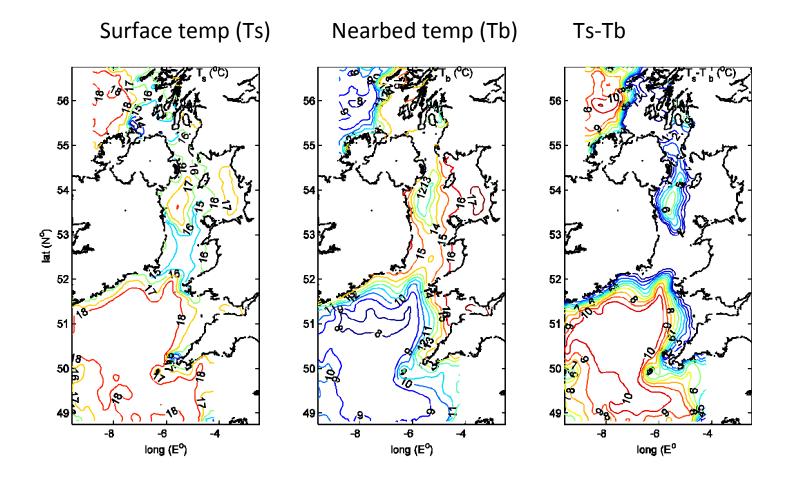
Bed stress at a location in the Liverpool Bay



Effects of wave breaking parameterization on maximum bed stress in the shallow water region

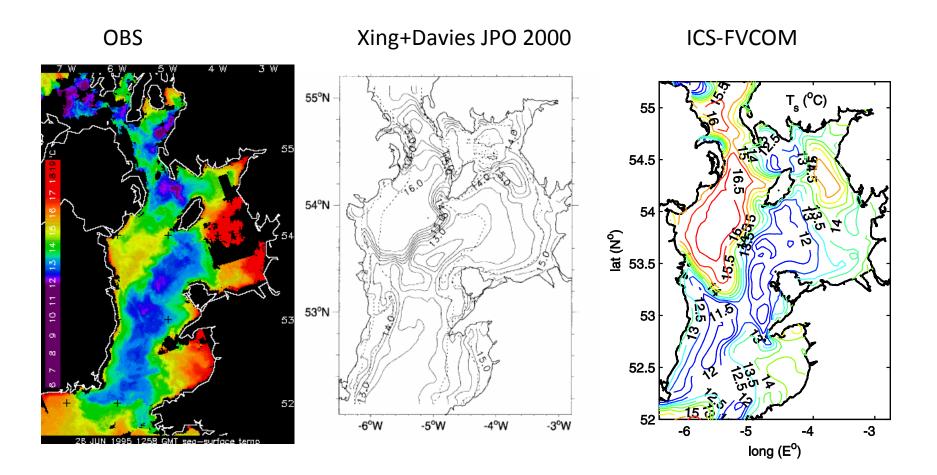


Temperature on 16 Aug. 1995

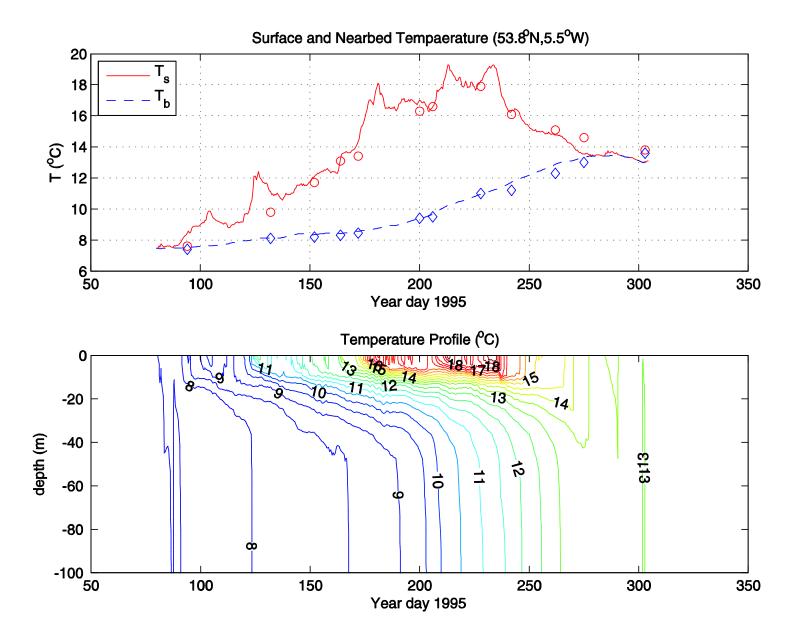


g0w9aqt2-kh2b-sph, day= 148

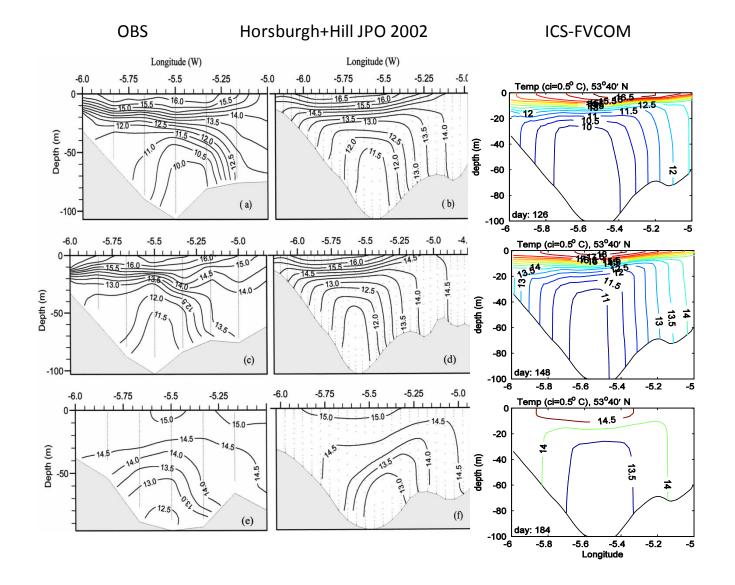
Surface temperature on 26 June 1995



Time series of temperature at the West Irish sea

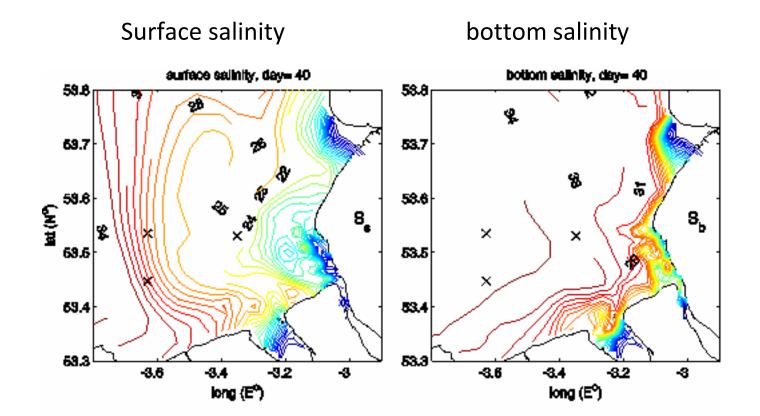


(x-z) section of temperature along 53° 40' N from observations, models of POM and ICS-FVCOM



18

ROFI: fresh water discharge in Liverpool Bay

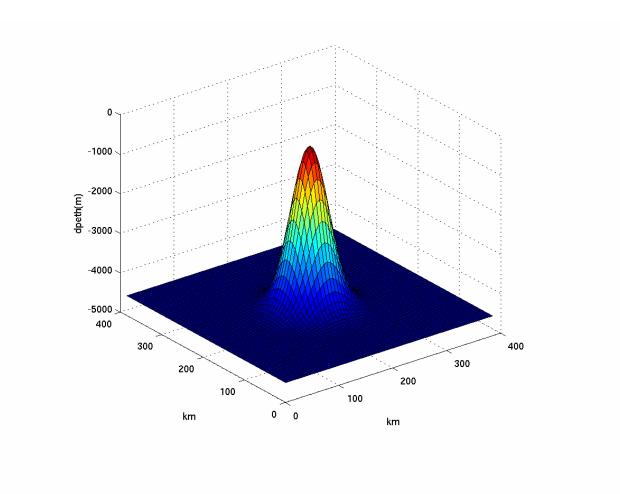


3-rtv-multi, day= 40

Conclusions

- A robust finite-volume, unstructured-grid model of the Irish sea based on FVCOM is established;
- Validation work is in progress (bartropic tides are well reproduced);
- A shelf wide finite-volume unstructured-grid model for the purpose of climate study is achievable in the near future;
- Future improvements: turbulence, HPG, efficiency ...

The seamount test case (Haidvogel+Beckman, Berntsen+Furnes 2005, etc.)



Model setup and parameters

FVCOM v2.7 (full non-linear hydrostatic model), with uniform resolution 3, 6 km No vertical diffusion and bottom friction No horizontal diffusivity Horizontal viscosity $(10^3, 10^2 \text{ m}^2/\text{s})$ A Gaussian form of topog. (450-4500m) An initial exponential density profile ($\Delta \rho = 1.5$ kg/m^{3})

Internal pressure gradient in σ -coordinate system, $[\sigma=(z-\zeta)/D]$ and finite volume method (Chen et al)

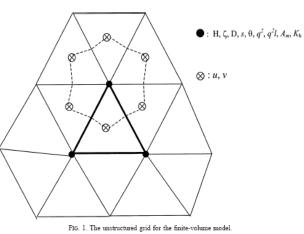
u equation and internal pressure gradient term:

$$\frac{\partial Du}{\partial t} + \nabla \cdot (\vec{V}Du) + \dots = -\frac{g}{\rho_0} \left[D \frac{\partial}{\partial x} \left(D \int_{\sigma}^0 \sigma \frac{\partial \rho}{\partial \sigma} d\sigma \right) + D^2 \frac{\partial \rho \sigma}{\partial x} \right] + \dots$$

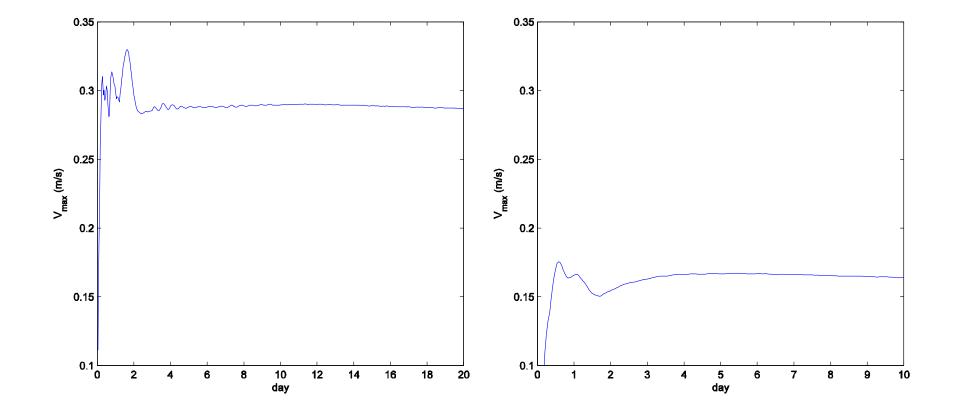
$$IPG = -\frac{g}{\rho_0} \left\{ \int \int D \frac{\partial}{\partial x} \left[D \left(\int_{\sigma}^0 \sigma \frac{\partial \rho}{\partial \sigma} d\sigma \right) \right] dx dy + \int \int D^2 \frac{\partial \rho \sigma}{\partial x} dx dy \right\}$$
$$= -\frac{g}{\rho_0} \left\{ \overline{D} \oint \left(D \int_{\sigma}^0 \sigma \frac{\partial \rho}{\partial \sigma} d\sigma \right) dy + \overline{D}^2 \oint \rho \sigma dy \right\}$$

Green's Theorem:

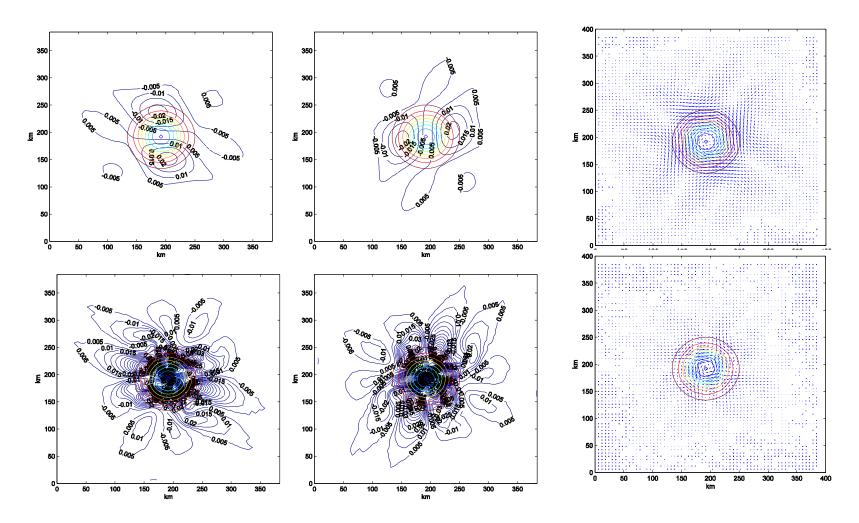
$$\oint -Ndx + Mdy = \iint \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) dxdy$$



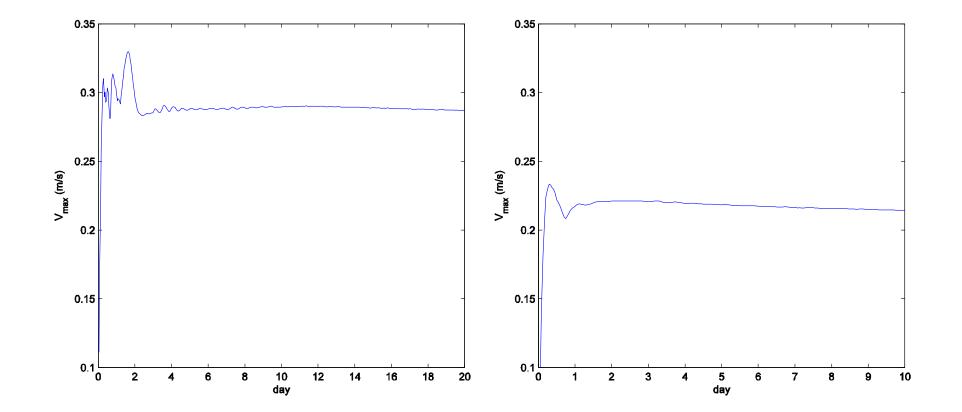
Maximum velocities (Ah=1000m^2/s) (isosceles, resolution, left: 6km, right: 3km)



Top and bottom layer (u,v) at day 10 (ci=0.5 cm/s, isosceles,res=3km)



Maximum velocities (Ah=1000m^2/s) (left: isosceles, right: equilaterals)

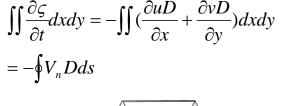


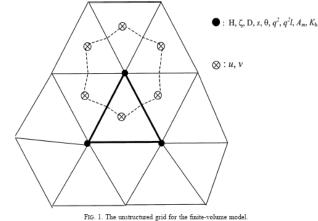
Thank you for your attention !

An introduction to FVCOM

- Developed at Massachusetts-Dartmouth (Chen et al, 2003);
- Hydrostatic ; terrain-following σ condinate (similar to POM);
- Second-order accurate discrete flu...
 Calculation in the integral form of Example of the continuity eq. equations;
- Trace advection: MPDATA (Smolarkiewicz 2005); horizontal diffusion: Smagorinsky; vertical: Mellor Yamada closure scheme;
- Advantages include grid flexibility at complex coastal line, better conservation, etc. ;
- Long-term integration of the model has not been tested yet;
- Improvements are made for the model Irish Sea.

Structured Grid Unstructured Grid





Internal pressure gradient in σ -coordinate system, $[\sigma=(z-\zeta)/D]$ and finite volume method (in FVCOM)

u equation and internal pressure gradient term:

$$\frac{\partial Du}{\partial t} + \nabla \cdot (\bar{V}Du) + ... = -\frac{gD^2}{\rho_0} \int_{\sigma}^{0} \left[\frac{\partial \rho}{\partial x} - \frac{\sigma}{D} \frac{\partial D}{\partial x} \frac{\partial \rho}{\partial \sigma} \right] d\sigma + ... = -\frac{g}{\rho_0} \left[D \frac{\partial}{\partial x} \left(D \int_{\sigma}^{0} \sigma \frac{\partial \rho}{\partial \sigma} d\sigma \right) + D^2 \frac{\partial \rho \sigma}{\partial x} \right] + ... \\ = -\frac{gD}{\rho_0} \left[-\frac{\partial D}{\partial x} \int_{\sigma}^{0} \sigma \frac{\partial \rho}{\partial \sigma} d\sigma + D \frac{\partial}{\partial x} \int_{\sigma}^{0} \rho d\sigma \right] + ... \\ \int_{\sigma}^{0} \sigma \frac{\partial \rho}{\partial x} d\sigma = -\sigma\rho - \int_{\sigma}^{0} \rho d\sigma \\ \int \int (...) dx dy = -\frac{gD_m}{\rho_0} \left\{ \int \int -\frac{\partial D}{\partial x} \int_{\sigma}^{0} \sigma \frac{\partial \rho}{\partial x} d\sigma dx dy + \int \int D \frac{\partial}{\partial x} \int_{\sigma}^{0} \rho d\sigma dx dy \right\} \\ = -\frac{gD_m}{\rho_0} \left\{ - \left(\int_{\sigma}^{0} \sigma \frac{\partial \rho}{\partial x} d\sigma \right)_m \int \int \frac{\partial D}{\partial x} dx dy + D_m \int \int \frac{\partial}{\partial x} \int_{\sigma}^{0} \rho d\sigma dx dy \right\}$$

Green's Theorem:

$$\oint - Ndx + Mdy = \iint \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) dx dy$$

FIG. 1. The unstructured grid for the finite-volume model.