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Outline

I Weakly constrained ensemble perturbations

I Example 1: Estimation of tidal boundary conditions using

HF radar observations

I Example 2: Estimation of wind forcing using HF radar

observations



Weakly constrained ensemble perturbations

I For ensemble schemes, unknown initial and boundary conditions, parameters, ...
have to be perturbed within their range of uncertainty.

I By validation of the model with observations one can obtain an estimate of the
magnitude of the perturbation.

I But which spatial structure?

I Method to create ensemble perturbation that satisfy a priori linear constraints

I Example of constraints:

• geostrophic equilibrium

• zero horizontal divergence of surface winds

• stationary solution to the advection-diffusion equation

• the linear shallow water equations

• perturbations should be close to a subspace defined by e.g. empirical or-
thogonal functions (EOFs).

• ...



Probability of a perturbation

I To describe our a priori knowledge of what a realistic perturbation is, we intro-
duce a cost function J , similar to the cost function used in variational analysis
techniques:

J(x) = “linear balance”2 + “smooth”2 + “limited amplitude”2

I The cost function can be used to define the probability of a perturbation x (e.g.
?):

p(x) = α exp (−J(x)) (1)

I Perturbations are derived from the Hessian matrix of J .

I Article and source code (for MATLAB and GNU Octave) is available at http:

//modb.oce.ulg.ac.be/mediawiki/index.php/WCE

I “Dynamically constrained ensemble perturbations - application to tides on the
West Florida Shelf”. Ocean Science, 5(3):259–270, 2009. http://www.ocean-sci.
net/5/259/2009.

http://modb.oce.ulg.ac.be/mediawiki/index.php/WCE
http://modb.oce.ulg.ac.be/mediawiki/index.php/WCE
http://www.ocean-sci.net/5/259/2009
http://www.ocean-sci.net/5/259/2009


Impact of barriers

I The “smoothness” constraint is implemented through a diffusion operator (lapla-
cian), it takes thus the land-sea mask into account

I Ensemble covariance using “classical” Fourier modes (a) and constrained pertur-
bations based on the land-sea mask (b).



Harmonic shallow water equations

I For tidal models, perturbations should be approximately a harmonic solution to
the shallow water equations
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I Horizontal covariance of the constrained perturbations between the point near
the open boundary marked by a black dot and all other grid points.



German Bight model

I General Estuarine Ocean Model (GETM ?)

I 3-D primitive equations with a free-surface

I 21 σ levels, resolution of about 0.9 km.

I nested in a 5-km resolution North Sea-Baltic Sea model

I ETOPO-1 topography with observations from BSH

I Atmospheric fluxes are estimated by the bulk formulation using 6-hourly ECMWF
re-analysis

I Implementation by GKSS (?).



HF radar observations
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I Spatial coverage of the HF radar
zonal and meridional surface ve-
locity observations

I The number of samples available
at each observation grid point
is color–coded according to the
color-bar.

I The crosses show the location of
HF radar antennas.

I The operating frequency:
29.85 MHz (coupling to 5.02 m
long ocean waves).

I HF Radar measurements from
University of Hamburg (PRISMA
project)



Empirical Ocean Tides (EOT08a)
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I M2 amplitude (in m) and phase (in degrees) of EOT08a for the German Bight
based on altimetry.

I complex tidal parameters are assimilated



Smoother scheme

I M2 tidal boundary conditions are perturbed within the range of their uncertainty
to create a ensemble with 51 members. Perturbations are constrained by the
linear shallow water equations.

I The GETM model is run for 40 days with each of those perturbed boundary
values.

I All HF radar observations at any time instance within the integration period and
the EOT parameters are grouped in the observation vector (vector yo) with their
corresponding error covariance (matrix R) estimated by cross-validation.

I Observations are extracted from perturbed model solution (vector h(x(k))).

I Schematically, the non-linear operator h(·) performs the following operations:

h(·) = Interpolation to obs. location ◦Model integration with perturbed forcing
(2)



Observations
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Smoother scheme

I The optimal perturbation is given the Kalman analysis (using non-linear obser-
vation operators as in ?):

xa = xb + A (B + R)−1 (yo − h(xb)
)

(3)

I where the matrices A and B are covariances estimated from the ensemble.

A = cov(xb, h(xb)) =
〈

(x− 〈x〉) (h(x)− 〈h(x)〉)T
〉

(4)

B = cov(h(xb), h(xb)) =
〈

(h(x)− 〈h(x)〉) (h(x)− 〈h(x)〉)T
〉

(5)

where 〈·〉 is the ensemble average.

I But covariance matrices do not need to be formed explicitly. Analysis is performed
in the subspace defined by the ensemble members.



Smoother scheme

I For a linear model and an infinite large ensemble, equation (3) minimizes,

J(x) = (x− xb)T Pb−1
(x− xb) + (yo − h(x))T R−1(yo − h(x)) (6)

or

J(x) = (x− xb)T Pb−1
(x− xb) +

∑
n

(yo
n − (h(x)n))T Rn

−1(yo
n − (h(x)n)) (7)

where n references to the indexed quantifies at time n. This is the cost function
from which 4D-Var and Kalman Smoother can be derived.

I Approach is closely related to Ensemble Smoother (?), 4D-EnKF (?) and AEnKF
(?) where model trajectories instead of model states are optimized and to the
Green’s method with stochastic “search directions”

I The model is rerun with the optimized boundary values for 60 days.



RMS difference

RMS2 = lim
T→∞

1

T

∫ T

0

(A cos(ωt− φ)− A′ cos(ωt− φ′))2dt (8)

=
A2 + A′2

2
− AA′ cos(φ− φ′) (9)
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RMS difference between surface current observations due to the M2 tides and the
corresponding model results without (left panel) and with assimilation (right panel).



Comparison with un-assimilated observations (M2)
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I RMS difference between surface current observations (not used in the assimi-
lation) due to the M2 tides and the corresponding model results without (left
panel) and with assimilation (right panel).

I Analysis RMS compared to unassimilated data is only 0.002 m/s larger than
compared to assimilated data



Tide gage observations

Helgoland Cuxhaven
amplitude phase RMS amplitude phase RMS

Observations 1.13 304 1.36 334
Free 0.81 318 0.28 0.95 15 0.63

Assimilation 0.97 302 0.12 1.08 2 0.46

Table 1: Comparison with tide gage observations. Amplitude is in m and phase in
degrees.

I Tide gage observations from different time period → only comparison of tidal
parameters

I Helgoland within the area covered by radar, but not Cuxhaven

I The assimilation reduces the RMS error by a factor of 2 for Helgoland and by a
factor of 1.4 for Cuxhaven.

I Ocean Science, 6, 161–178, 2010 http://www.ocean-sci.net/6/161/2010/

os-6-161-2010.pdf.

http://www.ocean-sci.net/6/161/2010/os-6-161-2010.pdf
http://www.ocean-sci.net/6/161/2010/os-6-161-2010.pdf


Wind estimation from HF radar observations

I Ensemble of 100 wind forcings are created (by using a Fourier decomposition)

I estimation vector x: u- and v- component of wind forcing

I observations: yo: surface currents

I “observation operator” h(·):

h(·) = Interpolation to obs. location ◦Model integration with perturbed wind
(10)
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Time-averaged wind correction statistics

I RMS difference between analyzed winds and ECMWF winds (averaged over time)

I RMS difference scaled by wind standard deviation



0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16
Wind speed at Helgoland

Days since 1 September 1991

W
in

d 
sp

ee
d 

(m
/s

)

 

 
ECMWF (RMS=2.403 m/s)
Analysis (RMS=1.888 m/s)
Observations

Figure 1: Measured wind speed, wind speed from ECMWF and analyzed wind speed
at Helgoland. Units are m/s.
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Figure 2: Measured wind speed, wind speed from ECMWF and analyzed wind speed
at Sylt. Units are m/s.



Summary

I Ensemble assimilation methods require realistic perturbation schemes (error co-
variances)

I Use of dynamical relationships (similar to Variational analysis)

I Optimizing tidal boundary conditions and wind forcing with a smoother scheme

I HF radar observation is a very valuable data set for constraining regional and
coastal models



Skill score

I How strong can we force the model towards the observations (SHF)?

I Taking into account that:

• redundancy between the individual time instances is high (data every 30 min)

• the difference between observed currents and model currents is not only due to
errors in the wind field

• If SHF would be too small, errors in e.g. the density structure could be compen-
sated in a unrealistic way by modifying the wind fields, only to match observations
closely.

Helgoland Sylt
SHF RMS skill score RMS skill score

Free – 2.40 0.00 1.98 0.00

Analysis 0.5 2.14 0.21 1.96 0.03
1.0 2.02 0.29 1.82 0.15
1.5 1.93 0.35 1.64 0.31
2.0 1.89 0.38 1.50 0.43
2.5 1.88 0.39 1.43 0.48
5.0 2.05 0.27 1.54 0.39

I Comparison with in situ wind measurements. RMS and SHF are expressed in m/s.



Comparison with satellite SST

Figure 3: RMS difference between AVHRR SST and
model SST without assimilation (left panel) and
with assimilation (right panel)

SHF RMS skill score

Free – 1.21 0.00
Analysis 0.5 1.09 0.19

1.0 1.09 0.19
1.5 1.10 0.18
2.0 1.11 0.16
2.5 1.12 0.14
5.0 1.16 0.08

RMS is expressed in ◦C and
SHF in m/s.



Perturbations scheme

The cost function is a quadratic function in x and can thus be written as:

2J(x) = xT (MT WMM + DT WDD + WE)x (11)

= xT B−1x (12)

where the matrix B (covariance matrix, not formed explicitly) is defined as:

B = (MT WMM + DT WDD + WE)−1 (13)

To generate an ensemble of perturbations that follows the previous pdf, the matrix
B is decomposed in eigenvectors (rows of U) and eigenvalues (diagonal elements of
Λ) :

B = UΛUT (14)

The smaller an eigenvalue is, the stronger the corresponding eigenvector violates
the dynamical and smoothness constraint.

An ensemble of vectors z(k) where the subscript k is the ensemble member, is
created following a normal distribution.

z ∼ N(0, In) (15)



An ensemble of perturbations x(k) following (1) can be obtained by:

x(k) = UΛ1/2z(k) (16)

Alternatively, one can use the 2nd order exact re-sampling method (SEIK):

x(k) = UΛ1/2Hw(Ω)k (17)

where columns of Hw are all perpendicular to the vector 1N×1 and (Ω)k is the
k-column of a random orthogonal matrix Ω.



I Also perturbations with a spatially varying correlation length can be created.

I Scale of mesoscale variability → internal radius of deformation which varies in
space:

I Illustration of a random field with a variable correlation length.



Examples for linear constraints

Advection constraint

I For large-scale models, perturbations should be approximately stationary solu-
tions to the advection equation

v · ∇φ = 0 (18)



I Example of ensemble perturbations using the advection constraint



Application to HF Radar assimilation in the German
Bight (tidal BC)

I Only M2 tidal boundary conditions are perturbed:

ζ(k) = ζ(b) + < (ζ ′(x, y) exp(iωt)) (19)

where ω is the M2 angular frequency and ζ ′(x, y) is a random field satisfying
approximately the harmonic shallow water equations:

iωζ ′ +
∂(hu′)

∂x
+
∂(hv′)

∂y
= 0 (20)

iωu′ − fv′ + g
∂ζ ′

∂x
= 0 (21)

iωv′ + fu′ + g
∂ζ ′

∂y
= 0 (22)

I The 50 eigenvector with the largest eigenvalues of the matrix B from (14) are
calculated (providing the spatial structure of the perturbation).



I From those 50 eigenvector/eigenvalues an ensemble of 51 members is created
with zero mean (2nd order exact re-sampling).

I The GETM model is run for 40 days with each of those perturbed boundary
values.

I Observations are assimilated with an expected RMS error of 0.3 m/s (includ-
ing representativity error and error that cannot be corrected modifying only the
boundary conditions) providing an optimal increment of the boundary values.

I The model is rerun with the optimized boundary values for 60 days.
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