Introduction

Models

Sharp step

Rounded step

Summary

Future work

Flow over a backward-facing step, a convergence study comparing a z-coordinate model and a sigma-coordinate model

K. Rygg¹² G. Alendal³¹ P. M. Haugan²

¹UniBCCS

²Geophysical institute University of Bergen

³Department of Mathematics University of Bergen

JONSMOD 11th May 2010 FU IP CarboOcean - Cordino

(日)

Introduction	Models	Sharp step	Rounded step	Summary	Future work
Backward	l-facing s	ten			

- Numerical testcase
 - Simplicity
 - Fixed separation point
 - Reattacment of the flow
 - Recovery of the boundary layer
 - High Reynolds numbers
 - bifucation of eddies

- Classical problem in applied aerodynamics
- Numerous numerical and laboratory experiments

(日)

Horizontal velocities, DNS,

Direct Numerical Simulations of Turbulent Flow over a Backward-Facing Step Hung Le and Parviz Mo

uni BCC

Introduction	Models	Sharp step	Rounded step	Summary	Future work
Backward	d-facino	l step			

- Numerical testcase
 - Simplicity
 - Fixed separation point
 - Reattacment of the flow
 - Recovery of the boundary layer
 - High Reynolds numbers
 - bifucation of eddies

- Classical problem in applied aerodynamics
- Numerous numerical and laboratory experiments

(日)

Horizontal velocities, DNS,

Direct Numerical Simulations of Turbulent Flow over a Backward-Facing Step Hung Le and Parviz M

uni BCC

Rounded step

MITgcm and Bergen Ocean Model

MITgcm

- -z-coordinates -preconditioned conjugated method - non-hydrostatic
- -Boussinesq
- -C-grid
- -finite-volume
- -advection scheme super-bee limiter function
- -modular fashion

Bergen Ocean Model

- - σ -coordinates
- modesplit
- SOR non-hydrostatic
- Boussinesq
- C-grid
- finite-differences
- advection TVD superbee limiter function

The equation of continuity:

$$\frac{\partial U}{\partial x} + \frac{\partial W}{\partial z} = 0$$

The Reynolds averaged momentum equations:

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + W \frac{\partial U}{\partial z} = -\frac{1}{\rho_0} \frac{\partial P}{\partial x} + A_M \frac{\partial^2 U}{\partial x^2} + K_M \frac{\partial^2 U}{\partial z^2}$$
$$\frac{\partial W}{\partial t} + U \frac{\partial W}{\partial x} + W \frac{\partial W}{\partial z} = -\frac{1}{\rho_0} \frac{\partial P}{\partial z} - \frac{g\rho}{\rho_0} + A_M \frac{\partial^2 W}{\partial x^2} + K_M \frac{\partial^2 W}{\partial z^2}$$

Conservation of density:

$$\frac{\partial \rho}{\partial t} + U \frac{\partial \rho}{\partial x} + W \frac{\partial \rho}{\partial z} = A_H \frac{\partial^2 \rho}{\partial x^2} + K_H \frac{\partial^2 \rho}{\partial z^2}$$

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

- h: 20m
- L_x: 45h=900 m
- L_{xu}: 18*h*=360 m
- L_z: 6h = 120 m
- ρ: 1028 kg m⁻³
- T: 24 h

- δ₉₉: 1.2*h* 2 open boundaries
 - Initialization
 - Depth integrated velocity
 - Convergence study:
 - ∆x: 12-1.5 m
 - Δz: 2.4-0.3 m
 - $K_{M/H}$: $10^{-2} 10^{-6} \text{ m}^2 \text{s}^{-1}$

• $A_{M/H}$: 10⁻² m²s⁻¹

- E

- Reynolds number, $Re = \frac{U_{\infty}h}{\nu}$
- Low Reynolds number: stationary flow
- Reattachment zone
 - Counter-clockwise eddy near the step
 - Clockwise eddy
- Oscillating reattachment location (Friedrich & Arnal, 1990, J Wind Eng Indust.Aerodyn)
 - Release of eddies from the reattachment zone (Le et al, 1997, J. Fluid Mech)

Introduction	Models	Sharp step	Rounded step	Summary	Future work
D I	10.1				

Backwardfacing sharp step

- Laminar: *Re* < 400
- Transient: 400 < *Re* < 3400
- Turbulent: Re > 3400

Armaly, 1983, Journal of Fluid Mechanics

 Assume: Reattachment zone based on average fields

$$\ \, \bar{U}=0$$

- 2 zero wall-shear stress $\frac{\partial U}{\partial z} = 0$
- 3 Mean dividing streamline $\psi = 0$
- Location of 50% forward flow fraction

Introductio	on Mo	odels S	harp step	Rounded step Summary F		Future work			
Rea	Reattachment - Sharp step								
Hyd	Hydrostatic consistency:								
	$ \frac{\sigma}{\delta\sigma}$	$rac{\delta H}{H} < 1$.		• <i>z</i> -co	ordinate	model			
			Laminar	Transient		Turbulent			
	Re		2 · 10 ²	2 · 10 ³	$2 \cdot 10^{4}$	2 · 10 ⁵	2 · 10 ⁶		
	1st eddy	150x100	-	0.90	1.5	1.8	1.5		
		300x200	-	2.1	1.8	1.7	1.5		
		600x400	-	3.8	1.6	1.2	1.3		
	2nd eddy	150x100	6.6	14.1	6.9	9.6	8.4		
		300x200	6.8	11.1	6.6	6.6	5.3		
		600x400	7.0	12.5	5.7	4.5	5.3		
	Literature		7 0 ^a	$10-13.5^{b}$	1 76/	6 28°	7 0 ^d		

Table: The end of the first and the second eddies as a function of **Reynolds number and numerical resolution**. ^{*a*} Beaudoin et al 2007, European Journal of Mechanics B/Fluids, ^{*b*}, Rani et al, 2007, Journal of Fluid Mechanics, ^{*c*}Le et al, 1997, Journal of Fluid Mechanics (Re=5100), ^{*d*} Kim et al, 1985, Journal of Fluids Engineering.

イロト イポト イヨト イヨト 三日

Introduc	tion	Models S	harp step	Rounded step	Sur	nmary	Future work
Rea	Reattachment - Sharp step						
Hy	Hydrostatic consistency:						
$ rac{\sigma}{\delta\sigma}rac{\delta H}{H} < 1$. \bullet <i>z</i> -coordinate model							
-			Laminar	Transient		Turbulent	
-	Re		2 · 10 ²	2 · 10 ³	$2 \cdot 10^4$	2 · 10 ⁵	2 · 10 ⁶
-	1st eddy	150x100	-	0.90	1.5	1.8	1.5
		300x200	-	2.1	1.8	1.7	1.5

	300x200	-	2.1	1.8	1.7	1.5	
	600x400	-	3.8	1.6	1.2	1.3	
2nd eddy	150x100	6.6	14.1	6.9	9.6	8.4	-
	300x200	6.8	11.1	6.6	6.6	5.3	
	600x400	7.0	12.5	5.7	4.5	5.3	
Literature		7.0 ^a	10-13.5 ^b	1.76/	6.28 ^c	7.0 ^d	_
							_

Table: The end of the first and the second eddies as a function of **Reynolds number and numerical resolution**. ^{*a*} Beaudoin et al 2007, European Journal of Mechanics B/Fluids, ^{*b*}, Rani et al, 2007, Journal of Fluid Mechanics, ^{*c*}Le et al, 1997, Journal of Fluid Mechanics (Re=5100), ^{*a*} Kim et al, 1985, Journal of Fluids Engineering.

э

ヘロト ヘ戸 ト ヘヨ ト ヘヨ ト

Rounded step

Future work

Streamlines

Figure: Mean streamlines 12-24 h, and a snapshot of the streamlines at 24 h: Re= a) $2 \cdot 10^2$, b) $2 \cdot 10^3$, c) $2 \cdot 10^4$, and d) $2 \cdot 10^6$, 300x200 grid cells

- Re=200: Stationary eddy
- Re=2000: Transient regime. Longer reattachment zone
- Re≥ 2 · 10⁴: Turbulent regime. More and smaller eddies.

Introduction	Models	Sharp step	Rounded step	Summary	Future work
Bottom v	elocitie	S			

Figure: Horizontal bottom velocities. Re= a) $2 \cdot 10^2$, b) $2 \cdot 10^3$, c) $2 \cdot 10^4$, and d) $2 \cdot 10^5$, 300x200 grid cells

- Stationary eddy: Re=200
- Bifurcation of eddies Re≥ 2000
- Increasing number of eddies are released from the reattachment point for increasing Re unBCCS

(日)

Backward-facing rounded step

$$f^{z}H(x) = \begin{cases} -100, & x < 0, \\ -120 + 20 \cdot \exp^{-\frac{x^{2}}{L^{2}}}, & x \le 0. \end{cases}$$

Kundu and Cohen, Fluid Mechanics, 2004

- Adverse pressure force
- *P* > *P_c* separation recirculation region
- Thicker boundary layer
- Flow downstream separation point dependent on Besccs

Observations from a water-tunnel experiment (Bao& Dallmann, 2004, Aerospace Science and Technology)

- Re=2700: steady laminar separation bubble
- Re> 2700: bursting/vortex shedding
- The separated flow is filled with downwardsmoving vortexes
- New vortexes generated just downstream the separation line
- The angle of the separation line is constant in time
- The separation point is constant in time
- Mean-flow separation bubble defined only by appropriate time-averaging and spanwise-averaging

・ロット (雪) (日) (日)

Introduction	Models	Sharp step	Rounded step	Summary	Future work
Separatio	n point				

• $\bar{U} = 0$: Separation point, reattachment point

	Model	2.10 ²	2.10 ³	$2\cdot 10^4$	2 · 10 ⁵	2 · 10 ⁶
150x100	BOM	-	-	5.9	4.1	3.8
300x200	BOM	-	-	5.3	1.4	0.80
600x400	BOM	-	-	5.8	2.1	5.8 ^a
150x100	MITgcm	-	-	6.2	6.2 ^b	6.8
300x200	MITgcm	-	-	5.2	9.7	3.5^{b}
600x400	MITgcm	-	-	5.5	4.6	3.4

Table: Separation point *L*=8. ^{*a*} Two clock-wise eddies occur. ^{*b*} Negative velocities is observed at x = -7.0.

Introduction	Models	Sharp step	Rounded step	Summary	Future work

Reattachment point

	Model	2.10 ²	2.10 ³	$2\cdot 10^4$	2 · 10 ⁵	2 · 10 ⁶
150x100	BOM	-	-	21.2	17.6	17.0
300x200	BOM	-	-	15.4	8.15	13.0
600x400	BOM	-	-	18.0	11.0	10.3/18.4 ^a
150x100	MITgcm	-	-	16.1	16.7	17.3
300x200	MITgcm	-	-	16.4	14.6	13.7
600x400	MITgcm	-	-	16.5	13.3	12.2

Table: Reattachment point for *L*=8. ^{*a*} Two clock-wise eddies occur.

Introduction	Models	Sharp step	Rounded step	Summary	Future work
Bottom ve	elocities				

Figure: Horizontal bottom velocities. L=8 a) BOM, Re= $2 \cdot 10^2$, b) BOM, Re= $2 \cdot 10^4$, c) MITgcm, Re= $2 \cdot 10^2$, and d) MITgcm, Re= $2 \cdot 10^4$.

- Stationary flow Re=200
- Stationary separation point
- Fluctuating reattachment point

ъ

Introduction	Models	Sharp step	Rounded step	Summary	Future work
Vorticity					

Figure: Mean vorticity (12-24 h) and a snapshot of the vorticity (24 h) for a) BOM and b) MITgcm, $Re=2 \cdot 10^3$, 300x200 grid cells.

4 日

Introduction	Models	Sharp step	Rounded step	Summary	Future work
Vorticity					

Figure: Mean vorticity (12-24 h) and a snapshot of the vorticity (24 h) for a) BOM and b) MITgcm, $Re=2 \cdot 10^4$, 300x200 grid cells.

Vorticity	Introduction	Models	Sharp step	Rounded step	Summary	Future work
Vortiony	Vorticity	/				

Figure: Mean vorticity (12-24 h) and a snapshot of the vorticity (24 h) for a) BOM and b) MITgcm, $Re=2 \cdot 10^6$, 300x200 grid cells.

- The simulations represent both the laminar, transient, and turbulent regime
- Within the turbulent regime $K_{M/H} = 10^{-4} \text{ m}^2 \text{s}^{-1}$ gives the best result
- Rounded step:
 - Stagnant separation point
 - Fluctuation reattachment point
 - σ-coordinates: reduced height of reattachment zone
 - z-coordinates: more noise on the slope

- 3D simulations
- Include particles food access for cold water corals
- Extend to also study flow over a trench and a circular trench - pockmark shape
 - Suitable locations for cold water corals

Introduction

Models

Sharp step

Rounded ste

Summar

Future work

Thank you for your attention!

<=> <=></=>

