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✔ A scheme is said to be Total Variation Diminishing (TVD)
when it ensures that

TV n+1(y) ≤ TV n(y)

✔ The Total Variation TV n(y) of a dicrete solution for a
variable y is defined as

TV n(y) =
∑

i

∣

∣yni+1 − yni
∣

∣

where yni is the variable at time tn = n△t and location
xi = i△x
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✔ Monotonicity preserving

⊲ no new extremum can be created

⊲ the value of a local maximum (minimum) does not
increase (decrease)

✔ Second or higher order of accuracy in smooth part of the
solution

✔ Solution free from spurious oscillations around
discontinuities

✔ Do not produce too much diffusion
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TVD schemes developed for
∂y
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+ u

∂y
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= 0

∂Hy
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∂x
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⇒

=
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• conservative form
• easier to compute mass budget
• should not produce

- neither unreal extremum
- nor negative value

continuity

TVD ?
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Lax-Wendroff scheme equipped with a limiter φi+1/2

ỹni+1/2 = yni +
φi+1/2

2

(

1− νi+1/2

) (

yni+1 − yni
)

where















































νi+1/2 =
ui+1/2∆t

∆x

ui+1/2 =
(Hu)ni+1/2

Hn
i+1/2

Hn
i+1/2 =

Hn
i +Hn

i+1

2
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In the linear case

✔ φi+1/2 is usually chosen as

φi+1/2 = φ
(

ri+1/2

)

where ri+1/2 =
yni − yni−1

yni+1 − yni

✔ the limited Lax-Wendroff scheme is TVD if

φ
(

ri+1/2

)

≤ min
(

2ri+1/2, 2
)

provided that 0 ≤ ν ≤ 1

✔ Superbee limiter

φSuperbee(r) = max
{

0,min(2r, 1),min(r, 2)
}
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Advection of a square initial distribution on the rippled sea-floor (CFL=0.76) using a first order upwind scheme (dotted
line) and a supposedly TVD upwind/Lax-Wendroff scheme with superbee limiter (solid line), the light curve representing

the analytical solution. Spurious maxima are apparent in the snapshots of the concentration field (upper figure)
computed with the supposedly TVD upwind/Lax-Wendroff scheme. The total variation shows oscillations with both

advection schemes (lower figure).
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Harten (1983): A scheme is TVD if it can be written in the form

yn+1
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i− 1
2

(
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+ C
+

i+ 1
2
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±

i+ 1
2
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+

i+ 1
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+ C
−

i+ 1
2

≤ 1

Linear: 0 ≤ ν

[

1−
φ
i− 1

2
2
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]

+ ν
2
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φ
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r
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Snapshots of the coefficient C−

i−1/2
using a first order upwind scheme (upper figure) and an upwind/Lax-Wendroff

scheme with superbee limiter (lower figure). Since this coefficient is occasionally larger than unity, the TVD behavior of
the schemes cannot be guarantied using Harten’s theorem.
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✔ Upwind scheme is TVD if 0 ≤ C−

i− 1
2

= ν+
i− 1

2

≤ 1

✔ Lax-Wendroff scheme is TVD if:

⊲ use ν±
i− 1

2

as upwind rates for the LW fluxes

⊲ to ensure unicity of the flux at the interface, choose

νi−1/2 = max
(

ν+i−1/2, ν
−
i−1/2

)

⊲ ensure that
0 ≤ νi−1/2 ≤ 0.75
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✔ Classical: 0 ≤ C−
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⇓ Using Sweby’s method (1984) and provided that 0 ≤ ν ≤ 1
{

0 ≤ φi+1/2 ≤ min
{

2, 2ri+1/2

}

, for ri+1/2 > 0

φi+1/2 = 0, for ri+1/2 ≤ 0
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Advection of a square initial distribution on the rippled sea-floor using the original upwind/Lax-Wendroff scheme with
superbee limiter (solid line), using the modified scheme (dotted line) and using the generalized superbee limiter

(dashed-dotted line). A small time step of 15 s is used to satisfy the modified CFL condition. The snapshots of the
concentration field (upper figure) confirm that the modified scheme introduces the largest numerical diffusion while the
generalized superbee limiter is the less diffusive scheme. The Total Variation (lower figure) associated with the three

discrete solutions decreases monotonically.
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✔ Find the right form of coefficients C±

i± 1
2

in order to use

Harten’s theorem

✔ 8 arrangements of signs of 3 successive values of Hu give
conditions on their 3 relative limiters

✔ to obtain the set of conditions relative to a specific interface,
32 arrangements of signs of 5 successive values of Hu
have thus to be considered
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✔ Classical TVD schemes (linear advection) can lead to
non-TVD solution for the depth-integrated transport equation

✔ The TVD character can be recovered if

⊲ a modified CFL condition that takes into account the
local variation of H is satisfied

⊲ the TVD range is adapted to the specific
depth-integrated advection equation

⊲ A generalized superbee limiter can then be derived

✔ All developments can be generalized in the case of variable
velocity

✔ Applicable to 2D depth-integrated models or 3D models in
σ-coordinates, ...
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