Development of a finite-element, multi-scale model of the Mahakam Delta (Indonesia) JONSMOD 2010, 10-12 May 2010, Delft, The Netherlands

Sébastien Schellen^{1,3}, Maximiliano Sassi⁴, Bart Vermeulen⁴, Tuomas Kärnä^{1,3}, Eric Deleersnijder^{1,2}, Ton Hoitink⁴, Vincent Legat^{1,3}, Benjamin de Brye^{1,3}

¹ Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (IMMC), 4 Avenue G. Lemaître, B-1348 Louvain-la-Neuve, Belgium

² Université catholique de Louvain, Earth and Life Institute (ELI), Georges Lemaître Centre for Earth and Climate Research (TECLIM), 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium

³ Université catholique de Louvain, Georges Lemaître Centre for Earth and Climate Research (TECLIM), 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium

⁴ Wageningen University, Hydrology and Quantitative Water Management Group, Department of Environmental Sciences. Droevendaalsesteeg 4 Wageningen, Gld, The Netherlands.

Outline

Domain of interest

2 A finite element model

- A multiscale mesh
- Imposing bathymetry
- Imposing open boundary conditions
- Parametrisations
- 3 Validation of Water Levels
- Residual discharge in the delta averaged on May-June 2008
- 6 Modeling the salinity
- 6 Age of water in the delta
 - Conclusion

Domain of interest: the Mahakam River

A highly multi-scaled domain

The 1D-2D SLIM model

Second-generation Louvain-la-Neuve Ice-ocean Model¹

- Shallow-water equations
 - 2D depth-averaged in the shelf and the estuary
 - ► 1D cross-section-averaged in the fresh tidal rivers network
- P1-Discontinuous Galerkin Finite Element Method
- Time stepping
 - Explicit ($\Delta t \approx 1$ sec) of fully implicit ($\Delta t \approx 10$ min)
 - Non-linear system solved by the Newton-Raphson
 - Estimation of the Jacobian by finite differences
- With Discontinuous Galerkin, ILU preconditioning is sufficient to ensure the convergence of GMRES (Generalized minimal residual method)
- Tracer module with flexible reaction terms

¹www.climate.be/SLIM

1D model: bifurcations and connection with the 2D

- Inspired by Sherwin et al. (2003) for arterial systems
- Extension of a Riemann solver for 3 nodes
- Numerical fluxes derived from upwind variables computed assuming that
 - The caracteristic variables should take the upwind values
 - Mass is conserved
 - Momentum is conserved

- Implicit coupling between 1D and 2D elements
 - By cross-section average of the numerical fluxes

A multiscale mesh

72% of the elements are in 1.4% of the computational domain

Generated using GMSH www.geuz.org/gmsh

- $\Delta \propto \sqrt{gH}$
- $\Delta \propto$ distance to coast
- $N \approx 50\ 000\ {
 m triangles}$

A multiscale mesh

72% of the elements are in 1.4% of the computational domain

Generated using GMSH www.geuz.org/gmsh

- $\Delta \propto \sqrt{gH}$
- $\Delta \propto$ distance to coast
- $\Delta \propto || \boldsymbol{\nabla} \boldsymbol{H} ||^{-1}$
- $\Delta \propto$ delta channels width
- $N \approx 50\ 000\ {
 m triangles}$

A multiscale mesh

72% of the elements are in 1.4% of the computational domain

Imposing bathymetry in the Makassar Strait from GEBCO²

²https://www.bodc.ac.uk/data/online_delivery/gebco/

Imposing bathymetry in the Mahakam delta

Imposing open boundary conditions

Difficult near the delta

- \rightarrow Extending of the computational domain:
 - Downstream to the Makassar Strait
 - Open boundary conditions provided by a global ocean tidal model
 - Meteorological forcings imposed as a surface stress (wind + atm pressure)
 - Upstream to the limit of the tidal dominance and for the tributaries
 - Velocity imposed from measured discharges

Parametrisations

- The slope in the 1D part of the domain : $\frac{3m}{365000m}$
- The Chézy coefficient linked to the bottom friction : $C = \frac{R^{1/6}}{n}$ where
 - R is the hydraulic radius fixed to H in the 2D part and to Section/Wet Perimeter in the 1D part.
 - n results in an optimisation for this application and ranges between 0.023 in the outer delta and 0.017 in the rivers.

Location of the stations

Amplitude comparison

Phase comparison

Wavelet analysis

Wavelet analysis

Wavelet analysis

Residual discharge in the delta averaged on May-June 2008

Residual discharge in the delta averaged on May-June 2008

Modeling the salinity

Towards a 3D structure ?

Age

Water coming from the delta apex takes no longer than 7 days to reach the strait

Conclusion

- A multiscale model describing the Mahakam Land-Sea continuum is implemented from the Makassar Strait to the limit of the tidal influence
 - Implicit DG FEM
 - ▶ 2D (lakes-delta-strait) and 1D (the river and its tributaries)
- Perspectives
 - The validation is still in process and we need to perform validation with flow measurements.
 - Further numerical developments are required to take into account the particular ecosystem in the lakes area.