Investigation of the spreading and dilution of domestic waste water inputs into a tidal bay using the finite volume model FVCOM

Karsten Lettmann, Georg Meier, Gerd Liebezeit, Jörg-Olaf Wolff

ICBM
Carl von Ossietzky University,
Oldenburg, Germany
Location of study area

North Sea

Jade Bay

Germany
Input of waste water pollutants during heavy rain falls

discharge point
Photo of the discharge location
The FVCOM model

Finite volume model, (version 2.7), see e.g. Chen et al., 2006

horizontal: unstructured triangular grid
vertical: sigma-coordinates

some wetting and drying scheme, which is very important for our coastal application

vertical turbulence schemes: (Mellor-Yamada, k-ε-scheme)
horizontal schemes: constant eddy diffusivities or Smagorinsky para.

we adapted the sediment module to our application, which includes:
- sinking of particles
- some decay process of the particles/bacteria
- accumulation of particles in sea floor sediments
The FVCOM group proposes the commercial software module from SMS (Surface Water Model System), with which they had good experiences.

Instead we took some free software packages:

- BATTRI (Bilgili et al. 2006) which is a MATLAB frontend to TRIANGLE
- GMSH (Christophe Geuzaine and Jean-Francois Remacle)
 This tool provides good quality meshes

We checked mesh quality with the following criteria:
- Minimum interior angle is larger than 30°
- Maximum interior angle less than 130°
- Area change of adjacent triangles is less than 2
Checking mesh quality
Problems with simulation of sea surface elevation under tidal forcing

only M2 tidal forcing at open boundary

flat bottom to avoid problems due to topography

we tried to find critical regions based on the finite element mesh itself
The beginning of an instability
these kind of elements
“Solution“ to the problem

Why cause some of those „4-triangle“ configurations instabilities ?

Meanwhile there is an option in GMSH to avoid those configurations

Is it really necessary to avoid them?
Still open question
Input of pollutants
Problem with negative concentrations
Tried to solve problem by:

1) reduction of time step

2) monotone advection scheme (MPDATA)

3) simply cut-off negative concentrations

4) large horizontal background diffusivity to smooth concentration oscillations
Cuting-off negative values

Experiment with constant mass input over 1 hour starting after 1 hour.
Adding high horizontal background diffusion

Problem with the diffusion mechanism?
The change of a tracer at the central node of these control elements is calculated from the fluxes across the boundaries of the tracer control elements (TCE).
Diffusion on a triangle: an example

\[\frac{\partial T}{\partial t} = \nabla \cdot (A_h \nabla T) \]

\[A_h = 200 \text{ m}^2/\text{s} \]

initial conditions:

\[T_1 = 1.0 \]

\[T_2 = 0.0 \]

\[T_3 = 0.0 \]

no diffusive fluxes across the triangle sides

Implementation of the diffusive scheme of FVCOM in MATLAB
Explanation for the negative values

Due to the constant gradient over the whole triangle, there is a computed diffusive outflux from TCE3 to TCE2, although there is no "mass" inside TCE3 in the beginning.

Solution to the problem:

In FVCOM the outflux must be limited by the available total mass in a control element.
The used mesh
Validation of the hydrodynamic module

- Using surface elevation data from a nearby time series station
- Using trajectories of surface drifters

The tidal forcing at the open boundary was taken from the FES2004 tidal atlas (Lyard et al., 2006).
Model validation - surface elevation

Last Data

Where
- East Frisia
- Helgoland
- Bismarck
- North Sylt/North Frisia
- South Sylt/North Frisia
- Ferrybox Data
- Elbe Geesthacht
- Zingst/Baltic Sea
- Colon/Panama
- German Coast
- Worldwide
- Remote Sensing Data
- Chlorophyll from MERIS compared to Ferrybox
- All available timeseries data from buoys, piles and...
- some Parameters from different Places

Archive Data
- Langeoog Pile
- Elbe Mouth
- Odra Mouth/Baltic Sea
Trajectories of surface drifter

Cruises done by Christopher Dibke, student at ICBM
Discharge event in Feb. 2007

We simulated a large discharge event of about 17,000 m3 of waste water input over a time interval of about 2 hours shortly before high tide.

- two different bacteria classes:
 - a free swimming species,
 - sinking species fixed to the waste water particles,
 Constant sinking speed of about 0.1 mm/s.

Dying of bacteria within the sea water by a first order decay rate with a decay constant of 3.5e-6 s.
Dying curve of E. coli bacteria
Number of E. Coli bacteria at 28-Feb-2007 13:00:00 MESZ
Thank you!
Diffusion on a triangle

\[
\frac{\partial T}{\partial t} = \nabla \cdot (A_h \nabla T)
\]

\[
\int_{A_{TCE}} \frac{\partial T}{\partial t} \, dA = \int_{A_{TCE}} \nabla \cdot (A_h \nabla T) \, dA
\]

\[
A_{TCE} \frac{\partial T_n}{\partial t} = \oint_{\Omega_{TCE}} (A_h \nabla T) \cdot n \, ds
\]

\[
= \sum_i \int_{S_i} (A_h \nabla T) \cdot n \, ds
\]

\[
A_{TCE} \frac{\partial T_n}{\partial t} = \sum_i \Delta S_i \left[(A_h \nabla T) \cdot n \right]_{\text{center of side } S_i}
\]

How to approximate the gradient?
Approximation for the gradient

\[T(x, y) = \sum_{i=1}^{3} N_i(x, y) T_i \]

\[N_1(x, y) := \frac{1}{2A} (a_1 + b_1 x + c_1 y) \]
\[N_2(x, y) := \frac{1}{2A} (a_2 + b_2 x + c_2 y) \]
\[N_3(x, y) := \frac{1}{2A} (a_3 + b_3 x + c_3 y) \]

\[A = \frac{1}{2} [(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)] \]
\[a_1 = x_2 y_3 - x_3 y_2, \quad b_1 = y_2 - y_3, \quad c_1 = x_3 - x_2 \]
\[a_2 = x_3 y_1 - x_1 y_3, \quad b_2 = y_3 - y_1, \quad c_2 = x_1 - x_3 \]
\[a_3 = x_1 y_2 - x_2 y_1, \quad b_3 = y_1 - y_2, \quad c_3 = x_2 - x_1 \]

\[\frac{\partial T}{\partial x} = \frac{1}{2A} \sum_{i=1}^{3} \frac{\partial N_i}{\partial x} T_i = \frac{1}{2A} \sum_{i=1}^{3} b_i T_i = \text{const.} \]

\[\frac{\partial T}{\partial y} = \frac{1}{2A} \sum_{i=1}^{3} \frac{\partial N_i}{\partial y} T_i = \frac{1}{2A} \sum_{i=1}^{3} c_i T_i = \text{const.} \]