Numerical studies of dispersion due to tidal flow through Moskstraumen, northern Norway

Lynge B.K.^{1,2} · Berntsen J.³ · Gjevik B.¹

Department of Mathematics, University of Oslo¹ Norwegian Hydrographic Service² Department of Mathematics, University of Bergen ³

JONSMOD - 10.-12. May 2010

< ロ > < 同 > < 回 > < 回 >

Introduction-Motivation Numerical model Results Conclusion

Introduction-Motivation

< 一 →

- 2 Numerical model
- 3 Particle tracking

4 Results

(日)

Introduction - Motivation

- The objective was to investigate the sensitivity of the horizontal dispersion of particle pairs to the grid size Δx, Δy and stratification in a numerical ocean model
- Accurate model prediction of transports in complex current fields can be of considerable value for several practical purposes
 - oilspill
 - sea lice from fishfarming
 - pollutants
- Tidal currents dominates the current field in many coastal areas in Norway
- Tidal effects on dispersion and transports are hence of particular interest

< ロ > < 同 > < 回 > < 回 > < □ > <

The tidal current Moskstraumen in Lofoten area

- Our focus: horizontal relative dispersion of particle pairs in tidal currents
 - on a short time scale (one tidal cycle)
 - when small scale flow features are important
- The site for our investigation is the Moskstraumen Maelstrom outside Lofoten on the northern coast of Norway
- Moskstraumen is known for its strong tidal current (3-5 ms⁻¹) and whirlpools

・ 同 ト ・ ヨ ト ・ ヨ ト

Location of Moskstraumen and the model area

Model area

Amplitude and co-tidal lines for M_2 (major semi-diurnal tide)

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト -

Strong tidal current in Moskstraumen

SAR image (ERS1-SAT) (*Wahl* 1995)

Semi-major current axis for M_2 -tide)

< □ > < 同 >

Strong tidal current in Moskstraumen

Lynge B.K., Berntsen J., Gjevik B. Tidal dispersion in Moskstraumen

3 Particle tracking

4 Results

< ロ > < 同 > < 回 > < 回 > .

Bergen Ocean Model

- Bergen Ocean model (BOM)
- Three dimensional (x,y,z) *σ*-coordinate model
- Include non-linear terms, assume hydrostatic pressure and Boussinesq approximation
- Mode split used to split the 3-D velocity field into its baroclinic part and its depth integrated part

< ロ > < 同 > < 回 > < 回 > .

Bergen Ocean Model

- Horizontal grid resolution ranging from 50 to 800 meters $(\Delta x = \Delta y)$
- 10 equidistant σ -layers
- Boundary conditions: tidal elevation represented by the main diurnal constituent M₂ (from Bjørn Gjeviks tidal model
 - on 500 meters grid), imposed by FRS
- Simulations with both homogenous conditions and stratification

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Reynolds momentum equations

$$\begin{aligned} \frac{\partial u}{\partial t} + \vec{u} \cdot \vec{\nabla} u + w \frac{\partial u}{\partial z} - fv &= -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\partial}{\partial z} (A_v \frac{\partial u}{\partial z}) + F_x, \\ \frac{\partial v}{\partial t} + \vec{u} \cdot \vec{\nabla} v + w \frac{\partial v}{\partial z} + fu &= -\frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{\partial}{\partial z} (A_v \frac{\partial v}{\partial z}) + F_y, \\ \rho g &= -\frac{\partial p}{\partial z} \end{aligned}$$

 $\begin{array}{ll} \vec{u} = (u, v, w) & \text{Velocity field} \\ F_x, F_y & \text{Horizontal eddy viscosity terms (Smagorinsky)} \\ A_v & \text{Veritical viscosity coeffisient} \\ g & \text{Acceleration of gravity} \\ f & \text{Coriolis parameter} \end{array}$

< ロ > < 同 > < 回 > < 回 > < □ > <

4 Results

Lynge B.K., Berntsen J., Gjevik B. Tidal dispersion in Moskstraumen

< □ > < 同 >

Particle tracking

- Lagrangian tracers where released in the middle of each horizontal cell at 5 m depth
- Lagrangian tracers where advected passively with the flow over one M₂ period
- The relative horizontal dispersion is defined by : $r_{i,j} = (x_i(t) - x_j(t))^2 + (y_i(t) - y_j(t))^2$
- r²(t) has been calculated for a varying initial distance (δ) between the particles

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Mean relativ dispersion in Moskstraumen

- Mean relative horizontal dispersion is computed by:
- $R^2(t) = \frac{1}{P} \sum_{i \neq j} r_{i,j}^2(t)$,
- where P is number of particle pairs initially released inside a circle with radius 10 km

ヘロン 人間 とくほとくほど

Spatial variability of relative dispersion

Mean relativ dispersion $[km^2]$ for each grid cell after one M_2 cycle

Lynge B.K., Berntsen J., Gjevik B. Tidal dispersion in Moskstraumen

Mean relative dispersion in Moskstraumen

- Mean relative dispersion R²(T)(·10⁻⁶[m²]) after one tidal cycle (T)
- -calculated for different initial displacement of particles (δ)
- Larger $R^2(T)$ for smaller grid size Δx
- Relative difference gets smaller for larger δ

l	δ [m]						
Δx [m] 5	0 100	200	400	800	1600	2400	3200
50 12.7 100 200 400 800	787 18.915 15.580	27.517 24.525 14.755	38.964 37.187 27.010 11.589	56.257 54.683 44.983 23.118 5.689	81.186 79.980 71.437 45.051 15.036	104.540 98.009 92.568 65.133 26.928	125.955 111.842 107.611 84.470 38.455

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Mean relative dispersion $R^2(t)$ in Moskstraumen, fixed δ =800 m

Lyapunov- and power law exponent, $\delta = 800m$

- For analysing separation statistics
- The Lyapunov exponential model $R_L^2(t) \sim R^2(0) e^{2\lambda t}$
- The power law model $R_P^2(t) \sim R^2(0) + t^{c_1}$
- Estimate the Lyapunov exponent λ and the exponent c_1
- The table shows the sensitivity of λ and c_1 to grid size Δx for δ =800 m

Δx	δ	λ		<i>C</i> 1		
		strat	hom	strat	hom	
[<i>m</i>]	[<i>m</i>]	[<i>day</i> ⁻¹]	[<i>day</i> ⁻¹]			
50	800	4.260	3.932	1.611	1.591	
100	800	4.171	4.135	1.606	1.604	
200	800	4.151	4.114	1.579	1.571	
400	800	3.518	3.895	1.538	1.541	
800	800	2.079	2.610	1.415	1,441	

Lynge B.K., Berntsen J., Gjevik B.

Tidal dispersion in Moskstraumen

The Lyapunov exponent λ as a function of Δx and δ

- The rate of growth of mean relative dispersion increases with finer grid resolutions and as $\delta \rightarrow 0$
- Convergence of λ for the different Δx as δ increase

The sensitivity of $R^2(t)$ to the effects of stratification

 $\Delta x = \delta = 100 m$

 $\Delta x = \delta = 800 m$

- R²(t) (and λ) tend to be somewhat larger under stratified conditions for smaller grid size
- While for larger Δx stratification tend to act against dispersion

Density field

Density field along a cross-section (RHOSEC) at maximum outflow, for $\Delta x = 800 \text{ m}$ and $\Delta x = 50 \text{ m}$

Lynge B.K., Berntsen J., Gjevik B. Tidal dispersion in Moskstraumen

- 2 Numerical model
- 3 Particle tracking

4 Results

(日)

- The horizontal mean relative dispersion in Moskstraumen, on a time scale of one tidal cycle (*T*), is highly dependent on grid resolution Δx
- The finer grid resolutions gives the largest R²(T) and hence also largest growth of R²(t) shown by the Lyapunov exponet λ and the power law exponent c₁
- We need to resolve the small scale eddies and complexity of the current field with grid resolution of at least 50-100 m
- Dispersion is less sensitive to stratification than to grid resolution for the range of grid sizes applied here

< ロ > < 同 > < 回 > < 回 > < □ > <

Conclusion

- Simulations with stratification gives somewhat increased dispersion for the finer grid resolutions
- The increased dispersion may be explained by increased vertical mixing due to stratification, resolved for the finer grid sizes
- With higher spatial resolution small scale features, such as internal waves and flow separation, may be represented
- There are still unresolved processes that may be important for the small-scale mixing and the dispersion of particles
- In future studies with smaller grid size, it may be necessary to include non-hydostatic pressure effects

・ 戸 ト ・ ヨ ト ・ ヨ ト