Improving Wave Boundary Conditions for Nearshore Delft3D Simulations

Jay Veeramony⁽¹⁾, David Walker⁽²⁾, Kacey Edwards⁽¹⁾, Larry Hsu⁽¹⁾

⁽¹⁾ Naval Research Lab, Stennis Space Center, USA
⁽²⁾ SRI International, Michigan, USA

Why improve boundary conditions?

- Spectral wave models (WaveWatch III/WAM/SWAN) used in nested mode to provide forecasts of wave heights, periods, and directions
 - In hindcast mode, re-analyzed wind is used
- Wave conditions used by Delft3D (circulation/transport model)
 - predict magnitude & directions of currents

The Problem

- Errors in wave condition at boundary cause errors in wave heights (H) closer to shore
- Currents in the near-shore are driven by gradients in wave stress (proportional to H²) => very sensitive to the wave conditions

Wave data assimilation: Background

- Optimal Interpolation methods (e.g. Voorrips et al. [1997], Hasselmann et al. [1994]
 - Interpolation of integral parameters (H_s, T_p) or individual wave systems (wind sea, swell) at observation locations and times

Advantage:

Computationally inexpensive

Disadvantages:

• No model input

Wave Data Assimilation: Walker (2001)

Developed adjoint to SWAN governing equations and combined with the full

SWAN model to create assimilation system

Model equation:

$$\frac{\partial N}{\partial t} + \frac{\partial c_x N}{\partial x} + \frac{\partial c_y N}{\partial y} + \frac{\partial c_\sigma N}{\partial \sigma} + \frac{\partial c_\theta N}{\partial \theta} = \frac{S_{tot}}{\sigma}$$

$$S_{tot} = S_{ds,b} + S_{ds,w} + S_{ds,br} + S_{in} + S_{nl}$$

Ν	;	Wave action $(E(x,s)/\sigma)$	
X	÷	t,x,y	
S	÷	σ, θ	
$C_{x}, C_{v}, C_{\sigma}, C_{\theta}$	÷	Propagation speed	
S _{tot}	;	Source/Sink terms	

Assimilation methodology

GOAL: Estimate wave spectrum *E(x,s)* in the region which minimizes error compared to a set of observed spectra

- Constraints to create adjoint:
- •Stationary in time
- •Most error is propagated into the domain
- •Boundary spectrum is spatially uniform

Develop objective function that reflects the constraints

Assimilation methodology

Objective function:

$$J = \int_{\mathcal{R}} \int_{\mathcal{S}} \left\{ \frac{1}{M} \sum_{i=1}^{M} (E - \widehat{E}_i)^2 \delta(\mathbf{x} - \mathbf{x}_i) + A \,\widetilde{\nabla} \cdot (\widetilde{\mathbf{C}}N) \right\} d\mathbf{s} \, d\mathbf{x} + \phi \int_{\mathcal{S}} E_b^2 \, d\mathbf{s} d\mathbf{x}$$

- M : Number of observation locations
- E(**x**,**s**) : Energy spectrum
- A(**x**,**s**) : Lagrange multiplier adjoint wave action spectrum

Penalty on the control variable (second integral) ensures unique solution (Bennet and Miller, 1991)

Minimize J with respect to E, A (first variation of J vanishes)

Assimilation methodology

Collecting and organizing:

Cost function (diagnostic):

$$J = \frac{1}{M} \sum_{i=1}^{M} \int_{\mathcal{S}} \left[E(\mathbf{x}_i, \mathbf{s}) - \widehat{E}_i(\mathbf{s}) \right]^2 d\mathbf{s} + \phi \int_{\mathcal{S}} E_b(\mathbf{s})^2 d\mathbf{s}$$

Forward model (Stationary SWAN):

$$\widetilde{\nabla} \cdot (\widetilde{\mathbf{C}}N) = \frac{S_{tot}}{\sigma}$$

Adjoint SWAN model:

$$\widetilde{\mathbf{C}}' \cdot \widetilde{\nabla} A = -\frac{2\sigma}{M} \sum_{i=1}^{M} (E - \widehat{E}_i) \delta(\mathbf{x} - \mathbf{x}_i)$$

Gradient of *J* (to calculate corrected boundary spectrum):

$$\frac{\partial J}{\partial E_b} = \int_{\partial \mathcal{R}} \frac{A}{\sigma} \ \widetilde{\mathbf{C}} \cdot \widehat{n} \ d\xi + 2\phi E_b$$

Application of algorithm

Test area – Santa Rosa Island, FL, Jan 2009

- Mild wave conditions: Typical significant wave height < 1.5m
- Waves enter domain from southeast

Buoy Type (name)	Water depth (m)	Duration of Operation	
Triaxys #1 (TA1)	5.3	Jan 27, 5PM - Jan 31, 7PM	
Sentry ADCP (SAB)	10.2	Jan 27, 3PM - Feb 5, 9AM	
Triaxys #2 (TA2)	17.8	Jan 28, 1AM - Jan 29, 5AM	
Sentry (SIB)	20.6	Jan 27, 2PM - Feb 5, 9AM	

- Data from TA1 used to correct boundary conditions
- Initial guess of zero energy in the domain

Verification of assimilation system

- Use synthetic data to generate wave conditions in domain using full SWAN model
- Take results at assimilation location as "observed spectra"
- Using "observed spectra", try to recreate the boundary spectra
- Compare results using recreated boundary spectra to that from using the synthetic data at the boundary

Setup of synthetic data

- Pierson-Moskowitz spectrum at boundary
- Three wave conditions:

	Mild	Moderate	Severe
U ₁₀ (m/s)	5	10	12
Mean Dir	100	100	100
H _{sig} (m)	0.6	2.1	3.2

- Two scenarios each in assimilation system with & without winds in the domain for forward run
- Number of frequencies: 33 Number of directions: 72

% errors in H_{sig}

Moderate, with wind

Severe, with wind

% errors in T_{m}

% errors in θ_{m}

Results at assimilation location

Comparison of averaged quantities at the assimilation location – model results (blue line) from the full forward model (SWAN) with the corrected boundary conditions

Results nearshore

Comparison of averaged quantities at the other nearshore location – model results (blue line) from the full forward model (SWAN) with the corrected boundary conditions

Results offshore

Comparison of averaged quantities at the offshore location – model results (blue) from the full forward model (SWAN) with the corrected boundary conditions

Results of wave spectra

Comparison of spectra at the different locations – smallest difference in averaged quantities (left), significant difference in averaged values

- Adjoint technique used to correct boundary conditions works well in improving predictions in the entire region
- Agreement degrades as distance between assimilation location and comparison point increases – interactions and sources and sinks ignored
- Data at assimilation location(s) have to be influenced by the conditions at the boundary

