Towards a complete study of water renewal timescales of the Scheldt Estuary

Benjamin de Brye¹, Anouk de Brauwere^{1,2}, Eric Deleersnijder^{1,3}

1 Université catholique de Louvain (UCL), Institute of Mechanics, Materials and Civil Engineering (iMMC), G. Lemaître Centre for Earth and Climate Research (TECLIM)

2 Vrije Universiteit Brussel (VUB), Analytical and Environmental Chemistry
3 Université catholique de Louvain (UCL), Earth and Life Institute (ELI), G.
Lemaître Centre for Earth and Climate Research (TECLIM)

To define the renewal timescales of a water parcel in an estuary, you need:

- To define the estuary
- A water parcel (location, time)

To define the renewal timescales of a water parcel in an estuary, you need:

To define the estuary

2

A water parcel (location, time)

To define the renewal timescales of a water parcel in an estuary, you need:

- To define the estuary
- A water parcel (location, time)

Age of the fresh water

is the time elapsed since the water parcel left the upstream boundary = $t(\rightarrow)$

Residence time of a water parcel

is the time taken by the water parcel to leave for the first time the estuary = $t(\sim)$

Exposure time of a water parcel

is the total time spent by the water parcel inside the estuary = $t(\rightarrow) + t(\rightarrow)$

Age of the fresh water

is the time elapsed since the water parcel left the upstream boundary = $t(\rightarrow)$

Residence time of a water parcel

is the time taken by the water parcel to leave for the first time the estuary = $t(\sim)$

Exposure time of a water parcel

is the total time spent by the water parcel inside the estuary = $t(\rightarrow) + t(\rightarrow)$

Age of the fresh water

is the time elapsed since the water parcel left the upstream boundary = $t(\rightarrow)$

Residence time of a water parcel

is the time taken by the water parcel to leave for the first time the estuary = $t(\sim)$

Exposure time of a water parcel

is the total time spent by the water parcel inside the estuary = $t(\rightarrow) + t(\rightarrow)$

How to compute these timescales

Residence time and exposure time

- Lagrangian particles
 - Large numbers of particles (to cover diffusion, time and space variabilities)
- 2 Box division
 - Tracer initially in several boxes + forward advection-diffusion equation
 - Gives averaged residence time per box
 - Only possible for a small number of boxes
- ORT Theory (www.climate.be/CART)
 - One backward advection-diffusion equation

CART Theory (www.climate.be/CART)

Two forward advection-diffusion equations

How to compute these timescales

Residence time and exposure time

- Lagrangian particles
 - Large numbers of particles (to cover diffusion, time and space variabilities)
- 2 Box division
 - Tracer initially in several boxes + forward advection-diffusion equation
 - Gives averaged residence time per box
 - Only possible for a small number of boxes
- ORT Theory (www.climate.be/CART)
 - One backward advection-diffusion equation

Age

CART Theory (www.climate.be/CART)

Two forward advection-diffusion equations

Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM)

http://www.climate.be/SLIM

- Shallow water equations
- Discontinuous Galerkin Finite Element Method (DG-FEM)
- 1D, 2D and 3D models
- Fully implicit time integration
- Implicit wetting-drying
- Coupling 1D/2D

Application: the Scheldt Estuary

Application: the Scheldt Estuary A highly polluted macrotidal estuary in the Netherlands and Belgium

Hydrodynamics Validation of the elevation

Salinity Validation of a passive tracer

logo

Recycling the hydrodynamics

- Downstream bnd: Only the M2 tide
- Upstream bnd: Three constant discharges scenarios:
 - Q = mean situation
 - 2Q = winter situation
 - Q/2 = summer situation

Domain extension

- Hydrodynamics: sea + estuary + rivers
- Residence time: estuary
- Exposure time: sea + estuary + rivers
- Age: estuary

Recycling the hydrodynamics

- Downstream bnd: Only the M2 tide
- Upstream bnd: Three constant discharges scenarios:
 - Q = mean situation
 - 2Q = winter situation
 - Q/2 = summer situation

Domain extension

- Hydrodynamics: sea + estuary + rivers
- Residence time: estuary
- Exposure time: sea + estuary + rivers
- Age: estuary

Residence time Tidally averaged, Mean situation (Q)

Residence time Longitudinal projection

 Tidally-averaged residence time

 M2 amplitude of the residence time

Exposure time Longitudinal projection

 Tidally-averaged exposure time

 M2 amplitude of the exposure time

Exposure time M2 amplitude, Mean situation (Q)

de Brye, de Brauwere and Deleersnijder Renewal timescales in the Scheldt Estuary

Effect of the tide Tidally-averaged exposure time. Mean situation

- 0D flushing time $= \frac{V}{Q} \left(1 \frac{S_m}{S_0}\right) = \frac{2 \times 10^9 \text{ m}^3}{120 \text{ m}^3/\text{s}} = 190 \text{ days}$
- The timescales are 2 times smaller with the tide
- The Stokes drift is important

Age of renewal water Sea water + river water

- Age and residence time are complementary
- Zero-D approximations overestimate the timescales
- When the tide is neglected, the timescales increase by a factor of 2
- The residence time/exposure time depends on when the particle is released (high tide/low tide)
- The difference can reach 20 days at 10 km from the mouth
- It is necessary to resolve the tide

- www.climate.be/SLIM
- www.climate.be/CART
- www.climate.be/TIMOTHY