Assessment of an oxygen prognosis model for the North Sea - Baltic Sea transition zone

Lars Jonasson¹², Niels K. Højerslev², Zhenwen Wan¹ and Jun She¹

- 1. Danish Meteorological Institute
- 2. University of Copenhagen, Niels Bohr Institute

May 12, 2010

Table of contents

- Introduction
 - Study Area
 - Oxygen depletion in the North Sea Baltic Sea transition zone
 - Challenges in oxygen modelling
- 2 Model description
 - Physical model
 - Oxygen model
- 3 Model assessment
 - Method
 - Salinity and temperature
 - Oxygen
 - Oxygen depleted area
- (4) Process studie
- Conclusions

Introduction

Study Area

Figure from Kristine S. Madsen PhD thesis

Oxygen depletion in the North Sea - Baltic Sea transition zone

Oxygen depletion: $o_2 < 63 \text{ } mmol/m^3$

Oxygen deficiency: $o_2 < 126 \text{ } mmol/m^3$

Figure from NERI homepage

Challenges in oxygen modelling

- We need an accurate description of the physical processes, ie. vertical mixing and advection
- A good estimate of the biological production
- The link between production, export production and oxygen consumption is not completely understood

We are modelling the uncertain biogeiochemical processes as simple as possible while a state-of-the-art model is used for the physical processes

Model description

The physical model: DMI-cmod

Outer boundary of the coarse domain: 6nm hor. resolution, 50 vertical layers

Nested fine domain 1nm hor. resolution, 52 vertical layers

- Hourly met forcing from the atmospheric model DMI-HIRLAM
- Climatological field of S & T and sea level elevation at outer lateral B.C
- River run off at inner lateral boundaries
- Included sea ice model
- k- ω turbulence model

Oxygen model

Parameterization

- Oxygen flux through sea surface
- Pelagic sink
- Benthic and sediment sink applied at the bottom layer
- $R_i = \mu_i Q_{10}^{\frac{T-T_{ref}}{10}} \frac{O_2}{k_i + O_2}$

Domain

- Oxygen module only runs in the fine domain and BS
- Prescribed boundary condition for O_2 in Northern Kattegat

Model assessment

Model requirement

In order to assess a model we must define a target definition or model requirement, otherwise the model can not be validated nor invalidated

→ Validation is subjective!

- The purpose of the model is to simulate oxygen depletion events in the NS-BS transition zone
- A model requirement should be that the errors is not larger than the definition of oxygen depletion
- Ideally the model should be assessed at the time and place that oxygen depletion occurs, that is the autumn and in the bottom

Visual comparison

- Model output is compared against maps of oxygen depletion areas
- No quantitative results

Visual comparison

- Model output is compared against maps of oxygen depletion areas
- No quantitative results

Time series analysis

- Model results are compared against observation for 2 stations
- Easy to visualize errors but...
- Gives no information about spatial distribution of the error

Visual comparison

- Model output is compared against maps of oxygen depletion areas
- No quantitative results

Time series analysis

- Model results are compared against observation for 2 stations
- Easy to visualize errors but...
- Gives no information about spatial distribution of the error

Spatial validation

- All available data in the region is collected for the years 2002-2006
- Model-observation pars are collected for the bottom water
- Statistical measures are computed for the autumn month and gathered into a grid

Assessment of the physical model

Model observation comparison for Great Belt

Assessment of the oxygen model

Spatial validation

Validation during aug-oct 2002-2006 at depth below 15m

Units in [mmol O2/m3]

n: 3149

AAE : 38

bias : − 8

RMSD : 53

corr : 0.74

Oxygen depleted area

Observed oxygen depletion (figures from NERI webpage)

Model results

Process studies

- Interannual variations in autumn wind vs oxygen conditions
- Impacts of advected North Sea water on oxygen concentrations
- Influence of topography on oxygen consumption

Conclusions

- The North Sea Baltic Sea transition zone suffers from seasonal hypoxia because of a highly stratified water column and increased nutrient inputs
- Presented here is a simple oxygen consumption parameterization coupled to a 3d circulation model
- A quantitative assessment of the model shows that it is able to predict the oxygen depletion events
- The interannual variations in oxygen conditions in this region is to a large extent governed by physical processes

Thank you