

15th JONSMOD Workshop, Delft May 10-12, 2010

Water and ecological quality in the Aljezur coastal stream (Portugal)

Marta Rodrigues* Anabela Oliveira Martha Guerreiro André B. Fortunato Henrique Queiroga

© LNEC 2006

Outline

- > The Aljezur Coastal Stream
- > Model Description
 - Hydrodynamic Model SELFE
 - Fecal Contamination Model
 - Ecological Model
 - o Oxygen Cycle
- > Application to the Aljezur Coastal Stream
- > Final considerations and future work

The Aljezur Coastal Stream

- > Southwest coast of Portugal
- > Natural Park of the Sudoeste Alentejano and Costa Vicentina; classified in the Natura 2000 Network and IBA (Important Bird Area)
- > Recreational activities (Amoreira beach)

Objectives

- Study the effects of the inlet bathymetric changes in the water and ecological quality of the Aljezur coastal stream
- > Extend and validate a water quality and ecological model

5

Model Description

SELFE **Near Field Fecal** Model **Contamination** Model **Ecological Model – ECO-SELFE**

S-levels

Z-levels

Hydrodynamic Model - SELFE

> SELFE (Zhang and Baptista, 2008):

- Computes the free-surface elevation and the 3D velocity, salinity and temperature fields
- Unstructured grids (horizontal)
 Hybrid S-Z coordinates (vertical)
 Instructured grids (horizontal)
 Nz
 Nz
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z
 Z</l
- User-defined tracer transport module:

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z} = \frac{\partial}{\partial z} \left(\kappa \frac{\partial C}{\partial z} \right) + F_c + \Lambda C$$

Sources and sinks term

Fecal Contamination Model

Ecological Model

> Model extended from EcoSim 2.0 (Bisset et al., 2004):

- EcoSim 2.0 includes the C, N, P, Si and Fe cycles
- Zooplankton simulation (formulation developed from Vichi et al. 2007 and based on Leandro et al. 2006 studies in the Ria de Aveiro)
- Oxygen cycle (formulation developed from Vichi et al. 2007)

State Variables

Zooplankton

Phytoplankton Bacterioplankton Dissolved Organic Matter Particulate Organic Matter Inorganic Nutrients Dissolved Inorganic Carbon Dissolved Oxygen Chemical Oxygen Demand **Ecological Model**

© LNEC 2006

Oxygen Cycle Dissolved Oxygen Sinks Sources Zooplankton, phytoplankton and **Gross primary production** bacterioplankton respiration Reaeration Nitrification **Pelagic chemical reactions Phytoplankton Bacterioplankton** respiration respiration **Nitrification** $\Lambda DO = \Omega_{C}^{O} \sum_{i} \left(\mu_{r_{i}} PC_{i} - respP_{i} \right) - \Omega_{C}^{O} \sum_{i} respZ_{i} - \Omega_{C}^{O} f_{B} respB + reaer - \Omega_{N}^{O} AtoN - \Omega_{C}^{O} PC_{i} PC_{i} - respP_{i} \right) - \Omega_{C}^{O} \sum_{i} respZ_{i} - \Omega_{C}^{O} f_{B} respB + reaer - \Omega_{N}^{O} AtoN - \Omega_{C}^{O} PC_{i} PC_{i} - respP_{i} \right) - \Omega_{C}^{O} \sum_{i} respZ_{i} - \Omega_{C}^{O} f_{B} respB + reaer - \Omega_{N}^{O} AtoN - \Omega_{C}^{O} PC_{i} PC_{i} - respP_{i} \right) - \Omega_{C}^{O} \sum_{i} respZ_{i} - \Omega_{C}^{O} PC_{i} PC_{i} - respP_{i} PC_{i} - \Omega_{C}^{O} PC_{i} PC_{i} - respP_{i} PC_{i} - respP_{i} PC_{i} - \Omega_{C}^{O} PC_{i} PC_{i} - respP_{i} PC_{i} PC_{i} - respP_{i} PC_{i} PC_{i} - respP_{i} PC_{i} PC_{i$ $\frac{1}{\Omega_0^S}COD$ COD **Zooplankton Reaeration at** Gross primary respiration the surface boundary production

Dissolved Oxygen

- Phytoplankton Growth: $\mu_{r_i} = \left[\min(\mu_{LI_i}, \mu_{NI_i}, \mu_{PI_i}, \mu_{SI_i}, \mu_{FI_i})\right] PC_i$
- Phytoplankton Respiration: $respP_i = b_{Pi}Q_{Pi}\frac{T-10}{10}PC_i + \gamma_{Pi}(\mu_{r_i}PC_i - e_iPC_i)$
- Zooplankton Respiration: $respZ_{I} = b_{ZI}Q_{ZI}\frac{T-10}{10}ZC_{I} + (1 - \beta_{ZI})(1 - \eta_{ZI})\mu_{z_{-}I}ZC_{I}$
- Bacterioplankton Respiration: $respB = b_B Q_B BC + \left[1 - GGE_C + GGE_C^O(1 - f_B)\right]\rho_B$
- Nitrification

$$AtoN = Nit Q_N \frac{T-10}{10} \left(\frac{DO}{DO + K_{s_Nit}} \right) NH_4$$

• Reaeration reaer = $K_{reaer} (DO_{sat} + DO_w - DO)$

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

 μ – growth rate (d⁻¹) *b* - basal specific respiration rate (d⁻¹) Q - temperature coefficient (nd) T - water temperature (°C) y - fraction of assimilated production (nd) e - excretion rate (d⁻¹) β - excreted fraction of uptake (nd) *n* - assimilation efficiency (nd) GGE_c - growth efficiency (nd) **GGE**_{co} - decrease in growth efficiency under anoxic conditions (nd) f_B - oxygen regulating factor (nd) $\rho_{\rm B}$ - bacterioplankton uptake *Nit* - specific nitrification rate (d⁻¹) $K_{\rm s Nit}$ – half-saturation for the nitrification (mmol O₂.m⁻³) K_{reaer} - reaeration coefficient (m.d⁻¹)

Oxygen Cycle

BioToy Test Case

- Horizontal grid:49 nodes and 72 elements
- > Vertical grid: 10 S levels
- > All boundaries closed

Surface reaeration

Application to the Aljezur Coastal Stream

- > Four field campaigns: May/2008, September/2008, May/2009 and September/2009
 - > Measurements of:
 - inlet and beach bathymetry
 - water levels
 - current velocity
 - salinity
 - temperature,
 - dissolved oxygen
 - ammonium, nitrate, phosphate
 - and silicate
 - chlorophyll a
 - fecal coliforms and enterococcus

Model Setup

Hydrodynamics – Wind and River Flow

September/2008

River Flow = $0.03 \text{ m}^3/\text{s}$

Hydrodynamics – May/2008

Salinity – May/2008

River Flow = $0.2 \text{ m}^3/\text{s}$

> Salt wedge limit - sensitivity to the river flow

Hydrodynamics – Sept./2008

Fecal Contamination – May/2008

> Sensitivity to the decay rate (0.15 m³/s river flow, WINDGURU wind)

Fecal Contamination – Sept./2008

> Sensitivity to the decay rate (0.03 m³/s river flow, WINDGURU wind)

Dissolved Oxygen

May/2008

September/2008

Chlorophyll a (mg/l)- 11/September/2008

Final considerations and future work (I)

- > Validation of the model
 - main difficulties associated with the computational times (use of the parallel model)
- > Hydrodynamic model:
 - able to represent the main circulation patterns in the Aljezur coastal stream
 - improvement of the atmospheric forcing
- > Fecal contamination model:
 - able to represent the main variations upstream
 - downstream, results suggest the existence of an additional source of microorganisms, namely the salt marshes

 tests to the formulations for the fecal microrganisms decay - derived from the laboratory work

Final considerations and future work (II)

> Ecological model:

able to represent the dissolved oxygen changes in May/2008
 improvement of the atmospheric forcing

> Implementation of the near field model

> Tests with scenarios – effects of the inlet bathymetric changes on the water and ecological quality of the stream Water and ecological quality in the Aljezur coastal stream (Portugal)

Thank you for your attention!

Acknowledgments

Participants in the field campaigns:

- R. Taborda, C. Andrade, C. Freitas, A.M. Silva, C. Antunes (Faculdade de Ciências de Lisboa)
- P. Freire, L. David, J. Menaia, R. Capitão, C.J.E.M Fortes, L.S. Pedro, J. Vale, A. Nahon, D. Neves, C. Zózimo, L. Pinheiro, X. Bertin and V.Napier (LNEC)
- A. Cravo, M. Rosa, C. Monteiro, S. Cardeira and C. Loureiro (Universidade do Algarve)

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÈNCIA, TECNOLOGIA E ENSINO SUPERIOR

- PhD Fellowship SFRH/BD/41033/2007
- Project MADyCOS PTDC/ECM/66484/2006

LUSO-AMERICAN

FOUNDATION

- Project BGEM - Towards operational forecasting of ecosystem dynamics: benchmarking and grid-enabling of an ecological model © LNEC 2006

Oxygen Cycle

• Denitrification

$$AtoDenit = Denit \left[\frac{1}{M} \Omega_{C}^{0} (1 - f_{B}) respB \right] NO_{3}$$
• Reoxidation

$$reox = reox _COD \ Q_{COD} \frac{T-10}{10} \frac{DO}{DO + K_{S}_COD} COD$$

Denit - specific denitrification rate (d⁻¹) M - reference anoxic mineralization rate (mmol O_2 .m⁻³.d⁻¹) Ω - stoichiometric coefficient (mmol O_2 .mmol C⁻¹) b - basal specific respiration rate (d⁻¹) f_B - oxygen regulating factor (nd) Q - temperature coefficient (nd) T - water temperature (°C) reox_COD_{reaer} - reoxidation rate (d⁻¹) K_{s_COD} - half-saturation for the reoxidation (mmol O_2 .m⁻³)

Dissolved Oxygen Data

May/2008

September/2008

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

Near Field Model

> Baseado no modelo RSB:

• calcula o comprimento do campo próximo, a largura, a espessura e a elevação da pluma e a diluição mínima no campo próximo

• assume-se uma distribuição Gaussiana no campo próximo

X_i – comprimento do campo próximo

w₀ – largura da pluma no campo próximo

h_e – espessura da pluma no campo próximo

z_m – elevação da pluma no campo próximo

S_m diluição mínima