OpenMl Series OpenMl

The OpenMI Document Series

Part C - the org.OpenMI.Standard

Interface specification
For OpenMI (Version 1.4)

Title OpenMI Document Series: Part C - the org.OpenMI.Standard
interface specification for the OpenMlI (version 1.4)

Editor Peter Gijsbers, WL | Delft Hydraulics, Delft, The Netherlands

Authors Jan Gregersen, DHI Water and Environment, Harsholm, Denmark

Stefan Westen, HR Wallingford Group, Wallingford, UK
Stef Hummel, WL | Delft Hydraulics, Delft, The Netherlands
Rob Brinkman, WL | Delft Hydraulics, Delft, The Netherlands

Document production

Peter Gijsbers, WL | Delft Hydraulics, Delft, The Netherlands

Current version V14

Date 21/05/2007

Status Final © The OpenMI Association

Copyright All methodologies, ideas and proposals in this document are the

copyright of the OpenMI Association. These methodologies,
ideas and proposals may not be used to change or improve the
specification of any project to which this document relates, to
modify an existing project or to initiate a new project, without first
obtaining written approval from the OpenMI Association who
own the particular methodologies, ideas and proposals involved.

Acknowledgement

This document has been produced as part of the OpenMl-Life
project.

The OpenMlI-Life project is supported by the european
Commission under the Life Programme and contributing to the
implementation of the thematic component LIFE-Environment
under the policy area "Sustainable management of ground water
and surface water managment" Contract no : LIFEO6
ENV/UK/000409.

The first version of this document has been produced as part of
the HarmonlT project; a research project supported by the
European Commission under the Fifth Framework Programme
and contributing to the implementation of the Key Action
“Sustainable Management and Quality of Water” within the
Energy, Environment and Sustainable Development. Contract
no: EVK1-CT-2001-00090.

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Preface

OpenMI stands for Open Modeling Interface and aims to deliver a standardized way of linking of
environmental related models. This document describes the standardized OpenMI interface
specification in detail. It is the third in the OpenMlI report series, which specifies the OpenMI interface
standard, provides guidelines on its use and describes software facilities for migrating, setting up and
running linked models.

Other titles in the series include:
Scope

Guidelines
org.OpenMl.Standard interface specification (this document)
org.OpenMI.Backbone technical documentation

org.OpenMI Development Support technical documentation

nmmoow>

org.OpenMl.Utilities technical documentation

The interface specification is intended primarily for developers. For a more general overview of the
OpenMlI, see Part A (Scope).

The official reference to this document is:

OpenMI Association (2007) The org.OpenMl.Standard interface specification. Part C of the OpenMI
Document Series

Disclaimer

The information in this document is made available on the condition that the user accepts
responsibility for checking that it is correct and that it is fit for the purpose to which it is applied.

The OpenMI Association will not accept any responsibility for damage arising from actions based upon
the information in this document.

Further information

Further information on the OpenMI Association and the Open Modelling Interface can be found on
http://mwww.OpenMl.org.

Page 3 of 79

http://www.OpenMI.org.

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Table of contents

PrEfACE ... 3
TADIE Of CONLENES ...ttt ettt et e e e e s kbbb e e e e e e e s s e a b bbb e e e e e e e e s sanbbbbeeeeaens 5
LISt Of fIQUIES . 7
(IS o) = o] [T T TP UOPPPPPPTT 7
R Vo1 1 (oo (1Tt i o] o D TP TUPPPPPPTTT 9
R Y = - T <o | {0 11 o S 9
1.2 Overall architeCture and |AYENNGuuuuueeeuirriiiieieieieeieeereeeeer e 10
1.3 DOCUMENE SITUCTUIE......tuuiiiee ettt e et e e e e e e e e e e e e 10
1.4 Readership and eXPected EXPEITISEuuuuuuuruuurrriririiriirerrrrerrrrrrrrrrrrrrerrrrrr 10

2 OpenMI arChiteCtUIE: CONCEPLS......iiiiiiiiiiiiiiiiieeee e 13
P28 R [1 (o o [0 Tox 1o] o PO PP TP TTTOUPPPPPRPRPN 13
2.2 Software perspective: Define, Configure, Deploy, EXECULEcooeevveiiiiiiiii 13
2.3 DaAt@ AEfINITIONueiiiiie ettt e e e e e e e e e r e e e e e e e aan 14
PR T R V1V £ T TP PR PP PP TUPUPPPRPTTN 14

P2 3 V1Y 1= o PR SR 15
P28 TR BV o - | PRSP RRT 15
2.314 VAlUBS....ceeeeeee et e e e et e e e e b e e e e e e e aaa 15
P2 TS T o [0 PP 15

2.4 Meta data defining potentially exchangeable data..................ccooc i, 16
2.5 GENEIC MOUEI BCCESS. .. . utiieiiiieee ittt e e e e e e sttt e e e e e e s s e aabbbbeeeeaaaeaaanes 16
P2 T R VAV A= Vo] o T T I =T T= o3 YA oo Yo L= TN 17

2.6 Definition of actually exchanged data ... 17
P22 T8 R N (= {1 Al o 10 g o NS 17
2.6.2 The lINK: CONTENT........uiiiiiiiie et e e e e e e e e s s sab bbb e e e e e e e e e anes 17

P TRC T B (= 0 Q= EoR- o T= 1o (1] =0 N 18

2.7 DA T ANSIOT .o 18
2.7.1 Pull driven COMMUNICALION.uuuiiiiiieeiiiiittieee e e e ettt e e e e e e aeb b e e e e e e e s s anbbbreeaaaeeaaanns 18
2.7.2 Bi-direCtONAI INKSuviiiiiieiiiie ettt e e e e e e e 19
2.7.3 TiME SYNCNIONISALION ...uuutuvtitiiiittrietteutteteteereeeeeeeeeeeeeeeaeeeeeeeeeeaessssessseeesessessssssssssssesrsnrnes 20

2.8 BV BINES ittt e 20
2.9 Assumptions underlying the OpenMI architeCture............coooeeeiiiiiii 21
2.9.1 Links are StatiC OF SEMI-SLALICuveiiiieiiiiiiiiiii et e e e e e e 21
2.9.2 TIMEIS FEfEIENCEMeeiiiiiiiiieeee bbb e e e e e e 21
2.9.3 The providing component knows best how to convert data in time or space.................. 21
2.9.4 Knowledge gaps need to be filled with domain eXpertiSeuvvvuvvriviieriiiviiiinnnninnnn. 21
2.9.5 Nesting, logical switches and other intelligence does not need additional classes......... 22
2.10 MISCEIIANEOUS ISSUEBSeeiiiiiiei ittt e e ettt e e e e e e et b et e e e e s s s ab b b et e e e e e e s s anbbbreeaaaaesaane 23
2.10.1 EffiCiIENCY CONSIAEIALIONSuuuueuiiiiitiiiiitteitureeeueaeeereeeeeaeeeeeeeeeeereereeeeeeeseseeeeeeeeeeseeserernrrnes 23

Page 5 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

2.10.2 Distributed COMPULING.ceiieeiiiii ettt e e e e e ettt e e e e e e eeabba e e e aeaeesrbnanes 23

3 0rg.0OpenMI.Standard NAMESPACE ittt e e et et a e e e eeeb e a e e e e e eeabbaa e aaas 25
TN R € 1= [=T = | W0 [=2Tod] o [0] o F TSP 25
3.1.1 ST el0] oL PP TOPPTTR 25
3.1.2 P ACKAGES . ..ottt ettt a e e e e araaa s 25
3.1.3 Relationship t0 Other NAMESPACES........couuuuuiii et eaeeeeeeaaans 25

3.2 0rg.OpenMIL.Standard: STAtIC VIEWcouuuuuiii et e e e 26
3.2.1 GENETAl CONVENTION .. .uuttitiiiiiiiiiettieeteebee bbb e ee bbb s been b ennenbenenes 26
3.2.2 Data definition INTEIMACESuuuiiiiiiiiiiiie e 26
3.2.3 Meta data interfaces to express what data can be exchangedccccceeiiiiiiiiiininnnnn. 32
3.24 Interface to define the iNK ... 33
3.25 Interfaces for COMPONENT BCCESScoiiiiiiiiiie ettt e e et e e e e eeeeannns 34
3.2.6 Where to start the component access: the OMI-file...........coooiiiiiiiiiiiii e, 39

3.3 org.OpenMI.Standard: DYNAMIC VIEWuuuuiiieiiiiiiiiiiai e e e et e e e eeatta e e e e e e eeenaaa e eas 41
3.3.1 Phases in utilizing the linkable component interfaceooeeoiiiiiiiiiiiii e, 41
3.3.2 Phase I: Instantiation and iNitialiZationeeeiiiiiiiiiiri 41
3.3.3 Phase II: Inspection and CoNfIQUIAtIONcooiiiiiiiuiiiieeee it 42
3.3.4 Phase H: Preparation..... ... ettt e et e e e e e e ebeaan s 42
3.3.5 Phase IV: Computation/execution (including data transfer)ccccviiiiiiiiiiiiiiiiinnnnn. 43
3.3.6 Phase V: COMPIEHION.......cooiiiiiiiie et e e e e e et e e e e e eeeeeaanns 48
3.3.7 Phase V12 DISPOSUIE ...ttt ettt e e e e et e bbb e e e e e e e e ee bbb e e e e e e e eeseeaanns 48
3.3.8 Pausing and Stopping COMPULALIONSuuuiieieiieiiiiiie e e e e et e e e e eeerei e e e e e eeeeeennns 48
3.3.9 MISCEIIANEOUS ISSUESuuieieiiiiiiiiiiitiititeebbbb bbb e bbb bbb bbb e bbb nerennes 50

3.4 OPENMI COMPIANCE ...ttt e e e e et et e e e e e e eesbba e eeas 52
REFEIENCES 53
Annex | org.OpenML.Standard iN SNOM..........uuu i et eeees 55
Annex I-A The interface definitioNS............cooviiiiiiiiii 55
Annex I-B The OMIfile definitioN............ccooviiiiiiiiii 57
Annex I-C The phases in dynamic ULIlIZatioNcoooiiiiiiiiiiii e 58
Annex Il org.OpenMIl.Standard API-SPECIfICAtIONuuiiiiiiiiiiiii e 59
Annex Il OVENVIEW OF CHANGES ...t e e e e et e e e e e et 73
Annex IlI-A Changes from version 1.0.0 (May 2005) to version 1.4.0 (September 2007) 73
Annex 11I-B Changes from version 0.99 (November 2004) to version 1.0.0 (May 2005) 73
Annex 11I-C Changes from version 0.91 (June 2004) to version 0.99 (November 2004) 74
Annex 1lI-D Changes from version 0.9 (May 2004) to version 0.91 (June 2004).........cccccceeennnn. 75
Annex llI-E Changes from version 0.6 (May 2003) to version 0.9 (May 2004)...........c.cccuuuuernnn. 76
INDEX ..ttt ettt ettt etttk e oo ettt e ookttt e e e oAttt e ook E et e e e eR b et e e oAb bt e e e ok hee e e e oA R bt e e e et bee e e e anbbe e e e anreeaaaas 79

Page 6 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

List of figures

Figure 1 Model application Patternoooviiiiiiii 9
Figure 2 OpenMI architeCture NAMESPACESccceiiiiiiiiiieee 10
Figure 3 Different chain layouts with the pull-mechanism.............ccccccciiiiiii 19
Figure 4 Example of different of layouts to capture knowledge needed to link two water domains...... 22
Figure 5 The namespaces of the OpenMI Software Development Kit...........ccccccvvvii e, 25
Figure 6 Relations between important data related interfaces............cccccccciiiciccc 26
Figure 7 IElementSet and related iNterfaces..........coooviiiiiii 27
Figure 8 ITime and related iNterface............oooiiiiiii 28
Figure 9 IQuantity and related INtErfaCESoooviiiiiii 29
Figure 10 IValueSet and related iINterfaces...........coovviiiiii 30
Figure 11 lllustration of directions to interpret positive values of fluxes, levels and depths.................. 31
Figure 12 The IDataOperation and IArgument iINtEIfaCeScoevvviiiiiiii e, 32
Figure 13 IExchangeltem iNteIfaCeScooviiiiiiiii 33
Figure 14 ILink and associated INEITACES.............cuiiiiiiiiii 34
Figure 15 ILinkableComponent INtEIfACEcoooviiiiiii 35
Figure 16 IManageState iNtErfACEccovviiiiiiiii 37
Figure 17 IDISCreteTimeES INTEITACE.........coiiii i 37
Figure 18 IPUDIIShEr INtErfaCE..........ccoviiiiiiii 38
FIgure 19 ILIStENEr INTEITACE.cii i 38
Figure 20 IEVENE INEEITACEcoi e 38
Figure 21 Graphical view of the OMI-file StTUCIUIEcooiviiiiii 40
Figure 22 lllustrative example of the OMI-file content ..., 40
Figure 23 Deployment phases and associated call sequence of OpenMI Linkable Components 41
Figure 24 Unidirectional data transfer (sequence diagram)..........ccccceviiiiiiiii e, 43
Figure 25 Bidirectional data transfer (sequence diagram)cooovviiiiiiii 44
Figure 26 lllustration how IManageState can be used for iterations (sequence diagram).................... 46
Figure 27 Using EarliestinputTime to clear internal buffers (sequence diagram)ccccceeveeeeennn. 47
Figure 28 Pause and resume of a computation process (sequence diagram)..........ccccccvvvvvviiiininennnnnn, 49
Figure 29 On-line visualization using a DataChanged-event (sequence diagram)cccccecvvvvnnnns 50
Figure 30 Sequence diagram: XCEPLIONcoevieiiiiiiieieeeeeeeee e 51
Figure 31 Sequence diagram: obtaining listed tEMS............coooiiiiiii 51

List of tables

Table 1 OpenMI enumeration Of EleMENTTYPE. . ..uuuuuuuiiiiiiiiiiiiiiiiiiiiieireeererrarerrrereerrrrrrr 28
Table 2 Base units and dimension base in OpenMI (derived from Sl)uuvviiiiiiiiiiiiiieiiiiii, 29
Table 3 EVENITYPE ©NUMIETATION. .. .uuutruvttuttrtreurureesesaeeeeeessssseesssesseeessessssssssesssessssssssssssssssssssssssssssssnnnns 39

Page 7 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

1 Introduction

1.1 Background

A model application is the entire model software system that you install on your computer. Normally a
model application consists of a user interface and an engine. The engine is where the calculations
take place. The user supplies information through the user interface upon which the user interface
generates input files for the engine. The user can run the model simulation e.g. by pressing a button in
the user interface, which will deploy the engine (see Figure 1). The engine will read the input files and
perform calculations and finally the results are written to output files. When an engine has read its
input files it becomes a model. In other words a model is an engine populated with data. A model can
simulate the behaviour of a specific physical entity e.g. the River Rhine. If an engine can be
instantiated separately and has a well-defined interface it becomes an engine component. An engine
component populated with data is a model component. There are many variations of the model
application pattern described above, but most important from the OpenMI perspective is the distinction
between model application, engine, model, engine component, and model component.

Model Application

User interface

,,, Write

| Input fil

Thisis a putiile

i site-specific | Run

- model (i.e. engine + Read

schematization/data)]

1 Engine

T T wiite T
Output File W

Figure 1 Model application pattern

Basically, a model can be regarded as an entity that can provide data and/or accept data. Most
models receive data by reading input files and provide data by writing output files. However, the
approach for OpenMl is to access the model directly at run time and not to use files for data exchange.
In order to make this possible, the engine needs to be turned into an engine component and the
engine component needs to implement an interface through which the data inside the component is
accessible. OpenMI defines a standard interface for engine components that OpenMI compliant
engine components must implement. When an engine component implements this interface it
becomes a linkable component. A similar pattern can be applied for databases or other kinds of data
sources. By turning them into components and implementing the OpenMI interface they become
linkable components that provide direct access to its data at run time.

Page 9 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

In summary, OpenMI focuses on providing a complete protocol to explicitly define, describe and
transfer (numerical) data between components on a time basis, including associated component
access.

1.2 Overall architecture and layering

The interfaces of the OpenMlI architecture, i.e. the Open Modelling Interfaces, are specified in the
namespace org.OpenMI.Standard. Software components that implement and use these interfaces
properly are called OpenMI compliant.

To support the development of OpenMI compliant components, a Software Development Kit
(SDK) has been provided. This SDK contains a default implementation of these interfaces in the
org.OpenMI.Backbone package (see Figure 2). In addition, the SDK provides utilities to support
wrapping of legacy code to configure and deploy the components (all part of the org.OpenMI.Utilities
namespace), a general support package that is not related to OpenMI (the
org.OpenMI.DevelopmentSupport namespace) and front-end tools to enable interaction with its users
(the org.OpenMI.Tools namespace). Utilization of the OpenMI SDK is not obligatory to develop
OpenMI compliant components.

OpenMl architecture

] Open Modelling Interfaces
org.OpenMl.Standard

D A

implements

OpenMI Software Develoipment Kit

] :] | i
org.OpenMl.Utilities |<--------- org.OpenMI.TooIs‘

H
v

org.OpenMl.DevelopmentSupport ‘

Figure 2 OpenMl architecture namespaces

1.3 Document structure

The document starts in chapter 2 with an explanation of the concepts underlying the Open Modelling
Interfaces and its associated hamespace org.OpenMl.Standard. It highlights all issues that need to be
addressed when defining an interface for linking models. Chapter 3 is the most important part of the
document. It describes the formal specification of the interfaces in their static view (interface structure)
and their dynamic view. This formal specification is completed with an API description (see Annex I).
Annex Il contains an overview of major changes since version 0.6 of the specification (May 2003).

1.4 Readership and expected expertise

This document is targeted at IT-experts who would like to understand the concepts underlying OpenMi
as a means to formalize the linking of models and other components. It contains the formal interface
specification which needs to be adopted when the IT-expert wants to create its own OpenMI compliant
components. Other documents of the OpenMlI report series can inform the reader about the scope of
OpenMI (OpenMI Association 2007a), how to apply OpenMl in practice (OpenMI Association,

Page 10 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

forthcoming 2007b) and how the OpenMI interfaces have been applied and implemented in the SDK
(OpenMI Association 2007d,e,f).

In order to understand this document, one needs to have basic understanding of model
linking, object-orientation and UML-notation (particularly class diagrams and sequence diagrams).

Within the text, the following style-convention is applied:

e OpenMl interface

e OpenMI property
e OpenMI argument

Page 11 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Page 12 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

2 OpenMIl architecture: Concepts

2.1 Introduction

Basically, a model can be regarded as an entity that can provide data and/or accept data. Most
models receive data by reading input files and provide data by writing output files. However, the
approach for OpenMl is to access the model directly at run time and not to use files for data exchange.
In order to make this possible, the engine needs to be turned into an engine component and the
engine component needs to implement an interface through which the data inside the component is
accessible. OpenMI defines a standard interface that engine components must implement to become
OpenMI compliant engine components. When an engine component implements this interface it
becomes a linkable component.

OpenMl is based on the ‘request & reply’ mechanism. According to Buschmann et al. (1996),
OpenMl is a pull-based pipe and filter architecture which consists of communicating components
(source components and target components) which exchange memory-based data in a pre-defined
way and in a pre-defined format. OpenMI defines both the component interfaces as well as how the
data is being exchanged. The components in OpenMlI are called linkable components to indicate that it
involves components that can be linked together.

From the data exchange perspective, OpenMl is a purely single-threaded architecture where
an instance of a linkable component handles only one data request at a time before acting upon
another request. Data exchange in the OpenMlI-architecture is triggered by a component at the end of
the component chain. Once triggered, components exchange data autonomously without any type of
supervising authority. If necessary, components start their own computing process to produce the
requested data. Only when output needs to converge to a certain criteria, a linkable component with
controlling functionality might need to be incorporated. Most important however, is the fact that
OpenMl is not based on a framework, it only has linkable components.

2.2 Software perspective: Define, Configure, Deploy, Execute

Software development for developing a model linking standard must start from the view point of how
the standard will be used. For running a linked simulation we have identified four main phases:

1. Define:
Definition of the data that can potentially be exchanged as well as the definition of available
linkable components and models (linkable component + schematization).

2. Configure:
Configuration of the actual data that will be exchanged and the components (+schematization)
between which the data will be exchanged.

3. Deploy:
Construction of actual components (+ schematization) on a target system.

4. Execute:
Actually running the linked computation, i.e. data exchange between components and
computation by components.

Translating these four phases into tasks we arrive at the following five tasks that must be carried out:

1. Data definition:
To allow data exchange between models the data must be defined in some way. This includes
the definitions of how quantities, space, time, and the data itself are described, see Section 2.3.

Page 13 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

2. Generic model access:
This boils down to a common interface for all linkable components to allow the data exchange
to be done in a generic way without requiring information on which linkable component types
are used, see Section 2.5. It also involves the generic construction of a specific model without
knowing its details.

3. Meta data defining potentially exchangeable data:
This definition describes the data that can potentially be provided and accepted by a linkable
component, see Section 2.4.

4. Definition of actually exchanged data:
A link describes data that is actually transported between two different linkable components,
see Section 2.6.

5. Data transfer:
This requires that linkable components have a standard interface to allow data exchange, see
Section 2.7.

OpenMI addresses these issues, but not more than this. The data being passed between models will
be typically boundary conditions (e.g. fluxes), but also transfer of model parameters and other data
sets is possible. The OpenMI standard is focused on data exchange on a time basis (either time
stamp or time span), being as complete as possible in describing the data being exchanged. To keep
its mandatory interfaces as lean and mean as possible, its interfaces are thus not necessarily
optimized for all data exchange functions that can be imagined in a modelling system. However, the
OpenMI interfaces provide various places where code developers can offer functionality to end-users
to define their data exchange as desired, keeping full control on the process.

Apart from the core functionality of model linking, the standard also describes event handling
mechanisms that can be used to implement generic tools for tracing, logging, and online visualization,
etc., see Section 2.8. Assumptions underlying the architecture are discussed in Section 2.9, while
Section 2.10 addresses considerations on efficiency.

2.3 Data definition

To define the data that is exchanged, a distinction is made between where, when, what and the
(numeric) values itself. The data is described by identifying the values (data) itself, the geometry on
which the data is defined, the time(s) for which the data is valid and the actual quantity it represents.

2.3.1 Where

The space where the values apply is indicated in a finite element way by an ordered list of elements
(the element set"), where conceptually each element consists of a number of connected vertices. An
element holds an ordered set of vertices where the element shape type determines the minimum
number of vertices of an element as well as the semantics of ordering. In this way topology is
described. Within one element set all elements must have the same type. Elements have an ID and
may, but do not need to be geo-referenced. Elements described in more detail by vertices are geo-
referenced, as the vertices contain the coordinates to locate the element in a geo-reference system

Every element set contains a string reference to a geo-reference system, which defines a
coordinate system for the coordinates (e.g. WGS84?). This allows element sets for every model to be
defined in the coordinate system of the model without transformation and allows an OpenMI

In reality the element set is, not an object which can be sorted, but a one-dimensional array of elements, where
ordering is essential.

2 World Geodetic System 1984 see http:\\www.wgs84.com

Page 14 of 79

http://www.wgs84.com

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

implementation to perform the coordinate mappings between different geo reference systems
whenever needed. A geo-referenced element may be anything from a point, line, polyline, polygon
(e.g. horizontal or vertical plane) to a polyhedron (i.e. a volume).

Every element has an ID which is unique within the element set it belongs to. Components
may offer data operations for geo-referenced mapping (i.e. based on coordinates) or ID-based

mapping.

2.3.2 When

Time in OpenMlI is defined either by a timestamp or a time span. A time stamp is a single point in time,
whereas a time span is a period from begin to end time. Each of these times is represented by the
Modified Julian Date. Both interfaces are inherited from the time interface. This means that wherever
time is expected, both a time stamp and a time span can be indicated.

2.3.3 What

The physical semantics of the values is described by a quantity, combined with a unit in which its
value is expressed. Water level (m) and amount of flow (cubic metre/hour) are examples of quantities.
The physical nature of a quantity is also related to the shape type of an element. E.g. a water level can
be given in a point or along a poly-line or over a plane, but not in a volume.

OpenMI does not use a standardized data dictionary. However, to ensure that linkages
between quantities are correct, two aspects received specific attention. First of all, for every quantity,
units are defined as well as a conversion formula of the form a*x + b to enable unit conversion from
the quantity’s unit to standard Sl units. This allows straightforward linking of quantities of different units
without a performance penalty of unnecessary transformations. Secondly, the dimension needs to be
provided for each quantity. By convention, this dimension is expressed as a combination of base
quantities.

2.3.4 Values

The values themselves are represented as a one-dimensional array of scalars or vectors contained in
a so-called value set. Information about the values (space, time, quantity) and their ordering is
assumed to be known by the user. A single scalar or vector value exists for every element in the
element set defined.

This approach is more flexible compared to approaches, which limit the data structures to be
exchanged to grid-based computed fields or vector fields used as boundary conditions. Other types of
data such as model parameters or numerical parameters (e.g. for optimization purposes), typically not
geo-referenced, can also be represented by defining a non-geo-referenced element set. E.g.
economic models may not address spatial variability, but their entity of analysis can easily be
represented by an element set consisting of one (non)-geo-referenced element.

2.3.5 How

In the simplest case, the values returned are exactly the data as it is computed by a computational
core of the linkable component. Nevertheless, under some conditions, specification of additional data-
operations is desired to obtain the data in the way it is needed. Most common situation will be the
need for temporal aggregation over a time span. This functionality can be used if one model, running a
small time step, needs to feed another model, which runs at a large time interval. The functionality
may also be used to suppress a temporal interpolation method in case the time-steps of the source
component and the target component do not coincide. In addition to temporal data operations, spatial
data operations are foreseen as well as a miscellaneous group of data operations.

Page 15 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

2.4 Meta data defining potentially exchangeable data

An essential part of standardizing data exchange is the meta-data telling which components, model-
schematizations and data sets are involved and what can be exchanged in terms of quantities (what
does it represent), element sets (where does it apply), time (when does it apply) and data operations
(how should it be provided). The availability of this meta-data varies from fixed in the code or semi-
fixed in a model script to highly variable, e.g. determined by the (run-time) settings of the model
combination.

For most models, the model code determines which quantities can potentially be provided as
output or are (potentially) needed as input. Often the code determines the element set where data can
be exchanged (e.g. on the boundaries, or on the full-domain). In a site-specific model, the code is
populated with site-specific schematization data (e.g. a network or grid with attribute data). With this
data, the exact elements are known, including their position in the topology.

So-called 'exchange items' are defined to describe the data that can be provided or accepted
by a component. Each item that can be exchanged contains information on the role of the data (input
or output), the quantity it represents and the element set where it applies. Output exchange items also
contain information on the data-operations that can be provided by the delivering component. The
combination of a quantity on an element set has been chosen as one typically links the boundaries of
one model to the boundaries of another model (e.g. the ‘bottom’ of a river with the ‘top’ of a ground
water model). Note that Section 2.6 describes the actual link between two linkable components, i.e.
the data that actually will be exchanged.

The list of exchange items is specific for a combination of a model code with a model
schematization. The exchange items are mainly used during design/configuration time to set up the
links between different models.

2.5 Generic model access

Generic model access is essential for the component based paradigm as adopted in OpenMlI. At the
core of OpenMl is one basic interface to access a model component, the ILinkableComponent
interface. This interface includes a section for initialization, a section for introspection and linkage
configuration (description of exchange items and creation of links) and a section to exchange data at
run-time. To enable event publishing, a linkable component is inherited from an IPublisher-interface.
Since all access to a component is through this interface, generic OpenMI implementations can be
made independent of underlying type of engine or component being used. This approach allows the
addition of new components to an existing OpenMI run-time environment without modifications to the
environment.

GetValues() is the most important run-time method of a linkable component. It returns the data
requested®, if needed by invoking a computation. All other methods are supportive, e.g. during the
initialization phase, to handle links, and to clean up. For some situations, e.g. to enable iteration, it is
useful if a linkable component can manage its state on request. A state management interface has
been introduced for this purpose. This implementation of this interface, IManageState, is optional.
Again it is up to the code developer to decide if states can be saved, and if so which state-related data
is 'saved' and how it is done (e.g. in memory, in a file).

Basically all components exchanging (model) data are linkable components. Examples of
linkable components are:

¢ Simulation engines for rivers, groundwater, general 3-D flow, and rainfall-runoff processes.

o Measuring device that need to be accessed online.

8 This approach relies heavily on the generic definition of data described in Section 2.3.

Page 16 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

e Monitoring databases containing historic data.
e Data driven models such as Artificial Neural Networks

To locate and access the binary software unit implementing the interface, the OMI-file has been
defined. The OMI file is an XML file of a predefined XSD-format which contains information about the
class to instantiate, information about the assembly hosting the class and the arguments needed for
initialization. Details on the OMI file are provided in Section 3.2.6.

2.5.1 Wrapping legacy code

For legacy code, wrapping will most often be the technological choice to migrate to OpenMI. An
existing model engine (i.e. a computational core often developed in Fortran 90) is encapsulated in a
so-called wrapper that meets the interface specification of an OpenMI linkable component®. The
OpenMI interface allows it to be treated in a generic way by an OpenMI run-time environment.
Actually, the ‘wrapper' turns the computational core into a linkable component for OpenMI

2.6 Definition of actually exchanged data

2.6.1 Thelink: purpose

As indicated, one linkable component can retrieve data from another linkable component by invocation
of the GetValues()-method. However, this is only possible if two components have information about
each others existence and have a clear idea on the kind of data that is requested. In other words, it is
only possible if (i) the accepting component can identify the providing component, (ii) the providing
component knows what to deliver (expressed in quantity, location, time) and to whom (accepting
component), and (iii) the providing component understands the relation with its internal data. This
information is contained in the link. A link defines actual data exchange of a semantically similar
guantity between two linkable components (the source component and the target component).

2.6.2 Thelink: content
The link specifies the following information:
e The source component and the target component.

e The source quantity and target quantity, i.e. two aliases for a semantically similar quantity. The
source quantity may differ from the target quantity by name as well as by unit, only in that a unit
conversion is required to transform the values. Of course the semantics and the dimension of
both quantities should be similar.

(The source quantity information may be redundant if a similar dictionary is applied)

e The list of data operations that must be applied by the source component before providing the
data.

e The element set on which the quantity is requested by the target component (and thus
delivered by the source component).

e The element set on which the quantity is defined internally in the source linkable component.
(Dependent on the intelligence of the providing component, this information may be redundant).

Please note that links are unidirectional (i.e. from the source component to the target component). A
link refers to a single semantic quantity only, which, however, may have two different names on each
side of the link. This means that with bi-directional communication or with multiple quantities, multiple
links must be configured.

A default implementation is provided in the org.OpenMI.Utilities package.

Page 17 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

In water related data exchange the spatial geometry underlying the data exchange typically is
persistent over time. However, some advanced models (e.g. wave models) contain geometry that
changes over time. Element sets therefore contain a property that indicates if it behaves dynamic over
time. In addition, it is allowed to add and remove links at run-time in case the geometry should
change.

2.6.3 Thelink as an argument

The link has a string ID which is passed as an argument in the GetValues()-call of the linkable
component. This allows independent communication over different links from one source component
to multiple target components. This means that data exchange takes place over entire (target) element
sets. In case the target component is only interested in the information on a part of the element set,
the target component should perform the selection itself or the link should be configured to contain
only the appropriate part of the target element set. Both ways avoid the need to define generic
geometric data selection algorithms, thus keeping the standard simple and allowing high performance
implementations. Of course, such selection algorithms can be provided as utilities but they are not part
of the OpenMI standard.

2.7 Data transfer

Data exchange, the core issue of OpenMl, is about linkable components that request data (i.e. the
targets) and linkable components that provide this data (i.e. the sources). Therefore, OpenMI has
been designed as a pull-based pipe and filter system where the target component requests data from
the source component and blocks (i.e. does not process any new call) until this data is returned. Every
linkable component is a target component, a source component, or both.

Characteristic to water resources modelling and management is the importance of time. Often,
data is exchanged for the same quantity and spatial elements, but for different time slots. Therefore, a
time-indication has been incorporated as a separate argument in the GetValues()-call.

An instance of a linkable component handles only GetValues() request over one specific link
at a time before acting upon another request. By adhering strictly to this principle, the basic principles
of the architecture are clear, leaving little room for interpretation errors. In particular, the OpenMI
architecture avoids the problems of multi-threading thus allowing single-threaded thinking.

2.7.1 Pull driven communication

Since the ‘target’ pulls the data when needed, this mechanism is called pull-driven. Linkable
components can be connected in a chain, where the last component in the chain triggers the entire
stack of data exchange. Figure 3 illustrates three chain layouts:

. an unidirectional chain
. a logical switch to change from source component”.
. a bidirectional chain

Useful to implement a backup scenario in case a linkable component is down, or cannot provide the data requested.

Page 18 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification

Linear chain (uni-directional)

GetValues
GetValues

GetValues

A requests B, B requests C, C requests D

D does its work and returns data to C, C does
its work and returns data to B, etc.

The OpenMI Association © 2007

Linear chain (bi-directional)

GetValues Trigger

GetValues

GetValues

A requests B, B requests C, C requests B

B returns a best guess to C, C does its work
and returns data to B, B does its work and

returns data to A

request

Example Chaining options data returned

Logical decision chain
GetValue

Trigger

GetValue

A requests B, B requests C,
C does its work and returns data to B

if C fails B requests D

failure ?

Getvalue B returns data to A

Figure 3 Different chain layouts with the pull-mechanism

As mentioned before, each link is unidirectional and describes only the communication of a single
quantity. Therefore, for bidirectional communication at least two links are needed (e.g. in case of
iterations). For more details, see Section 3.3.4.

2.7.2 Bi-directional links

The presence of a synchronous (blocking) GetValues() call requires some attention for the case of bi-
directional links or more general in the case of cycles through the network of linkable components
connected by links. In this case, one can imagine that a straightforward implementation of the
GetValues() call might lead to infinite recursion.

In OpenMl, this problem is prevented by putting the obligation on a linkable component to not
process additional GetValues() calls itself when it is already inside a GetValues() call. This effectively
prevents infinite recursion.

In case it is not possible to compute the requested values, either by a simulation or by
interpolation, another solution must be implemented such as returning an extrapolated value or
returning the most recently computed value. The latter case may be useful for cases where iteration is
implemented.

Bi-directional links might require specific iteration functionality to preserve numerically stable
solutions. The basis of this functionality is the combination of the pull-mechanism with state
management. Only for this special case, OpenMI requires a controlling mechanism that decides how
to proceed. Simple solution mechanisms can be developed, implementing iteration-control
functionality as a linkable component positioned in between the two computing models. Dependent on

Page 19 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

the choice of the developers, this complex combination of linkable components might be encapsulated
as a new linkable component.

2.7.3 Time synchronisation

Each GetValues() request initiates a processing activity (e.g. computation) when needed to
respond properly. As many water related models progress over time, the time argument is the
controlling variable for any processing activity. Linkable components that do not progress over time
can neglect the time-argument. They just do their work and return the data. However, they should be
able to pass the time-argument to another component if they invoke a GetValues()-call themselves.

In case the requested timestamp does not match the time stepping in the computation and the
computation is already ahead in its computation, an interpolated value is to be delivered. Note that the
model code developer decides how this interpolated value is computed and if any buffering is applied
to increase performance. When the computation has not yet reached the requested time stamp, two
alternatives are available:

¢ Initiate a computation to compute the values at the requested time.
e Extrapolate the solution

Under normal conditions the first alternative is chosen. For bi-directional links, one of the components
will need to extrapolate its solution in order to prevent deadlock situations. If a single entity in the value
set cannot be provided, an invalid flag should be given. In the exceptional case that no value set can
be provided, an exception needs to be thrown. Be aware that this is a serious exception as the entire
computation chain might get stuck.

The above mentioned obligation has been formulated from the perspective of a simulation
engine. However, (monitoring) databases and other linkable components, which do not progress in
time, should also be able to return a value, whether it is the actual, interpolated or extrapolated one. It
is up to the software developer to introduce an intelligent (or customizable) wrapper for this purpose.
For those situations where the exact time information is required, an additional interface is provided to
obtain the discrete time stamps available. Implementation of this interface, IDiscreteTimes, is optional.

2.8 Events

Within modern software systems, events are often applied for all types of messaging. Within OpenMI a
lightweight event mechanism is applied, using a generic Event interface and an enumeration of event
types (see Table 3 in Section 3.2.5.6) to allow the implementation of generic tools that perform
monitoring tasks such as logging, tracing, or online visualization. Linkable components can generate
events to which other linkable components or tools can subscribe. In this way, it becomes possible to
implement these generic tools without requiring any knowledge of the specific tools in the components
themselves. By adopting the OpenMI event types, system developers can use those tools without
additional effort. Note that the event mechanism should not be used to pass data sets. Data sets
should be retrieved through the GetValues() call.

The event mechanism is also used to facilitate pausing and resuming of the computation
thread, as the computation process of an entire model chain is rather autonomous and not controlled
by any master controller (see Section 3.3.8). Once a component receives the thread, it preferably
sends an event, so listeners (e.g. a GUI) can grab and hold the thread, and thus pause the
computation by not returning control. In normal conditions, the control is returned so the component
can continue its computation. Of course the computation is also controlled at the level that triggers the
first component of the chain by means of a GetValues()-call. Stop firing those calls will also result in a
paused system, although it may take a while before an entire call stack completes its processing
activity.

Page 20 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

2.9 Assumptions underlying the OpenMIl architecture

2.9.1 Links are static or semi-static

It is assumed that in most modelling situations the components involved and quantities to be
exchanged are static at run-time. While an element set will typically be static as well, advanced
models may utilize changing coordinates for their elements (e.g. to describe waves). A version number
has been introduced to the element set to assist code developers in identifying changing element sets
over time. The interface of an element set can be queried at any moment.

Although the link handling methods of a linkable component do not forbid adding or deleting
links at run-time, no specific method has been incorporated to simplify the task to update the
properties of a link, except for an element set. If data needs to be exchanged for new quantities, a new
instance of a link needs to be created, populated and added to the linkable component at run-time.

2.9.2 Time s referenced

Time is considered essential in OpenMI. While numerous models just run time steps without
knowledge of the associated calendar, this knowledge is required in order to link them to other
models. Hence, all time information in OpenMl is referenced and by convention is expressed as a
Modified Julian Day (see Section 3.2.2.2).

Generally, static models do not bother about time. However, to fit in an OpenMI system static
models need (i) to react when being invoked with a GetValues()-call, and (ii) be able to pass the time-
argument to another linkable component when appropriate.

2.9.3 The providing component knows best how to convert data in time or
space

The OpenMI standard puts as much responsibility at the level of the providing linkable component.
This is done since the providing linkable component has most knowledge about the data it provides
(and the internal data it does not provide) so itis best equipped to perform any transformations or data
operations. In case data is not available at the requested time or element set, the providing linkable
component knows - in general - best how the available data should be processed to deliver a value at
the requested time and element set.

2.9.4 Knowledge gaps need to be filled with domain expertise

Even while OpenMI specifies how data, space, and time are represented, some domain knowledge
may still be needed to actually link two model engines that have been developed independently.
Figure 4 illustrates the various lay-out options for the example of a groundwater-river model linkage.

Page 21 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Option 1: Knowledge incorporated in the Groundwater ModelEngine

GetValues(..)

Ground water[" dR:\I/Eer _
i odelEngine
ModelEngine GetValues(..)

Option 2: Knowledge incorporated in River ModelEngine
GetValues(..)

Ground water dR:ver _
ModelEngine GetValues(..) ModelEngine

Option 3: Knowledge partially incorporated in both engines
GetValues(..)

River

Ground water
ModelEngine

ModelEngine Getvalues(..)

Option 4: Knowledge positioned as linkable component in-between
Groundwater and River ModelEngine

GetValues(..) GetValues(..)
Ground water River

ModelEngine ModelEngine
GetValues(..) GetValues(..)

Figure 4 Example of different of layouts to capture knowledge needed
to link two water domains

Note that option 4 is the classical approach for model linkages, adopted by frameworks for model
linking as well as by many dedicated linkages. Option 1, 2 and 3 anticipate, up to a certain extend, to
the capabilities of the outside world. Dependent on the software capabilities and the way a link is
configured, OpenMI accommodates all of them,. Data operations may be utilized to keep control over
knowledge interpretations.

2.9.5 Nesting, logical switches and other intelligence does not need additional
classes

As the OpenMI Standard is based on the OO-concept of encapsulation, no specific classes are
introduced to facilitate features such as nesting of components, logical switches, iteration-controllers
or optimization and calibration tools. All those features can be implemented in a linkable component- if
desired.

Nesting components

A linkable component in OpenMl is not limited to representing just one (existing) model engine. In
practice it is possible that one linkable component represents one (composite) model component
which is able to simulate many types of (water related) physics. In the same vain, new linkable
components can be created which consist internally of already available linkable components. Such a
component would constitute a composite linkable component.

A composite component could be more easy to use than the individual components of which it
consists. If a specific combination of components is often used in a particular company, this
component would be ideally suited to become a predefined composite component.

Despite its practical use, many ways exist to develop a composite linkable component. For
instance, for commercial reasons, the composite linkable component would preferably hide some
functionality of the internal components that was not paid for. For these types of reasons the standard
does not define a composite linkable component class that can be used. Instead, guidance is given in

Page 22 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

the Guidelines document (OpenMI Association, 2007b), by describing examples how to implement
such composite linkable components using the default linkable component interface.

Implementing iterative methods

In the case of iterations between components, a separate controller is needed for the following
reasons:

¢ It should be possible to modify the iteration method without modifying the components used in
the iteration.

o Depending on the iterative method, the components should be triggered in different ways to
compute (GetValues()) and/or save and restore state.

OpenMI allows this to be done while staying within the concept of the pull-based pipe and filter
architecture. This is done by putting the iteration algorithm inside a separate controller linkable
component and connecting the controller to the individual components involved in the iteration. The
guidelines describe in more detail how to implement controllers using the linkable component
interface.

2.10Miscellaneous issues

2.10.1 Efficiency considerations
Exposing meta-data

Although the methods to expose meta-data are in the same interface as the methods for run-time data
exchange, a clear phasing can be maintained in the implementation as a method call to prepare
provides a clear shift from establishing the connections towards the computational phase. Developers
can choose whether they expose meta-data which is captured in files or whether they query engines.
The former may be handy in multi-user environments, and in multi-processing jobs where one wants to
reduce the demand for CPU capacity on the computational cluster.

Preparation before computation

The Prepare()-method is designed to enable preparation of internal buffers, and data mapping
matrices just before computation time. This method reduces the performance loss at computation
time, if compared to a situation where the mapping needs to be made each time the component is
asked for data through a GetValues()-call. In addition, its inclusive validation may save expensive
CPU resources when some engines are not ready.

Transferring time series
The GetValues() method is defined to obtain a set of values which is valid for one time span or time
stamp. Obtaining a time series requires multiple calls of this method. If supported by the providing

component, a specific data operation flag may also be used to indicate that all available time stamps
within a time span are requested.

Pro-active computing

A straightforward implementation of the GetValues() call, where the GetValues() call initiates a
computation for the requested value, can also be inefficient. In many cases, efficiency can be
improved by a latency-hiding technigue where a linkable component in the GetValues() call returns an
already computed value and computes (one or more) time steps ahead in time. This effectively
constitutes the method to do parallel computations in OpenMil.

2.10.2 Distributed computing

OpenMI has been designed in such way that the computational process calls of all linkable
components (the GetValues-calls) are handled in one thread. OpenMI leaves the choice open to the

Page 23 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

software developer whether the processing of a request is handled internally by starting multiple
threads or a parallel computing session. The OpenMlI standard is well suited for distributed computing
since itis defined in terms of objects and messages between these objects. The objects can run
anywhere as far as the standard is concerned and the messages between these objects can be sent
based on network communication.

A distributed computation can be implemented using established design patterns such as

proxy-stub (see e.g. [1]) and using established middleware (e.g. Java, .NET, Web services) for the
realization of the communication.

Distributed computation may also give rise to questions such as authentication, authorization,
and accounting (AAA). The specification and implementation of distributed computing (including AAA)
are excluded from the OpenMI standard and are left to implementers of OpenMI linkable components.

Page 24 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

3 org.OpenMl.Standard namespace

3.1 General description

3.1.1 Scope

The org.OpenMI.Standard namespace specifies a platform and technology independent interface to
describe, define, enable and troubleshoot data exchange between (model) components. Software
components that adopt this interface are called OpenMI-compliant and can be linked (either hard
coded or by a configuration utility) to other OpenMI compliant components.

The interfaces are composed of low level data types such as strings, integers, doubles and
boolean values.

The usage of the org.OpenMI.Standard namespace is the mandatory part of any OpenMI
compliant software component. Therefore it has been chosen to create a list of interfaces, which is as
minimal and as complete as possible, to define exactly data that is being exchanged. To reduce the
efforts of developing OpenMI compliance, it has been decided to keep convenience functions out of
the standard, unless real world applications proof that performance drops have become too significant,
due to the lack of overload function calls.

Section 3.4 indicates which interfaces are mandatory to be OpenMI compliant.

3.1.2 Packages

The org.OpenMI.Standard namespace is composed of one software package, the
org.OpenMlI.Standard package containing the public interfaces of the standardized OpenMI.

3.1.3 Relationship to other namespaces

org.OpenMlI.Standard is the independent interface specification. The OpenMI Software Development
kit provides a default implementation of these interfaces through the org.OpenMI.Backbone package.
Other packages within the org.OpenMI domain turn the standard in a useful software environment.
They typically utilize the standard interfaces while some packages depend on the backbone
implementation (see Figure 5).

org.OpenMI.Standard |

- org.OpenMl.Tools
utilize 9-9p |

utilize org.OpenMI.Utilities |

fez - d-eee

<____

org.OpenMI.Backbone | org.OpenMI.Dev elopmentSupport |

<<

<___

<___
<_________________

«realize»

Figure 5 The namespaces of the OpenMI Software Development Kit

Page 25 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

3.2 org.OpenMI.Standard: Static view

3.2.1 General convention

Some classes have a 1:n relation to other classes. Conceptually these relations are often lists or
arrays. The general procedure to obtain each item is to ask for the total number of items via an
{ltem}Count method, and loop over the items with a Get{ltem} type of call.

By convention the first item in a list starts with index 0, the last one with the count -1, where the
count is returned by the Count method. .

3.2.2 Data definition interfaces

Correct interpretation of data being exchanged requires information on the semantics for each value
passed over a link: what does it represent, where does it apply, when does it apply and how is it
processed. Figure 6 illustrates these relations. The semantics of a value within a value set (as
produced by a linkable component) is defined by the quantity (including the unit in which it is
expressed), the elements (as defined in the element set) and the time (argument in the GetValues()-
call). The combination of quantity and element set is contained in the link. DataOperations can be
added to increase control on the delivery of data. Note that the ordering of the elements in the element
set corresponds to the ordering of the values in the value set. In other words, the k-th value of the
value set corresponds to the k-th element in the element set.

Each interface will be discussed in more detail in the remainder of this Section.

IPublisher target «interface»
H
«interface» 1 1% ILink
ILinkableComponent source
M
1 1.*
?1..* 1.* ?1..* ?1..* ?O..*
—soufce _source target _source provides
_target
1 \Dl 1 1 0..*
produces «interface» «interface» «interface»
IQuantity IElementSet IDataOperation
what where how

«interface» «interface»

ITime when IValueSet

Figure 6 Relations between important data related interfaces

3.2.2.1 |IElementSet

Data exchange between components in OpenMl is always related to one or more elements in a space,
either geo-referenced or not. An element set in OpenMI can be anything from a one dimensional array
of points, line segments, poly lines or polygons, through to an array of three-dimensional volumes. As

Page 26 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

a special case, a cloud of ID-based elements (without coordinates) is also supported thus allowing
exchange of arbitrary data that is not-related to space in any way.

The |ElementSet interface (Figure 7) has been defined to describe, in a finite element sense,
the space where the values apply, while preserving a course granularity level of the interface.

«interface» -
«enumeration»

IElementSet ElementType

«property» ID() : string

«property» Description() : string

«property» SpatialReference() : ISpatialReference
«property» ElementType() : ElementType

«property» ElementCount() : int

«property» Version() : int

GetElementindex(elementID :string) : int
GetElementID(elementindex :int) : string
GetVertexCount(elementindex :int) : int
GetFaceCount(elementindex :int) : int
GetFaceVertexindices(elementindex :int, facelndex :int) : int[]
GetXCoordinate(elementindex :int, vertexindex :int) : double
GetYCoordinate(elementindex :int, vertexindex :int) : double
GetZCoordinate(elementindex :int, vertexindex :int) : double

IDBased: int=0
XYPoint: int=1
XYLine: int=2
XYPolyLine: int=3
XYPolygon: int=4
XYZPoint: int=5
XYZLine: int=6
XYZPolyLine: int=7
XYZPolygon: int=8
XYZPolyhedron: int=9

+ + + + + + + + + o+

«interface»

+ + + + + + + o+ o+ +

ISpatialReference

+ «property» ID() : string

Figure 7 IElementSet and related interfaces

Conceptually, |ElementSet is composed of an ordered list of elements having a common type. The
geometry of each element can be described by an ordered list of vertices. The shape of three
dimensional elements (i.e. volumes or polyhedrons) can be queried by face. If the element set is geo-
referenced (i.e. the SpatialReference is not Null), coordinates (X,Y,Z) can be obtained for each vertex
of an element. The ElementType is an enumeration, listed in Table 1. Data not related to spatial
representation can be described by composing an element set containing one (or more) ID-based
elements, without any geo-reference.

Note that IElementSet can be used to query the geometric description of a model
schematization, but an implementation does not necessarily provide all topological knowledge on
inter-element connections.

The interface of a spatial reference (LSpatialReference) only contains a string ID. No other
properties and methods have been defined as the OpenGIS SpatialReferenceSystem specification
(OGC 2002) provides an excellent standard for this purpose.

The element set and the element are identified by a string ID. The ID is intended to be useful
in terms of an end user. This is particularly useful for configuration as well as for providing specific
logging information. However, the properties of an element (its vertices and/or faces) are obtained
using an integer index (elementindex, facelndex and vertexindex). This functionality is introduced as
an element set basically is an ordered list of elements, an element may have faces and an element (or
a face) is an ordered list of vertices. The integer index indicates the location of the element/vertex in

the array list.

While most models encapsulate static element sets, some advanced models might contain
dynamic elements (e.g. waves). A version number has been introduced to enable tracking of changes
over time. If the version changes, the element set might need to be queried again during the
computation process.

Page 27 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Table 1 OpenMI enumeration of ElementType

ElementType Convention

IDBased ID-based (string comparison)

XYPoint geo-referenced point in the horizontal (XY)-plane

XYLine geo-referenced line-segment connecting two vertices in the horizontal (XY)-plane. The begin- and
end-vertex indicate the direction of any fluxes.

XYPolyLine geo-referenced polyline connecting at least two vertices in the horizontal (XY)-plane. The begin- and
end-vertex indicate the direction of any fluxes. Open entity with begin- and end-vertex not being
identical.

XYPolygon geo-referenced polygons in the horizontal (XY)-plane. Vertices defined counter clockwise. Closed
entity with one face, begin- and end-vertex being identical

XYZPoint geo-referenced point in the 3-dimensional space (XYZ)

XYZLine geo-referenced line-segment connecting two vertices in the 3-dimensional space (XYZ). The begin-

and end-vertex indicate the direction of any fluxes.

XYZPolyLine geo-referenced polyline connecting at least two vertices in the 3-dimensional space (XYZ). The
begin- and end-vertex indicate the direction of any fluxes. Open entity with begin- and end-vertex
not being identical.

XYZPolygon geo-referenced polygons in the 3-dimensional space (XYZ). Vertices defined counter clockwise.
Closed entity with one face, begin- and end-vertex being identical

XYZPolyhedron geo-referenced polyhedron in the 3-dimensional space (XYZ). Closed volume/entity with at least
four faces Vertices for each face defined counter clockwise

3.2.2.2 ITime

Time in OpenMlI is defined either by a [TimeStamp interface or a [ITimeSpan interface, both interfaces
inherited from the abstract [Time interface (see Figure 8). A time stamp is a single (instantaneous)
point in time whereas the time span is a period from a begin time to end time.

«interface»
ITime
«interface» «interface»
ITimeSpan ITimeStamp
+ «property» Start() : [TimeStamp + «property» ModifiedJulianDay() : double
+ «property» End() : [TimeStamp

Figure 8 ITime and related interface

By convention, each of these times is represented by the Modified Julian Day. A Modified
Julian day is the Julian date minus 2400000.5. A Modified Julian Day represents the number of days
since midnight November 17, 1858 Universal Time on the Julian Calendar®. The Modified Julian Day
has been selected as a reference, since few models operate in a time horizon before 1858. Any date
before November 17, 1858 will be represented as a negative value.

see http://tycho.usno.navy.mil/systime.html

Page 28 of 79

http://tycho.usno.navy.mil/systime.html

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

3.2.2.3 IQuantity

To enable proper linkage of data without a data dictionary, a meta data structure is needed which
provides sufficient facilities to describe the semantics and enable automated checks on he semantics.
Figure 9 illustrates the meta-data structure defined in OpenMil.

IQuantity defines the interface to indicate what the values represent, i.e. model variable, or
model parameter to be exchanged. A quantity is identified by a string ID (typically a short name) and is
described by a description string (more extensive information for correct interpretation of the
semantics, direction etc.). The ValueType property indicates whether the values are scalar or vector
data.

«|nterfa(.:e» «interface» «enumeration»
IQuantity 1Unit DimensionBase
+ «property» ID() : string + «property» ID() : string
+ «property» Description() : string + «property» Description() : string + Length: int=0
+ «property» ValueType() : ValueType + «property» ConversionFactorToSI() : double + Mass int=1
+ «property» Dimension() : IDimension + «property» OffSetToSI() : double + Time: int=2
+ «property» Unit() : lUnit + ElectricCurrent: int=3
+ Temperature: int=4
. «interface» + AmountOfSubstance: int=5
«enumeration») oo
ValueType IDimension + Lummou.slr.nerlsny. int=6
+ Currency: int=7
+ Equals(otherDimension :IDimension) : bool + NUM BASE DIMENSIONS: int
+ Scalar: int=1 + GetPower(baseQuantity :DimensionBase) : double = =
+ Vector: int=2

Figure 9 IQuantity and related interfaces

The Unit interface is defined to indicate the unit’ in which a quantity is expressed. The |Unit
interface contains sufficient information to facilitate unit conversions between quantities. For a given
value v of a certain quantity, the conversion to the Sl value s can be done using the following

computation:
s = Unit.GetConversionFactorToSI() * v + Unit.GetOffsetToSI()

To enable (physical) dimension® checks between quantities, the [Dimension interface has been
defined. A dimension is expressed as a combination of base dimensions, derived from SI-system® ,
with a minor extension for currencies. This interface provides a method to obtain the power for each
dimension base , as well as a method to check if two dimensions are equal.

For example, a discharge expressed in unit m3/s has dimension Length*3Time”-1. Table 2 illustrates
the base quantities and the associated Sl units.

Table 2 Base units and dimension base in OpenMI (derived from Sl)

Dimension base Sl base unit symbol used
Length meter m
Mass kilogram kg

A unit has a definite magnitude, and can be used as a basis for measuring other things. The inch is a unit. The foot is
a different unit, because it has a different magnitude

8 A dimension describes the type of thing being measured, without specifying the magnitude. The inch and the foot both

have dimensions of length

More information on the Sl-system can be found at the National Institute of Standards and Technology
(http://physics.nist.gov/cuu/Units/)

Page 29 of 79

http://physics.nist.gov/cuu/Units/

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Time second 5
ElectricCurrent ampere

Temperature kelvin K
AmountOfSubstance mole mol
LuminouslIntensity candela cd
Currency™ Euro E

Note that some units are dimensionless, represent logarithmic scales or have other difficulty when
expressing in Sl. In that case it is recommended to pay extra attention to the descriptive part of a unit,
to ensure that the user which defines the link has proper understanding of the quantity.

3.2.2.4 IValueSet

To enable massive data exchange over a link, an interface structure has been defined that tightly
matches to the typical (flat array) implementation of computational cores. This interface (lValueSet)
represents an ordered list of values, where each value belongs to precisely one element in the
corresponding element set (as indicated in the link definition). In other words, the i-th value in the
value set corresponds to the i-th element in the element set.

Currently, two types of values are supported, namely scalar (IScalarSet) and vector
(IvectorSet), see also ValueT e'!. While a scalar set is composed of doubles, the vector set is
composed of vectors (IVector interface) with an X-, Y- and Z-component of the value. Figure 10
illustrates the associated static structures.

«interface»
IValueSet

+ «property» Count() : int
+ IsValid(elementindex :int) : bool

1 1

«interface» «interface»
IScalarSet IVectorSet
+ GetScalar(elementindex :int) : double + GetVector(elementindex :int) : IVector

«interface»
IVector

+ «property» XComponent() : double
«property» YComponent() : double
+ «property» ZComponent() : double

+

Figure 10 IValueSet and related interfaces

To prevent misunderstanding of positive and negative values, the following conventions are applied:

e values are positive if the matter leaves the source component and enters the target component
(this also is the case for volumes).

10 Currency is no base quantity in the Sl-system. Unfortunately, currency has conversion units that may vary over time

u As soon as real world applications show the need for additional ValueTypes, this enumeration might be extended.

Page 30 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

e The 'right hand rule' applies for fluxes through a plane or polygon, 12
e The direction of fluxes along a (poly)line is defined positive from the begin- to the end node.

e The right hand rule applies for fluxes perpendicular to a (poly)line®?

Fluxes in positive direction

igjl///?s\/“= ﬁ >,&"

(c) vertical plane (d) horizontal plane

(a) perpendicular
to polygon (b) along (poly)line perpendicular to (poly)line

Levels and depths in positive direction

(e) levels (f) depths

/r

earth centre

Figure 11 lllustration of directions to interpret positive values of fluxes,
levels and depths

Software developers that do not comply with those conventions should make software users aware of
this risk.

3.2.2.5 IDataOperation

Many situations occur where the raw data available at the source component does not match the
request in location and time of the target component. Additional data operations may be required,
varying from temporal averaging to spatial interpolation, etc. Especially when data is requested over a
time span, it should be known how a single element value needs to be computed, e.g. by averaging,
by accumulating, taking minimum or max. etc.

By convention, the source component has the responsibility to perform data operations, using the
intelligence as incorporated by the developer. Which data operations are available depends on the
developer. The |DataOperation interface is defined for this purpose (see Figure 12).

Curl your right hand in the vertex order of the plane or polygon. The thumb points in the positive direction

13 Put your hand along the line in the positive direction, turn your wrest clockwise. The thumb will point in the positive

direction perpendicular to the (poly)line.

Page 31 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

«interface»
|Argument

«property» Key() : string
«property» Value() : string
«property» ReadOnly() : bool
«property» Description() : string

+ + + +

«interface»
|DataOperation

«property» ID() : string

«property» ArgumentCount() : int

GetArgument(argumentindex :int) : IArgument

Initialize(properties :IArgument[]) : void

IsValid(inputExchangeltem:linputExchangeltem, outputExchangeltem :IOutputExchangeltem, SelectedDataOperations :IDataOperation(]) : bool

+ + + + +

Figure 12 The IDataOperation and IArgument interfaces

Each data operation may have a number of arguments to manipulate the behaviour of the data
operation. The ReadOnly property of an argument indicates whether the value may be changed, e.g.
in a user interface. Note that the IArgument interface is also applied at other places, sometimes having
fixed values.

Please note that the Value-property of IArgument is the only property of all interfaces which can be
‘set’. All other properties of all other interfaces only accommodate a ‘get’ function (see API-spec)..

A source component may execute several data operations, e.g. a spatial data operation and a
temporal one. However not all combinations are allowed. To enable checks on those combinations
without the need to define validation rules, the IsValid()-method has been introduced. This method can
test if the data operation is valid for this input/output combination given the combination with other
data operations that already have been selected. The latter accommodates a component to test
whether a time series accumulation is well perceived in the change of dimension (from time dependent
to a time independent dimension).

The Initialize()-method has been introduced to feed the providing component (who executes
the data operation) with the selected arguments.

Data operations may cover various aspects, e.g.

e temporal data operations
e.g. for time stamps: interpolation and extrapolation (linear, quadratic, by regression function)
e.g. for time spans: averaging, aggregate, accumulation, moving average, minimum value,
maximum value, first value, last value, all values

e spatial data operations
e.g. interpolations :krigging, inverse distance, all kinds of averaging, maximum value, minimum
value, etc.

e miscellaneous data operations
e.g. perform vertical shift, etc

3.2.3 Meta data interfaces to express what data can be exchanged

To set up a chain of linked components, information is needed on the existence of components and
the data they can exchange. Each component that can become part of the component chain has to
provide meta-data which describes the input and output data that potentially can be exchanged,
including the data operations it can provide. While in theory, this information may be given in a user
manual, in practice this information should be digitally ‘open’ to the outside world via a generic
interface.

Page 32 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

3.2.3.1 IExchangeltem

Typically a linkable component exchanges ‘a quantity on an element set’, i.e. always as a
combination. Although the base interfaces are known, an additional interface (IExchangeltem) has
been introduced to stress the combination of the two. For a linkable component, an exchange item
either is an input or an output. As discussed in Section 3.2.2.5, the source component can perform
data operations to tailor the data to the needs of the target component. The person setting up the links
selects the data operations desired, based on the list of operations offered by the source component.
Since the [Exchangeltem interface informs this person about the available output data available (i.e.
guantity on an element set), this seems a logical place to describe the available data operations. The
distinction between input (quantity on an element set) and output (quantity on an element set
supported by additional data operations) result in two interfaces, namely linputExchangeltem and
IOutputExchangeltem. Figure 13 illustrates those interfaces in a class diagram.

«interface»
IExchangeltem

+ «property» Quantity() : IQuantity
+ «property» ElementSet() : IElementSet

£ T

«interface» «interface»

linputExchangeltem IOutputExchangeltem

+ «property» DataOperationCount() : int
+ GetDataOperation(dataOperationindex :int) : IDataOperation

Figure 13 IExchangeltem interfaces

The descriptive |Exchangeltem interfaces have been incorporated in the main linkable component
interface of OpenMl, since most OpenMI-components exchange data in some way. If a component
has no Exchangeltems, it returns a Null when asked for its Exchangeltems.

Section 3.3.2 will discuss the dynamic behaviour of populating Exchangeltems in case they are not
known a-priori.

While these meta-data interfaces are embedded in the main linkable component interface, they might
sometimes be referred to as being the ‘exchange model’ of a linkable component.

3.2.4 Interface to define the link

3.2.4.1 ILink

The LLink interface (Figure 14) captures all information about the link between two linkable
components. Every link represents one quantity to be exchanged from the SourceComponent to a
TargetElementSet on the TargetComponent. The SourceElementSet is included to enable queries on

operations specified. By convention, the index order of the data operations determines the order in
which data operations are handled by the linkable component

Page 33 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

The link object is a semi-static object, i.e. the element set reference and quantity information
for one link object will remain constant after construction. Note however, that a dynamic element set
keeps the same reference but may change its content over time. Run-time changes in data operation
settings or new quantities being attached must be dealt with by removing and adding links.

«interface»
ILink

«property» ID() : string

«property» Description() : string

«property» SourceComponent() : ILinkableComponent
«property» TargetComponent() : ILinkableComponent
«property» TargetQuantity() : IQuantity

«property» TargetElementSet() : [ElementSet

«property» SourceElementSet() : [ElementSet

«property» SourceQuantity() : IQuantity

«property» DataOperationsCount() : int
GetDataOperation(dataOperationindex :int) : IDataOperation

+ o+ + + + + + o+ + +

Figure 14 ILink and associated interfaces

3.2.5 Interfaces for component access

3.2.5.1 ILinkableComponent

OpenMI-components need to have one interface which defines the generic access to the component.
As linking components is the most important functionality of OpenMI, the ILinkableComponent
interface, the interface enabling this linkage and data exchange, is the entry point of an OpenMI-
component and thus the key interface of OpenMlI. Figure 15 displays the interface.

Functionality to initialize the computational core:

o <method> Initialize. (arguments: lArgument[]): void
After instantiation of the LinkableComponent-object by its constructor, the Initialize method is
called to populate the object with specific information. After this method-call, the
LinkableComponent can be inspected for its meta data. Code developers may choose (but are
not forced) to instantiate the computational core or database and populate it with to site-specific
data. the Initialize() method allows instantiation of a computational core without having specific

knowledge about the component

Page 34 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

IPublisher
«interface»
ILinkableComponent

«property» ComponentlD() : string

«property» ComponentDescription() : string

«property» ModellD() : string

«property» ModelDescription() : string

«property» InputExchangeltemCount() : int

«property» OutputExchangeltemCount() : int

«property» TimeHorizon() : [TimeSpan

«property» EarliestinputTime() : [TimeStamp

Initialize (properties :IArgument[]) : void
GetlnputExchangeltem(inputExchangeltemindex :int) : lInputExchangeltem
GetOutputExchangeltem(outputExchangeltemindex :int) : IOutputExchangeltem
AddLink(link :ILink) : void

RemoveLink(linkID :string) : void

Validate() : string

Prepare() : void

GetValues(time :ITime, linkID :string) : IValueSet

Finish() : void

Dispose() : void

+ 4+ o+ o+ A+ + o+

Figure 15 ILinkableComponent interface

Functionality to accommodate inspection of the component, its content and exchangeable data:

o <property {get}> ComponentID() : string
Logical identification of the software unit (typically not populated with data), e.g SOBEK-CF,

Mikel1-HD, Isis Flow etc.

o <property {get}> ComponentDescription() : string
Description of the software unit (typically not populated with data), may include version
numbering etc.

o <property {get}> ModellD() : string
Logical identification of the content in terms of model/schematization/application area of the
software unit once populated with data

o <property {get}> ModelDescription() : string
Description of the content in terms of model/schematization/application area of the software
unit once populated with data (e.g. River Rhine)

o <property {get}> InputExchangeltemCount() : int
The number of different data sets that can be accepted as input (InputExchangeltems)

Method to obtain data on the potential input, by looping over all InputExchangeltems.

o <property {get}> InputExchangeltemCount() : int
The number of different data sets that can be provided as output (InputExchangeltems)

Method to obtain data on the potential output, by looping over all OutputExchangeltems.

e <property {get}> TimeHorizon:_ITimeSpan
The time span over which a component can provide data (either discrete or continuous). If a
component does not know time at all it returns a Null.

Page 35 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Note that the |DiscreteTimes interface (Section 3.2.5.3) is an optional interface to provide more
detailed information on the temporal discretization of available data.

Functionality to establish and validate the links:
o <method> AddL.ink(link: ILink): void

Every link must be added to its SourceComponent and its TargetComponent. By informing both
the source and target linkable component about their link, they can prepare themselves for

efficient data exchange at run-time.

Method typically called by the GUI at configuration time when links have been added. This call
enables validation of the current state of the model and its links, i.e. a check whether all input
data is available, either a-priori or at run-time, and consistent (as far as the a-priori data is
concerned). Returns an empty string if the component is in a valid state otherwise if will return
a message describing the problem. Displaying the message in the User Interface will enable
the user to correct the error (e.g. inconsistent quantities connected).

Run-time section: Preparation, computation/data transfer/retrieval, completion

e <method> Prepare.(): void
This method is invoked just before the first GetValues()-call. It enables the component to
prepare itself, e.g. instantiate the engine (if needed), setup the network connections, do a
model validation, prepare internal buffers and data mapping matrices, etc. If something goes
wrong, an exception will be thrown as opposed to Validate() where a message is returned

allowing the user to correct the error.

span. The component will respond to this call values by providing all values on the requested
elements for this specific time instance.

o <property {get}> EarliestinputTime() : ITimeStamp
This property enables an outside (source) component to detect the earliest time stamp at which
a (target) component requires input data. The (source) component can use this information to
manage its internal buffers (if any) or to prepare itself in another way.

The finish method is intended to be used for closing files. This means that a GUI can e.g.
inspect some results before the components are disposed.

Functionality to dispose the component:

¢ <method> Djspose(): void
Dispose is intended for de-allocation of memory (from unmanaged code). It is not required that
LinkableComponents can be initialised after invocation of Dispose. Dispose typically is called

when deployment is completed.

The ILinkableComponent interface is inherited from [Publisher interface. Any linkable component thus
must implement this interface (See 3.2.5.4 for more details). If a linkable component cannot provide
events it should indicate this by returning ‘zero’ when asked for the number of events it can publish.

Page 36 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Section 3.3 provides more insight in the call sequence to be adopted.

3.2.5.2 IManageState

Some process interactions require feedback loops and even iterations over time. To support this type
of functionality, the IManageState interface (Figure 16) has been defined, containing three methods.
return string identifier that enables future restoring. The state data itself is not of interest to OpenMI, so
the component developer can decide himself what needs to be stored and how (e.g. in memory, on
disk in a file or database). The only item to be returned is the key to identify the state, which will be

Please note that implementing the business logic of this interface is not obligatory to provide
an OpenMI compliant linkable component. However, one should be able to throw an exception if the
logic is not implemented.

«interface»
IManageState

+ KeepCurrentState() : string
+ RestoreState(statelD :string) : void
+ ClearState(statelD :string) : void

Figure 16 IManageState interface

3.2.5.3 IDiscreteTimes

Within and outside modelling exercises, many situations occur where ‘raw’ data is desired at the
(discrete) time stamp as it is available in the source component. A typical example is the comparison
of computation results with monitoring data, or a computational core that wants to adhere to the time
stepping of its data source. To keep the values fixed to the discrete times as they are available in the
source component, the |DiscreteTimes interface has been defined (see Figure 17). This interface can
provide a list of time stamps for which values of a quantity on an element set are available.

«interface»
IDiscreteTimes

+ HasDiscreteTimes(quantity :IQuantity, elementSet :[ElementSet) : bool
+ GetDiscreteTimesCount(quantity :IQuantity, elementSet :[ElementSet) : int
+ GetDiscreteTime(quantity :IQuantity, elementSet :IElementSet, discreteTimelndex :int) : [Time

Figure 17 IDiscreteTimes interface

3.2.5.4 |Publisher

A publish-subscribe pattern is introduced in combination with a high-level, property-based event
definition to enable troubleshooting and to facilitate development of monitoring and visualisation tools.
The |Publisher interface (Figure 18) defines that a component should be able to ‘publish’ to others
which events it can throw. By definition, the |Publisher interface is inherited by the
ILinkableComponent interface . If a linkable component does not publish events, it returns a ‘0’ when
asked for its PublishedEventTypesCount.

Page 37 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

«interface»
IPublisher

Subscribe(listener :IListener, eventType :EventType) : void
UnSubscribe(listener :IListener, eventType :EventType) : void
SendEvent(Event :IEvent) : void

GetPublishedEventTypeCount() : int
GetPublishedEventType(providedEventTypelndex :int) : EventType

+ o+ + + o+

Figure 18 IPublisher interface

3.2.5.5 IListener

The |Listener interface (Figure 19) enables components to catch events and act upon them. Events
are only published to listeners that have subscribed themselves at a publisher. Linkable components
can, but are not obliged to implement the IListener interface.

«interface»
IListener

+ OnEvent(Event :IEvent) : void
+ GetAcceptedEventTypeCount() : int
+ GetAcceptedEventType(acceptedEventTypeindex :int) : EventType

Figure 19 IListener interface

3.2.5.6 |IEvent

By convention, a linkable component is obliged to throw an exception when an internal irresolvable
error occurs (see Section 3.2.5.7). In all other error and warning situations an event is thrown. OpenMI
has standardized a high level interface for event (IEvent, see Figure 20) with some default properties

to be incorporated in any event. An enumeration of EventTypes has been defined to enable handling
of common events by various types of monitoring and support tools.

«interface» «enumeration»
IEvent EventType

«property» Type() : EventType

«property» Description() : string
«property» Sender() : ILinkableComponent
«property» SimulationTime() : ITimeStamp
GetAttribute(key :string) : object

Warning: int=0

Informative: int=1
ValueOutOfRange: int=2
GlobalProgress: int=3
TimeStepProgres: int =4
DataChanged: int=5
TargetBeforeGetValuesCall: int =6
SourceAfterGetValuesCall: int =7
SourceBeforeGetValuesReturn: int=8
TargetAfterGetValuesReturn: int =9
Other: int=10

NUM_OF EVENT_TYPES: int= 2005

+ o+ o+ + +

+ 4+ + o+ o+ o+ o+ +

Figure 20 IEvent interface

Page 38 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Note that events can also be grabbed and held to interrupt a computation. As this is the only

is highly recommended to throw events on a regular basis. Section 3.3.8 will explain the dynamics of
interrupting, the conventions to be applied as well as the logic behind the interrupting event. Table 3

provides an overview of the EventType enumeration of OpenMlI.

Table 3 EventType enumeration

EventType Description

Warning general warning message

Informative general information message

ValueOutOfRange indicates value out of range message

GlobalProgress indicates progress as % of global time horizon

TimeStepProgress indicates progress as % of time step

DataChanged indicates changes of (exchangeable) data within a component

TargetBeforeGetValuesCall enables tracing call stacks, send by target component before it invokes a
GetValues()- call

SourceAfterGetValuesCall trace event, send by source component after it receives a GetValues()- call

SourceBeforeGetValuesReturn trace event, send by source component before it returns the result from a

GetValues()- call

TargetAfterGetValuesReturn trace event, send by target component after it receives the result from a
GetValues()- call

Other all other types of events

3.2.5.7 Exceptions

By convention a linkable component has to throw an exception if an internally irrecoverable error
occurs. This exception should be based on the Exception-class as provided by the development
environment.. The exception might be caught by a deployer or User Interface which finally handles the
exception properly (e.g. if required with user interference).

3.2.6 Where to start the component access: the OMI-file

In the above mentioned sections, all interfaces of the OpenMI.Standard have been discussed. OpenMI
compliant components need to implement those interfaces. However, once implemented, one still
cannot get started as long as the software unit has not been identified properly. Therefore, the
information on the assembly and class to be instantiated has been combined in one registration file,
called the OMlI-file, which can be located anywhere on disk. This file also holds the arguments to
populate the component at the initialization phase. In addition to its interfaces, the OpenMI Standard
therefore also defines an Xml Schema Definition for the OMI-file. Figure 21 provides a graphical view
of the file structure according to the Xml Schema Definition. Figure 22 provides an example XML-file
while Annex I-B contains the XSD.

Page 39 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

B sttributes

LinkableComponent [%]—

Bl atributes

Key
- e (o e B iy
R P

Figure 21 Graphical view of the OMI-file structure

<?xml version="1.0"?>

<LinkableComponent Type="wlDelft.OpenMl_WLLinkableComponent" Assembly="wlDelft.OpenMl, Version=1.4.0.0,

Culture=neutral, PublicKeyToken=8384b9b46466c568" xmlns="http://www.openmi.org/LinkableComponent.xsd">
<Arguments>
<Argument Key="Model" ReadOnly="true" Value="RR" />

<Argument Key="Schematization" ReadOnly="true" Value="D:\Rain-RR-CF\Model\Cmtwork\sobek_3b.fnm" />
</Arguments>

</LinkableComponent>

Figure 22 lllustrative example of the OMI-file content

Page 40 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification

The OpenMI Association © 2007

3.3 org.OpenMI.Standard: Dynamic view

3.3.1 Phases in utilizing the linkable component interface

An OpenMI linkable component provides a variety of services which can be utilized in various phases
of deployment. Figure 23 provides an overview of the phases that can be identified, and the methods
which might be (logically) invoked at each phase. While the sequence of phases is prescribed, the
sequence of calls within each phase is not prescribed.

Deployment phases and call sequence of an OpenMI LinkableComponent

initialization phase

inspection &
configuration phase

preparation phase

computation/
execution phase

completion phase

disposure phase

| nitalize(

!

ComponentID
ComponentDescription
ModellD

ModelDescription
InputExchangeltemsCount
OutputExchangeltemsCount
GetlnputExchangeltem()
GetOutputExchangeltem()
TimeHorizon

AddLink()

RemoveLink()

Validate()
'

Prepare()

GetValues()
EarliestinputTime

SaveState() **
RestoreState() **
ClearState() **

AddLink() »
RemoveLink() »

|

Finish()

v

| Dispose()

A 4

GetPublishedEventTypeCount #
GetPublishedEventType() #
SubScribe() #

UnSubscribe() #

SendEvent() #

HasDiscreteTimes() *
GetDiscreteTimesCount() *
GetDiscreteTime() *

Methods from IPublisher interface

Implementation is optional
* if component implements
IDiscreteTimes interface

** if component implements
IManageState interface

A if component supports dynamic
adding/removing links

Figure 23 Deployment phases and associated call sequence of OpenMI
Linkable Components

The various phases will be discussed briefly, except for the computation phase. The dynamic
behaviour of the computation phase will be discussed in more detail with a use case involving three
linkable components, namely a rainfall-runoff mode, a river model and a groundwater model.

The chapter will be completed with a few sections on event and exception handling, the interruption of
the computation process and other dynamic behaviour issues.

3.3.2 Phase I: Instantiation and initialization

This phase ends by the situation where a linkable component has sufficient knowledge to populate
itself with model data and expose its exchange items. Whether the linkable component has been
populated with model data depends on the solution chosen by the code developer.

Page 41 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

The phase is composed of two steps:

1. Instantiation
a LinkableComponent will be constructed using the software unit which has been referred to in the
OMl-file

2. Initialization
the LinkableComponent can be populated with input data by calling the Initialize() method with the
arguments as listed in the OMI-file. The arguments typically should contain references to data
files. In situations where the initialization is not completed successfully, an exception should be
thrown with sufficient information to solve the problem.

3.3.3 Phase II: Inspection and Configuration

Dependent on the setting this phase might be very static and straightforward or very dynamic. The end
situation of this phase is the following: The links have been defined and added and the component has
validated its status™.

The following steps can be identified:

3. Request for the exchange items
Ask the LinkableComponents for its OutputExchangeltems and InputExchangeltems; using the
methods {item}Count/Get[item}

4. Create and add links
Instantiate the link-objects
populate them
check the validity of its data-operation(s) in combination with other selected data operations; using
IDataOperation.IsValid, and
add the links to the components; using method ILinkableComponent.AddLink

5. Validation
Validate the status of the components and their links; using the ILinkableComponent.Validate
method

Hard coded systems will not require step 3. All use cases require step 4, while step 5 is highly
recommended. Use cases having linkable components with a-priori knowledge on exchange items can
easily respond to step 3. Use cases where the exchange items depend on connected components will
require a dynamic querying process to reply with proper information.

3.3.4 Phase lll: Preparation

This phase is entered just before the computation/data retrieval process starts. Its main purpose is to
define a clear take off position before the bulky work load starts. This phase contains only one
method: Prepare().

During this phase database and /or network connections might be established, monitoring
stations might be called or model engines might prepare themselves e.g. by populating themselves
with schematization input data (if this has not been done before), opening their output files, organizing
their buffers, creating their data mapping matrices for (spatial) interpolation purposes, etc.

Note: this phase must include a final validation on the status of the linkable component.

14 L .))
Note that any model combination is not persistent unless tools are used to save such configuration. The

org.OpenMlI.Utilities.Configuration package provides this type of facilities.

Page 42 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

3.3.5 Phase IV: Computation/execution (including data transfer)
During this phase, the heavy work load will be executed and associated data transfer will get bulky.

The data transfer mechanism of OpenMl is defined as a request-reply service mechanism, having
direct interaction between two linkable components without any involvement of external facilities. Two
types of data transfer are distinguished: unidirectional data transfer and bi-directional data transfer.

In addition, the call sequence of advanced linkages based on state management, e.g. iteration, will be
discussed as well.

3.3.5.1 Unidirectional data transfer (one way)

Figure 24 illustrates the calling sequence between two linkable components in case of unidirectional
data transfer. The data transfer is illustrated by the link between a Rainfall-Runoff model and a
RiverModel as this type of link typically is uni-directional (from RR model to RiverModel).

In the diagram, it is assumed that the RR model has not yet the requested data available, but has
sufficient information to compute the runoff upon request. Note that diagram peers into the private
handling of the GetValues()-call, typically by looping over its own time step until the requested time
has been reached.

@ «interface» «interface»
RiverModel : RRmodel :

MainProgram ILinkableComponent ILinkableComponent
I

] 1
! Getvalues(time=t1, linkD=TriggerLink) |
1 1

[O

(2

return ValueSet: Runoff hile RRtime < RMtime + _dt}

ot e e

PerformTimeStep

{while RMtime < t1}
return ValueSet: RiverFlow

Figure 24 Unidirectional data transfer (sequence diagram)

1. Invocation
The computation is started by triggering the last component in the chain. The RiverModel
component is invoked, where the time argument defines the time for which results are expected
from the RiverModel.

2. Computation RiverModel
the RiverModel will evaluate whether its internal time (RMtime) is before or after the requested
time (t1). While RMtime is less than t1, the RiverModel will perform time steps. The RiverModel
will, before each time step, retrieve the runoff from the RR model by invoking the GetValues()
method in the RR model.

3. Computation RR model
The RR model will perform as many time steps as necessary in order to calculate the requested
value.
Note that the two models do not need to have matching time steps. It is the responsibility of the

Page 43 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification

The OpenMI Association © 2007

delivering model to do any interpolation (or extrapolation) required in order to return a value that
represents the time argument in the GetValues() call.

3.3.5.2 Bidirectional data transfer (two way)

Figure 25 illustrates the calling sequence between two linkable components in case of bidirectional
data transfer. The data transfer is illustrated by the link between a RiverModel and a
GroundWaterModel with the RiverModel providing a surface water level to the GroundWaterModel,
and the GroundWater model providing a lateral inflow to the RiverModel. The two components have
been instantiated and prepared in Section 3.3.3 and 3.3.4.

In the diagram, it is assumed that both the RiverModel and GroundWaterModel have not yet the
requested data available, but have sufficient information to compute the data requested. For
illustration purposes, the time step of the GroundWaterModel is has been set to two times the time
step of the RiverModel. The iteration of the RiverModel (2 time steps) has been written out.

(1

O

MainProgram

ILinkableComponent

«interface»

RiverModel : GroundWaterModel :
ILinkableComponent

GetValues(t2,TriggerLink)

«interface»

PerformTimeStep (t2)

g
2] B GetValues(time=t1, linkD=QtoRiver)
< GetValues(time=t2, link D=HtoGW)
(3] Extrapolate (t2)
[4]
_____ return extrapolated ValueSet: HioGW (2)
N
[5]
return interpolated ValueSet QtoRiver (t1)
—B PerformTimeStep (t1)
[6]
L H_—l
—B GetValuestime=t2, linkilD=QtoRiver)
(71
ez - Ietum ValueSet QtoRiver (12) ____
PerformTimeStep (t2)
Lo _fetum ValueSet Hriver (12) ____|
T T
1 1
1 1
1 1
1 1
1 1
! :
RiverModel usestime step t1, GroundwaterModel uses time step t2 Iﬁ
Figure 25 Bidirectional data transfer (sequence diagram)
Invocation

Ml

The computation is started by using the TriggerLink to trigger the last component in the chain. The
RiverModel component is invoked, where the time argument defines the time for which results are
expected from the RiverModel.

Page 44 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

2. Computation RiverModel
(the RiverModel will evaluate whether its internal time is before or after the requested time (t2)).
The RiverModel will, before each time step, retrieve the lateral inflow from the GroundWaterModel
by invoking the GetValues() method in the GroundWaterModel.

3. Computation GroundwWaterModel
(the GroundWaterModel will evaluate whether its internal time is before or after the requested time
(t1)). The GroundWaterModel, currently at t0, is only able to compute a lateral flow at t2. A request
for t1 requires interpolation. To compute a lateral flow at t2, it requires the water level in the river
at t2. For this purpose, the RiverModel is invoked by the GetValues() method with time t2.

4. Extrapolation RiverModel
After receiving the GetValues() call for t2, the RiverModel determines that it already is computing
t1. A new computation process thus cannot be started. The deadlock between the two
components, waiting for each other, needs to be broken by returning the best guess of a water
level.

5. Continue computation groundwater level
Utilizing the data returned, the GroundWaterModel is able to compute the lateral flow for t2. Based
on the outcome it can return an interpolated value for t1.

6. Continue computation river model, iteration step t1
The RiverModel has received all requested data for t1 and can compute do its iteration step over
tl.

7. Continue computation river model, iteration step t2
For the second iteration step of the RiverModel (t1 to t2), the model again asks the
GroundWaterModel for a lateral flow at t2. As this has been computed before (in step 5), the
GroundWaterModel can directly return the result. The RiverModel can perform its time step t2 and
return the requested data to the main program.
Note that the software developer of the GroundWaterModel may choose for an implementation
that does recomputed the lateral flow based on an update and hopefully more accurate, water
level extrapolation for t2.

3.3.5.3 Managing states using IManageState

The IManageState interface has been introduced to accommodate the development of advanced
controllers for iteration and optimization purposes. Figure 26 illustrates how the IManageState
interface can be utilized to enable iteration between a GroundWaterModel and a RiverModel. Both the
GroundWaterModel and the RiverModel implement the IManageState interface. A separate linkable
component has been introduced to supervise the iteration, i.e. the IterationController. This controller
holds internal links to the GroundWaterModel and the RiverModel, while it hides the two models to the
‘outside’ world (i.e. the main program).

The procedure can be as follows:

1. Invocation
The main program calls the IterationController to provide the surface water level. The
IterationController starts it iteration by saving the state of the models at the beginning of the time
step.

2. Initial guess
The IterationController than produces its first guess of the flux between the RiverModel and
GroundWaterModel

3. Restore states
The iteration is entered with restoring the state of the GroundWaterModel and the RiverModel to
their begin situation.

Page 45 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

4. Groundwater level requested
The GroundWaterModel is requested for its groundwater level. To answer this question, the
GroundWaterModel requires the flux from the iteration controller. The guessed value of the
controller is returned, after which the GroundWaterModel can compute and deliver its groundwater
level.

5. Surface water level requested
The RiverModel is requested for a better estimate of the surface water level. This estimate can be
delivered after the RiverModel received an updated value for the flux (i.e. from the controller).

6. Update guess
Based on the new information (surface and groundwater level), the IterationController can
determine a new estimate for the flux and start another iteration (if the flux has not stabilized yet).

7. Once the flux has stabilized, the surface water level can be returned to the main program.

IterationController «interface» «interface»
: RiverModel : GroundWaterModel :

MainProgram ILinkableComponent ILinkableComponent ILinkableComponent

E GetValues(time=t2, linkilD=H_SW)
1 »L

KeepCurrentState

T
1
1
]
]
1
i
RiverState_t_begin
S et

T
1
1
]
]
1
1
1
1
i
KeepCurrentState H
GWStatelt begin
Il -~~~ P T e

InitialGuess(QtoGW)

et |

GetVaIues(time:t;Z, linkiD=H_GW)

GetVal ues(time:tTZ, link D=QtoGW)

QtoGV\/ guess
———————————————————————————— oo m oo >

-
I
|
|
|
|
|
|
|
|
|
|
|
|
T =
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

:

s
1
1
1
1
1
1
1

GetValues(time=t2, linkD=H_SW)

GetValues(time=t2, IinkID:QtoGWP

QtoGW_guess

Evaluate

NewGuess(QtoGW)

result: H_SW
<____________: ___________

[71

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Y SRR

e

Figure 26 lllustration how IManageState can be used for iterations
(sequence diagram)

Page 46 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

3.3.5.4 Managing internal buffers using EarliestinputTime

Within a model combination involving several components, it may happen that several components
ask one component for data at the same time stamp. To prevent the need of re-computation for each
request, such source component will possibly have an internal buffer to store data for its connected
components, even when they haven't asked for it yet. However, buffers get filled and need to be
emptied. To prevent flushing data which still is needed, the EarliestinputTime-property has been
implemented.

The example of Figure 27 is an extension of the iteration between the GroundWaterModel and the
RiverModel. It is an extension of Note [5], since the RiverModel requires inflows from the RRmodel to
compute its water level. In this example, the RR model investigates whether its buffer can be cleared.

Zoom in on Note [5] of the GroundWaterModel-RiverModel iteration Iﬁ
«interface» «interface» «interface» «interface»
IterationController : GroundWaterModel : RiverModel : RRmodel :
ILinkableComponent ILinkableComponent ILinkableComponent ILinkableComponent
i i i i
— | : : :
5 . GetValuegtime=t2, linkiD=H_SW) »_: H
T 1
Bl ! GetValues(time=t2, linkD=QtoRiver) !
i -
1
1 . .
N ! < EarliestinputTime() :|
5]b EarliestinputTime
(5] < putTime) .
t1 i > i
——————————————————————— e bl
i ______________EJ;____________> H
_B ! ClearBufferTo(tl)
1
[5]c :
i RetrieveFromBuffer(t2)
i
i s values(t2, QtoRiver)
N\ < GetValues(time=t2, linkD=QtoGW) .
(5] d QtoGW_guess >l i
H PerformTimestep(t2) H
i i
1 1
H_SwW |
S s B e ;
1

Figure 27 Using EarliestinputTime to clear internal buffers (sequence
diagram)

5. a) As part of the iteration, the IterationController asks the RiverModel to provide the surface
water level. In order to compute this value, the RiverModel requires inflow data from the RRmodel.
In this case, a direct link had been defined between the RiverModel and the RRmodel.

b) The RRmodel already has computed a number of time steps and has put them in a buffer. To
keep the size of the buffer within range, the RRmodel first wants to clear the buffer as far as
possible. Therefore, it asks its target component(s), i.e. the RiverModel for the earliest input time
that will be requested by this model.

To answer this question, the RiverModel needs to interrogate its target component(s). Therefore it
asks the lIterationController (its target component) for the same information. The IterationController
is aware for what period the iteration takes place, so its passes back the begin time of the
iteration. The RiverModel compares the answers from its target components with its own
knowledge and returns the earliest time in its list.

Page 47 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

c) Based on this information the RRmodel clears its buffer as far as possible, retrieves the
requested data from its buffer and returns this to its target component, the RiverModel.

d) The RiverModel now can proceed with the remaining steps of note 5. It retrieves the
groundwater-river flux from the IterationController, computes its own time step and returns the
requested values to the IterationController.

Please note that many use cases can be identified where components use internal buffers. In all those
situations, providing components need to be able to interrogate their target components.

3.3.6 Phase V: Completion

This phase comes directly after the computation/data retrieval process is completed. Code developers
can utilize this phase to close their files and network connections, clean up memory etc. This phase
contains only one step with one method-call: Finish().

3.3.7 Phase VI: Disposure

This phase is entered at the moment an application is closed. All remaining objects are cleaned and
all memory (of unmanaged code) is de-allocated. Code developers are not forced to accommodate re-
initialization of a linkable component after Dispose() has been called.

3.3.8 Pausing and stopping computations

In many situations, the end user would like to keep more direct control over the computation process
in order to stop or pause the computation. The data transfer mechanism of OpenMl is defined as
single thread of synchronous GetValues() calls. As GetValues is the mechanism that starts the
process and keeps it going, it has been decided that any more direct interruption mechanism should
be incorporated in the same thread.

The event mechanism is applied for this purpose, using a listener (event handler) that can
grab and hold the computation thread if required. Pausing can be done by an ‘event handler’ that
grabs and holds the computation thread, and returns the thread when resuming. Stopping can be
done by an ‘event handler’ that grabs and holds the ‘computation’ thread, calls the Finalize functions
of all involved components and kills the ‘computation’ thread. Any event type is suitable for this
purpose, but trace events (the ones surrounding the GetValues() call) are preferred mostly. Note that
the linkable component should be in a consistent state when it throws the event, as the user may want
to save this state for future use.

Both mechanisms work similar. The ‘Pause’ variant has been illustrated in Figure 28. In the
example, two linkable components are involved, i.e. a Rainfall Runoff model and a RiverModel.

1. The user passes the start event to the main program. The main program triggers the RiverModel
by a GetValues() call. The RiverModel sends a trace event after it received the GetValues call.
The component waits until it receives the thread back.

2. Once the thread is back, it performs a GetValues() call to the RR model. The RR model sends a
trace event after it received the GetValues call. The component waits until it receives the thread
back.

3. The compute performs a time stepping loop, sending a data changed-event after each internal
time step. Before the data is returned a trace event is send to inform the listener that the values
will be passed back

Page 48 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

4. Inthe mean while, the end user requested the main program for a pause. The main program waits
until it receives the next event from the computation thread, in this case a trace event, and holds
the thread.

5. The end user has asked the main program to continue, so the main program returns the thread to
the RR model, which can continue by returning the results to the RiverModel.

6. The RiverModel sends a trace event that it received the control from the GetValues() call stack.
After the thread is returned by the main program, the RiverModel can compute its time step.

7. After computation the RiverModel send a data changed event. When the thread is returned, it
sends a trace event informing that the values are passed back.

8. When the thread is returned in passes the value set back

|_O «interface» «interface»
RiverModel : RR model :

MainProgram ILinkableComponent ILinkableComponent
User : H |
i IListener | |
H Start >_L i i
GetValues(time=t1,TriggerLinkiD) »L i
1
1l OnEvent(SourceAfterGetValuesCall) i
-t |
| _____retum computation thread ___ | i
GetValues(time=t1,linkiD=QtoRiver) |
—[o
[2]
< OnEvent(SourceAft?rlGetVaIuesCaII)
T
return computation thread
| o ______fetumcompuationthead >l
_B r——| pPerformTimeStep((dt)y
| |
[3] OnEvent(DataChanged) | L |
- 2t hread I I
return computation threa
A 1--=3 |
L]
o < OnEvent(SourceBeforeGetValuesReturn) “ 1 '™~ " Tuntil RRtime=t1}
ause |
—> 1 T
[4] L ' i
! | |
! | |
1
AN Resume ! H '
o : |
&1 e fewmcomputationthread .
i
1 .
1z reum ValueSet(QtoRiver, t1)__ |
: OnEvent(TargetAfterGetValuesReturn)
(6] | _____retum computation thread ___
PerformTimeStep(RM_dt)
OnEvent(DataChanged)
< >
72
21Event(SourceBeforeGetVaIuesReturn)
| _____fetum computation thead __ >
18] e return ValueSet(tl)

-1

e an me
\ | |
H | |
H ' '

Figure 28 Pause and resume of a computation process (sequence
diagram)

This example illustrates a situation where almost all event types (of Table 3) are applied. Whether this
is a real case depends on the way the linkable component applies events. Although many messages
pass along, the traffic of events does not take many resources as the events are ‘lightweight’

Page 49 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

information carriers. Clearly the response time is very fast, even in multiple component chains.
Pausing ‘the natural way’ (a dying call stack) would result in a reaction of the system by the time the
results of the RiverModel are returned.

Typically, the component having the task of the main program will register for many event
types send by all linkable components in a computation chain.

Within OpenMI various kinds of event types are defined for usage by any supporting
environment or tools (see Table 3, Section 3.2.5.6). Although usage of events is not mandatory, they
are highly recommended to create user friendly systems for both end-users (which want quick
responses) as well as developers (which want debug facilities).

3.3.9 Miscellaneous issues

3.3.9.1 Using events for logging and visualization

The event mechanism is also applied to enable on-line visualization. Figure 29 illustrates how
a DataChanged-event can be used to update a visualization, by retrieving the computed data using a
GetValues() call. In a similar way, other listeners can be implemented for logging all kinds of data
traffic and progress.

@ «interface» «interface»
RR model : Visualization

MainProgram ILinkableComponent :IListener
JIListener

GetValues(time=t1,linkD=TriggerLinkiD)

i
:
1
> i
[1] r—|-————————- 1 i
| PerformTimeStep I 1
I 1
I I i
| [JI !
bl F—m———— —— — —
return ValueSet Runoff {while RRime<ti} i
"""""""""""""""""""" - OnEvent(DataChanged !
2l : T (ged) >
1
1
1 < GetValues(time=t1, linkiD=TriggerLinkiD)
1
[3] i retumn ValueSet Runoff
e > UpdateDisplay
:
! return handle
i return handle (S ommTmTTmomTomTTomTmmsoommomm oo
[T< | |
1

Figure 29 On-line visualization using a DataChanged-event (sequence
diagram)

Acting upon a GetValues() request, the RR model starts computing until the requested time.

2. Once the time stamp is reached, the data is returned to the requesting component.
Simultaneously, listeners that have subscribed to the DataChanged-event type are notified that
data has changed.

3. The Visualization component is such listener and decides to retrieve the data and update its
display. All handles are returned to the GUI.

Page 50 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

3.3.9.2 Exceptions

By convention, a Linkable Component is obliged to throw an Exception when an internal irresolvable
error occurs. This Exception is caught by the component that called the linkable component. If this
component cannot react properly, it has to pass the exception until the level that a component can
handle the exception. Figure 30 provides a simple illustration where the only computing component
generates an exception. The main program cannot handle it properly and asks the user for a manual
intervention.

@ «interface»
RR model :

MainProgram ILinkableComponent

User IListener
I

-

Start

GetValues(time=t1,TriggerLinkiD)

PerformTimeStep

ComputationException.InvalidArithmetic

user dialogue shown

Figure 30 Sequence diagram: exception

3.3.9.3 Obtaining listed items

Within the OpenMI interface definition, many classes contain other classes in a list wise sense. Figure
31 illustrates the common method to obtain listed items. Note, by convention, the first item in the list
starts with index O.

AnObject «interface»
:ILink

DataOperationsCount()

GetDataOperation(index) |

[|

|
I retumn |DataOperation(index) |
I [m - mmmmmmmmm oo s —mnooooeo I

Figure 31 Sequence diagram: obtaining listed items

Page 51 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

3.4 OpenMI compliance

Each OpenMI compliant component is available as a software unit which must implement the
ILinkableComponent interface, including all underlying interfaces of the org.OpenMI.Standard
namespace, and have an associated registration file (the OMI-file). This software unit should adhere to
the calling phases as grouped in Section 3.3.1.

A few special situations may occur:

IListener interface is optional
The |Listener interface is only needed if a component wants to register for specific events and
handle accordingly.

IManagesState interface is optional.

If state management is not supported by a linkable component, one cannot implement the logic
of the IManageState interface. Therefore one should not implement this interface or throw an
exception.

IDiscreteTimes interface is optional

If a component does not know time at all (TimeHorizon is Null), it should not implement the
logic of the |DiscreteTimes interface. In all other case it is recommended to implement
IDiscreteTimes. In case |DiscreteTimes interface is not implemented, the component should

method calls.

No input exchange item
OpenMI compliant data sources not acting as data destination (e.g. input databases or
monitoring stations) must return a ‘zero’ for the item count and a Null for any

No output exchange item

OpenMI compliant data destinations not acting as data source role (e.g. visualization) must
No events to publish

OpenMI compliant linkable components that do not publish events must still implement the

IPublisher-interface. They must return a ‘zero’ (0) for the PublishedEventTypesCount and throw

an exception for all other method calls.

Page 52 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

References

Buschmann et.al., Pattern-Oriented Software Architecture, a System of Patterns, John Wiley & Sons,
1996.

Gregersen, J.B.G. et al. (2002), Requirements Analysis. Report of Work Package 2. IT Frameworks
(HarmonIT) EC Framework 5. Energy, Environment and Sustainable Development. Contract EVK1-
CT-2001-00090

OpenMI Association (2007a) Scope of the OpenMI architecture. Part A of the OpenMI report series.
OpenMI Association (2007b) OpenMI Guidelines. Part B of the OpenMI report series.

OpenMI Association (2007d) org.OpenMI.Backbone technical documentation. Part D of the OpenMI
report series.

OpenMI Association (2007e) org.OpenMI.DevelopmentSupport technical documentation. Part E of the
OpenMI report series.

OpenMI Association (2007f) org.OpenMl.Utilities technical documentation. Part F of the OpenMI report
series.

OGC (2002) The OpenGIS Abstract Specification Topic 2: Spatial referencing by Coordinates OGC
01-063r2, OpenGlIS Consortium Inc.

WGS84 (1984) World Geodetic system. http://www.wgs84.com

Page 53 of 79

http://www.wgs84.com

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Page 54 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Annex | org.OpenMl.Standard in short

Annex I-A The interface definitions

data definitions

What <<|nterfaf:e>> «interface» «enumeration»
IQuantity 1Unit DimensionBase
: «property» ID() : string o + «property» ID() : string ——
N «property» Delscnpllon().. slr:ng + «property» Description() : string + Leng.th‘. |nj =0
«property» Va UETYPEO : ValueType + «property» ConversionFactorToSl() : double o MassHint=i
+ «property» DerenS|onQ: IDimension + «property» OffSetToSI() : double o Tlme:‘ int=2)
+ «property» Unit() : lUnit + ElectricCurrent: int=3
+ Temperature: int=4
_ «interface» + AmountOfSubstance: int=5
«enumeration» BieaE + Luminousl.ntensity: int=6
ValueType + Currency: int=7
+ Equals(otherDimension :IDimension) : bool + NUM BASE DIMENSIONS: int
+ Scalar: int=1 + GetPower(baseQuantity :DimensionBase) : double = =
+ Vector: int=2
«interface»
IValueSet
+ «property» Count() : int
+ IsValid(elementindex :int) : bool
4 4 «interface»
IVector
«interface» «interface» R
+ «property» XConponent() : double
IScalarset INECtorSet + «property» YConponent() : double
+ GetScalar(elementindex :int) : double + GetVector(elementindex :int) : IVector + «property» ZConponent() : double
When «interface»
ITime
«interface» «interface»
ITimeSpan ITimeStamp
+ «property» Start() : [TimeStanp + «property» ModifiedJulianDay() : double
+ «property» End() : MimeStamp
«interface» .
Where «enumeration»
IElementSet ElementType
+ «property» ID() : string
+ «property» Description() : string + IDBased: int=0
+ «property» SpatialReference() : ISpatialReference + XYPoint: int=1
+ «property» ElementType() : ElementType + XYLine: int=2
+ «property» ElementCount() : int + XYPolyLine: int=3
+ «property» Version() : int + XYPolygon: int =4
+ GetElementindex(elementID :string) : int + XYZPoint: int=5
+ GetElementID(elementindex :int) : string + XYZLine: int=6
+ GetVertexCount(elementindex :int) : int + XYZPolyLine: int=7
+ GetFaceCount(elementindex :int) : int + XYZPolygon: int=8
+ GetFaceVertexindices(elementindex :int, facelndex :int) : int[] + XYZPolyhedron: int=9
+ GetXCoordinate(elementindex :int, vertexindex :int) : double
+ GetYCoordinate(elementindex :int, vertexindex :int) : double «interface»
+ GetZCoordinate(elementindex :int, vertexindex :int) : double . "
ISpatialReference «interface»
+ «property» ID() : string lagiment
+ «property» Key() : string
+ «property» Value() : string
HOW + «property» ReadOnly() : bool
+ «property» Description() : string
«interface»
IDataOperation
+ «property» ID() : string
+ «property» ArgumentCount() : int
+ GetArgument(argumentindex :int) : IArgument
+ Initialize(properties :IArgument(]) : void
+ IsValid(inputExchangeltem:linputExchangeltem, outputExchangeltem:lOutputExchangeltem, SelectedDataOperations :IDataOperation([]) : bool

Page 55 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

meta data to express what can be message definition
exchanged ainteraces

«property» DataOperationsCount() : int
GetDataOperation(dataOperationindex :int) : IDataOperation

IEvent
Sinteracesy + «property» Type() : EventType
IExchangeltem + «property» Description() : string
+ «property» Quantity() : IQuantity + «property» SgnderQ : IL.inkabIe(.:onponem
+ «property» ElementSet() : I[ElementSet + «property» SimulationTime() : TimeStamp
4 4 + GetAttribute(key :string) : object
«interface» «interface» «enumeration»
EventType
linputExchangeltem I0utputExchangeltem 2
+ «property» DataOperationCount() : int + Waming: int=0
+ GetDataOperation(dataOperationindex :int) : IDataOperation + Informative: int=1
+ ValueOutOfRange: int=2
+ GlobalProgress: int=3
. . . + TimeStepProgres: int=4
specification what will be + DawChanged: imt=5
+ TargetBeforeGetValuesCall: int =6
exchang ed an d h OW + SourceAfterGetValuesCall: int=7
+ SourceBeforeGetValuesReturn: int=8
" + TargetAfterGetValuesReturn: int=9
«interface» + Other: int=10
ILink + NUM_OF _EVENT_TYPES: int = 2005
+ «property» ID() : string
+ «property» Description() : string «interface»
+ «property» SourceComponent() : ILinkableComponent IListener
+ «property» TargetConponent() : ILinkableComponent -
+ «property» TargetQuantity() : IQuantity + OnEvent(Event :IEvent): void
+ «property» TargetElementSet() : [ElementSet + GetAcceptedEventTypeCount() : int)
+ «property» SourceElementSet() : IElementSet + GetAcceptedEventType(acceptedEventTypelindex :int) : EventType
+ «property» SourceQuantity() : IQuantity
+
+

component interfaces for generic component access

IPublisher
«interface»
ILinkableComponent

«property» ComponentID() : string

«property» ComponentDescription() : string

«property» ModellD() : string

«property» ModelDescription() : string

«property» InputExchangeltemCount() : int

«property» OutputExchangettemCount() : int

«property» TimeHorizon() : MimeSpan

«property» EarliestinputTime() : [TimeStanp

Initialize(properties :IArgument(]) : void
GetlnputExchangetem(inputExchangeltemindex :int) : InputExchangeltem
GetOutputExchangeltem(outputExchangelttemindex :int) : IOutputExchangeltem
AddLink(link :ILink) : void

RemoveLink(linkID :string) : void

Validate() : string

Prepare() : void

GetValues(time :ITime, linkiD :string) : IValueSet

Finish() : void

Dispose() : void

advanced component interface extensions (optional)

o+ F F o F o+ FF o+

«interface» «interface»
IManageState IDiscreteTimes
+ KeepCurrentState() : string + HasDiscreteTimes(quantity :IQuantity, elementSet :[ElementSet) : bool
+ RestoreState(statelD :string) : void + GetDiscreteTimesCount(quantity :IQuantity, elementSet :[ElementSet) : int
+ ClearState(statelD :string) : void + GetDiscreteTime(quantity :IQuantity, elementSet :IElementSet, discreteTimelndex :int) : ITime

Page 56 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification

The OpenMI Association © 2007

Annex |I-B The OMI file definition

Graphical view on the OMI-file structure

B sttributes

LinkableComponent [%]—

Bl atributes

The Xml Schema Definition of an OMI file

<?xml version="1.0" ?>

</xs:element>

</xs:schema>

<xs:schema id="LinkableComponent" targetNamespace="http://www.openmi.org/LinkableComponent.xsd"
xmIns:mstns="http://www.openmi .org/LinkableComponent.xsd"
xmIns="http://www.openmi.org/LinkableComponent.xsd"

xmIns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
attributeFormDefault=""qualified" elementFormDefault="qualified">
<xs:element name="LinkableComponent">

<xs:complexType>

<Xs:sequence>

<xs:element name=""Arguments" minOccurs="1" maxOccurs="1">
<xs:complexType>

<Xs:sequence>

<xs:element name=""Argument" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="Key" form="unqualified" type="'xs:string" />

<xs:attribute name="ReadOnly" form="unqualified" type='xs:boolean'" use="optional" />

<xs:attribute name="Value" form="unqualified" type="xs:string" />
</xs:complexType>

</xs:element>

</Xs:sequence>
</xs:complexType>
</xs:element>

</Xs:sequence>

<xs:attribute name="Type" form="unqualified" type="'xs:string" />

<xs:attribute name="Assembly' form="unqualified" type=''xs:string" use="optional" />
</xs:complexType>

Page 57 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification

XML-look of the OMI file

The OpenMI Association © 2007

<?xml version="1.0"?>

<LinkableComponent Type="wlDelft.OpenMl_WLLinkableComponent" Assembly="wlDelft.OpenMl, Version=1.4.0.0,
Culture=neutral, PublicKeyToken=8384b9b46466c568" xmlns="http://www.openmi.org/LinkableComponent.xsd">

<Arguments>

<Argument Key="Model" ReadOnly="true" Value="RR" />

<Argument Key="Schematization" ReadOnly="true" Value="D:\Rain-RR-CF\Model\Cmtwork\sobek_3b.fnm" />

</Arguments>

</LinkableComponent>

Annex I-C

The phases in dynamic utilization

Call sequence of an OpenMI LinkableComponent

initialization phase

identification &
configuration phase

preparation phase

computation/
execution phase

completion phase

disposure phase

| nitialize(

!

ComponentID
ComponentDescription
ModellD

ModelDescription
InputExchangeltemsCount
OutputExchangeltemsCount
GetlnputExchangeltem()
GetOutputExchangeltem()
TimeHorizon

AddLink()

RemoveLink()

Validate()
'

Prepare()

GetValues()
EarliestinputTime

SaveState() **
RestoreState() **
ClearState() **

AddLink() »
RemoveLink() »

|

Finish()

| Dispose()

GetPublishedEventTypeCount #
GetPublishedEventType() #
SubScribe() #

UnSubscribe() #

SendEvent() #

HasDiscreteTimes() *
GetDiscreteTimesCount() *
GetDiscreteTime() *

Methods from IPublisher interface

Implementation is optional
* if component implements
IDiscreteTimes interface

** if component implements
IManageState interface

A if component supports dynamic
adding/removing links

Page 58 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Annex Il org.OpenMI.Standard API-specification

org.OpenMl.Standard.lArgument

Argument Interface, key-value pairs, applied as arguments for a data operation or arguments
to populate components at instantiation with (model specific) data

Key property {get}
Argument identification ('Key' in: Key=Value pair)

Value property {get} {set}
Argument value ('Value' in: Key=Value pair) ; set only allowed in case ReadOnly = “False”

Description property {get}

Description of the argument
ReadOnly property {get}
Boolean determines if argument value can be modified by the user

org.OpenMl.Standard.DimensionBase
Enumeration for base dimensions

Length field
Dimension base length

Mass field
Dimension base mass
time field
Dimension base time
ElectricCurrent field

Dimension base electric current
Temperature field
Dimension base temperature

AmountOfSubstance field
Dimension base amount of substance

Luminousintensity field

Dimension base luminous intensity
Currency field

Dimension base currency

NUM_BASE DIMENSIONS field
Total number of base dimensions involved

Page 59 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

org.OpenMl.Standard.IDataOperation

DataOperation Interface, identifies data operation and contains associated argument values

Get n-th argument, key
Returns
argument object
Initialize (called to populate data operation with specific — i.e. selected - information)
Arguments
properties
Array of argument objects to be used for initialization

Indicates if the combination of data operations is valid for the selected input/output
combination

Arguments
inputExchangeltem

The inputExchangeltem as selected in a GUI (i.e. the content will be at the target side of
the link)

outputExchangeltem

The outputExchangeltem as selected in a GUI (i.e. the content will be at the source side of
the link)

SelectedDataOperations
The array of already selected data operations (excluding the current one)
Returns
Boolean
ID property {get}
Identification string

ArgumentCount property {get}
Number of arguments for this data operation

org.OpenMl.Standard.IDimension
Dimension interface, describes the dimension, expressed in base dimensions, of a Quantity

Get power for the selected base dimension
Arguments
baseDimension

Page 60 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

baseDimension instance to compare with
Returns
double, power of selected base dimension
Check if a Dimension instance equals to another Dimension instance.
Arguments
otherDimension
Dimension instance to compare with
Returns
Boolean, Dimension instances are equal

org.OpenMlIl.Standard.IDiscreteTimes

DiscreteTimes Interface, to obtain discrete time information associated to the quantity-
element set combination of a linkable component

Get n-th discrete time stamp or span for Quantity/Elementset
Arguments
quantity
The quantity
elementSet
The element
discreteTimelndex
index of timeStep
Returns
Discrete time stamp or span

org.OpenMl.Standard.ElementType
Shape Type of an ElementSet

IDBased field

Identifier based

Page 61 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

XYPoint field

Points in the (horizontal) XY-plane

XYLine field

Lines/Line segments in the (horizontal) XY-plane
XYPolyLine field

Polylines in the (horizontal) XY -plane
XYPolygon field

Polygons in the (horizontal) XY-plane
XYZPoint field

Points in the 3-dimensional space

XYZLine field

Lines/Line segments in the 3-dimensional space
XYZPolyLine field

Polylines in the 3-dimensional space
XYZPolygon field

Polygons in the 3-dimensional space
XYZPolyhedron field

Polyhedron (volume) in the 3-dimensional space

org.OpenMI.Standard.IElementSet

ElementSet Interface , rigid interface to query an element set for its content in terms of
elements, optionally composed of vertices

Number of vertices for the element specified by:
Arguments
Elementindex
element index in element set
Returns
Number of vertices in element with Elementindex
X-coord for the vertex with VertexIndex of the element with Elementindex
Arguments
Elementindex

Page 62 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

element index
VertexIndex
vertex index in the element with index Elementindex
Y-coord for the vertex with VertexIndex of the element with Elementindex
Arguments
Elementindex
element index
VertexIndex
vertex index in the element with index Elementindex
Z-coord for the vertex with Vertexindex of the element with Elementindex
Arguments
Elementindex
element index
VertexIndex
vertex index in the element with index Elementindex
ID property {get}
Identification string

Description property {get}
Additional descriptive information

SpatialReference property {get}

Spatial reference system for the element set
ElementType property {get}
Shape Type of the element set

ElementCount property {get}
Number of elements in set

org.OpenMI.Standard.EventType
Shape Type of an ElementSet, extensions for shape types in Z-direction need to be defined

Warning field
Warning event

Informative field

Informative event
ValueOutOfRange field
ValueOutOfRange event

Page 63 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

GlobalProgress field

Indicates progress as percentage of global time horizon
TimeStepProgress field

Indicates progress as percentage of requested time step
DataChanged field

Indicates change of (computed) data in the component

TargetBeforeGetValuesCall field

Call by target component to inform source component on an upcoming request. Useful while
debugging.

SourceAfterGetValuesCall field
Call by source component to indicate that request has been received

SourceBeforeGetValuesReturn field

Call by source component to indicate that is about to return the valueset
TargetAfterGetValuesReturn field

Call by target component to indicate that values have been received
Other field

Other not predefined event type

NUM_OF EVENT TYPES field

Total number of event types involved

org.OpenMlI.Standard.|Event

IEvent. Interface, generic meta-data structure to pass event information

Get the value of a Key=Value pair, containing additional information on the event

Type property {get}
Type of event

Description property {get}
Additional descriptive information

Sender property {get}
LinkableComponent that generated the event

SimulationTime property {get}

Current SimulationTime ("-" if not applicable)

org.OpenMI.Standard.|[Exchangeltem

Exchangeltem Interface , holds Quantity-ElementSet combinations that can be exchanged

Quantity property {get}
Quantity

Page 64 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

ElementSet property {get}

ElementSet

org.OpenMl.Standard.linputExchangeltem

InputExchangeltem Interface, sub-class of IExchangeltem, holding quantity —element set
combinations that act as input to a specific linkable component

org.OpenMI.Standard.lLink

Link Interface, holds the actual information of the link, including the components, quantity
and element set on both the source and target side, as well as the selected data operations to be
executed by the source component

Get n-th data operation item
Returns

Data operation

ID property {get}
Identification string

Description property {get}
Additional descriptive information

DataOperationsCount property {get}
Number of data operations

SourceComponent property {get}

Souce linkable component
SourceQuantity property {get}
Source quantity

SourceElementSet property {get}
Source elementset

TargetComponent property {get}

Target linkable component
TargetQuantity property {get}
Target quantity

TargetElementSet property {get}
Target elementset

org.OpenMI.Standard.lLinkableComponent

LinkableComponent Interface, implements org.OpenMlI.Standard.IPublisher. Interface for
generic model access to the component and the data it can exchange

Page 65 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Initialize (called to populate component with specific information)
Arguments
properties
array of IArguments to be used for initlization
Get n-th input exchange item
Returns
Input exchange item
Get n-th output exchange item
Returns
Output exchange item
Add an Input or Output Link (Called when initialize has been called for all components)
Arguments
link
Link to be added
Remove a link
Arguments
LinkID
Link to be added
Validate method
Validation of the component status and its links
Returns
Returns an empty string if the component is valid otherwise returns a message string

Prepare for computation (Called just before computation starts, called when all links have
been added)

Get Values for a certain TimeStamp or TimeSpan, for a certain Link (= Quant./Elm.set)
Arguments
time
timestamp or timespan
LinkID
involved link

Page 66 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Returns
ValueSet (scalar or vector)
Finish.method

Finish (Called when computation is done, close files, network connectiosn, de-alloate
memory where easible)

Dispose (i.e. cleanup; called when deployment stops)
ComponentID property {get}
Identification string of the component/engine

ComponentDescription property {get}
Additional descriptive information of the component/engine

ModellD property {get}
Identification string of the site specific model/study area

ModelDescription property {get}
Additional descriptive information of the site specific model/study area

InputExchangeltemCount property {get}
Number of input exchange items

OutputExchangeltemCount property {get}
Number of output exchange items

TimeHorizon property {get}
time horizon (begin and end date for which data can be retrieved)

EarliestinputTime property {get}

Earliest needed input time (Queried by providing component when they want to clear their
buffers)

org.OpenMI.Standard.lListener

Listener Interface, enables components to grab events
Method called when event is raised
Arguments
Event
Event that has been raised
Get number of accepted event types
Returns
Number of accepted event types

Page 67 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification

Get accepted event type with index acceptedEventTypelndex
Arguments
acceptedEventTypelndex
index in accepted event types
Returns
Accepted event type

org.OpenMI.Standard.IManageState

The OpenMI Association © 2007

Manage State Interface, to preserve, restore and clear the internal state of a component. (To be
implemented optionally, in addition to the linkable component interface.)

Store the linkable component's current State
Returns
State identifier
Restore the linkable component's current State
Arguments
statelD
State identifier
Clears a state from the linkable component's memory
Arguments
statelD

org.OpenMI.Standard.|OutputExchangeltem

OutputExchangeltem Interface, holds the output combinations of a quantity-element set,
including a description of data operations that can be offered on the associated value set

Get n-th data operation

Returns

Data operation description
DataOperationCount property {get}
Get number of data operations

Page 68 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

org.OpenMI.Standard.lPublisher

Publisher Interface, provides meta data on available events, accommodates subscription to
those events and publishes the events

Subscribes a listener
Arguments
Listener
The listener
EventType
The event type
Unsubscribes a listener
Arguments
Listener
The listener
EventType
The event type
Sends an event to all subscribed listeners
Arguments
Event
The event
Get number of published event types
Returns
Number of provided event types
Get provided event type with index providedEventTypelndex
Arguments
providedEventTypelndex
index in provided event types
Returns
Provided event type

org.OpenMI.Standard.|Quantity

Quantity Interface, describes the (physical) quantity that can be exchanged

Page 69 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification

ID property {get}
Identifier

Description property {get}
Additional descriptive information

ValueType property {get}
Quantity's value type (vector, scalar)

Dimension property {get}

Quantity's Dimension
Unit property {get}
Unit in which quantity is expressed

org.OpenMl.Standard.IScalarSet

The OpenMI Association © 2007

ScalarSet Interface, holds an array of doubles for a certain quantity on a certain element set

(ordering corresponds to elements in element set). Implements
org.OpenMI.Standard.IValueSet interface

Value for one of the elements in the set
Arguments
Elementindex
index in the scalar set
Returns
double scalar value

org.OpenMI.Standard.|SpatialReference

SpatialReference Interface, holds a string reference to (known) spatial reference systems

ID property {get}
Identifier indicating which spatial reference to use

org.OpenMI.Standard.ITime

Time Interface, 'Abstract’ interface, base for TimeStamp and TimeSpan

org.OpenMI.Standard.ITimeSpan

TimeSpan Interface, describes a continuous period over time
Start property {get}
Time span's begin time stamp

Page 70 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

End property {get}
Time span's begin time stamp

org.OpenMI.Standard.ITimeStamp

TimeStamp Interface, describes an instantaneous moment in time

ModifiedJulianDay property {get}

Get TimeStamp expressed as ModifiedJulianDateAndTime (JulianDateAndTime -
2400000.5) Number of days since 1858/11/17 12:00:00.00, and fraction of 24hr. See for
example http://aa.usno.navy.mil/data/docs/JulianDate.html

org.OpenMI.Standard.lUnit

Unit Interface, describes the unit in which a quantity is expressed
ID property {get}
Identification string

Description property {get}
Additional descriptive information

ConversionFactorToSI property {get}

Conversion factor to SI ('A’ in: Sl-value = A * quant-value + B)
OffSetToSI property {get}
OffSet to SI ('B' in: Sl-value = A * quant-value + B)

org.OpenMI.Standard.lValueSet

ValueSet Interface holds an array of doubles for a certain quantity on a certain element set
(ordering corresponds to elements in element set). Base for VectorSet and ScalarSet

Count property {get}
Number of elements in the set

org.OpenMI.Standard.l\VVector

Vector Interface, containing the values of the X,Y and Z component of a vector

XComponent property {get}

Vector component in X-direction
YComponent property {get}
Vector component in Y-direction

ZComponent property {get}
Vector component in Z-direction

Page 71 of 79

http://aa.usno.navy.mil/data/docs/JulianDate.html

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

org.OpenMI.Standard.lVectorSet

VectorSet Interface, holds an array of vectors for a certain quantity on a certain element set.
Implements org.OpenMI.Standard.l1VValueSet interface

Vector for one of the elements in the set
Arguments
Elementindex
index in the vector set
Returns
vector

org.OpenMl.Standard.ValueType
Value(Set) Type for Quantity

Scalar field
Scalar
Vector field
Vector

Page 72 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Annex Il Overview of changes

Annex IlI-A Changes from version 1.0.0 (May 2005) to version 1.4.0
(September 2007)

General changes

e None
Architectural changes

e None
OMI file changes

e None

Reason for change: versioning issues with .NET framework and introduction of signature file.

Annex IlI-B Changes from version 0.99 (November 2004) to version 1.0.0
(May 2005)
General changes

e None
Architectural changes

Data definition changes
¢ Added NUM_OF_EVENT_TYPES field to EventTypes enumeration

¢ Modified return type of method IDimension.GetPower
OMI file changes

e Changed namespace into www.openmi.org

Page 73 of 79

http://www.openmi.org

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Annex IlI-C Changes from version 0.91 (June 2004) to version 0.99
(November 2004)

General changes

e Merged IExchangeModel and ILinkableComponent interfaces

¢ Introduced OMI-file and associated XSD as entry point for systems utilizing OpenMI
LinkableComponents

Architectural changes

Data definition changes
¢ Introduced EventTypes as fixed enumeration instead of a recommended convention
e Modified/reduced IEvent interface
o Extended enumeration of ElementTypes to include the 3-dimensional space
o Extended IElementSet with methods to obtain faces of 3D-objects
o Extended IDataOperation with a validation method
e Extended IValueSet with a validation method
LinkableComponent changes
¢ Moved methods from IExchangeModel to ILinkableComponent
¢ Removed Finalize method
¢ Renamed PrepareForComputation()-method into Prepare()-method
¢ Renamed EarliestNeededTime-property into EarliestinputTime-property
e Added TimeHorizon-property
¢ Added Validate() method and Finish() method

Page 74 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Annex IlI-D Changes from version 0.9 (May 2004) to version 0.91 (June

2004)

General changes

None

Architectural changes

Data definition changes

Introduced IArgument to replace IDataOperationParameter and IComponentArgument

Reduced complexity of data operation related interfaces.

Modified IDataOperation.

Removed |DataOperationDescriptor, DataAspectType, SourceTargetRole,
IDataOperationDescriptorParameter, IDataOperationParameter, ParameterSpecificationType

Renamed enumeration BaseQuantity into DimensionBase
Removed IVisibleComponent

Removed IException as an OpenMI specific class. Exceptions are based on the Exception-
class as provided in the development environment.

Combined the functionality of IExchangeModel and IComponentDescriptor into one ‘meta data
interface’ namely IExchangeModel. This interface includes a Create() method to create and
populate an exchange model.

Combined the construction and run-time access from ILinkableComponentFactory and
ILinkableComponent into one ‘run-time interface’, namely ILinkableComponent.

Page 75 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

Annex IlI-E Changes from version 0.6 (May 2003) to version 0.9 (May 2004)

General changes
¢ Moved the Standard from a mixture of (abstract) class implementation and XML to an ‘interface
only’ specification.
¢ Introduced a new namespace for this purpose: org.OpenMl.Standard and skipped the old ones
(org.OpenMI.System and org.OpenMI.System.Components)

e The HarmonlT project provides a default implementation with the namspace
org.OpenMI.Backbone, org.OpenMl.Utilities, org.OpenMI.Configuration and org.OpenMI.Tools.
However, other implementations of the standard interfaces are welcome

o reformulated the methods into a combination of properties, {get} only, and methods. Properties
are introduced for those items that typically are implemented as properties. Methods are
applied for those items that require internal data processing/querying.

¢ introduced and applied a general pattern to query an internal list (array) of items

Architectural changes

Data definition changes
e ElementSet:
o0 Introduction of a rigid ElementSet interface, still based on concepts of elements and
vertices (geo-referenced).

0 Underlying items (elements and nodes) are skipped from the Standard. They may still
be useful in an implementation

Incorporated ElementType (shape type) as enumeration in the standard.
Note: the IElementSet interface can be queried only. The ElementSet object can be
populated at instantiation, or an implementation can be provided with convenience
functions to add and remove elements.
e SpatialReferenceSystem:
o0 Skipped the entire spatial reference system specification part, leaving only a string
pointer to the Spatial Reference System applied.
e Time:
o time reference system is fixed to the ModifiedJulianDate
e Quantity:
o0 Introduced the dimension interface (IDimension) to enable (physical) dimension
checks
Run time interfaces
¢ [IManageState
0 Renamed ModelEngine class into IManageState
0 Separated IManageState interface from its former base-class ILinkableComponent

e Trigger
0 Skipped the Trigger as separate class. When adding links to the component chain,
one link needs to be added/appointed as the trigger link

¢ ILinkableComponent

Page 76 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification The OpenMI Association © 2007

0 Moved functionality of GetPotentialOutputTimes, into a separate interface
(IDiscreteTimes)

0 Skipped Validate method. Validation is to be done at Initialization time. An exception
needs to be thrown if an error occurs.

o0 Reshuffled link-handling methods
¢ |Event and IException
o Slight modification if properties and methods
Meta data interfaces
¢ |ExchangeModel and associated interfaces
0 Renamed LinkableDataDescriptor into ExchangeModel

o Introduced IExchangeltem as a grouping entity including derived interfaces to
describe (potential) input/output combinations for a linkable component

0 Preserved ‘Input/Output’ as the key identifier for data exchange directions from the
component perspective

0 Skipped ‘Potential’ in the naming of the various methods

o0 Skipped the factory associated to the ExchangeModel (the former
LinkableDataDescriptorFactory)

0 Skipped ComponentFactoryType

0 Introduced IComponentDescriptor interface and IComponentArgument interface, the
latter replaces the factory arguments

o |DataOperationDescriptor and IDataOperationDescriptorParameter

0 introduced a set of interfaces and enumerations to describe data operations and
associated parameters

Configuration related interfaces
e |Link:
o Transformed methods into properties

o Renamed link properties from Provider/Acceptor into Source/Target (accounting for
the direction of data transfer through the link)

e Miscellaneous:

0 Skipped hints(in the Scenarios part) to possible implementations of a configuration
utility

Page 77 of 79

The OpenMI Document Series: Part C - the org.OpenMI.Standard interface specification

INDEX

convention
data conversionScooeeeeeeeeeeeeeen 23
data operation ..., 33
data operation order...........cccocoeeeeeieeeeeeenn, 35
ElementTyPevvvvvvvieiiiiiiiiiiiiiiiiiieiinnnennns 30
Event.......cooooiii e, 40
EXCEPLION...coiee i 41, 53
exchange model...........coooeeeeeiii, 35
firstindexinlist........cccccccei, 28, 53
IDIMENSION ...ccovviiiiiiiiiiiiii e 31
IPublisher, ILinkableComponent............... 39
M 30
values, direCtioncccccvvvviiiiiiiiininenn, 32

enumeration
DImensionBaseuvvvvvvvviinivnniinnns 31,61
ElementType.......vvvvvvvvvvvivvinnnnnnnns 29, 63, 65
ValuETYPE..oovvvviviiiiiiiie 31,74

interface
TArQUMENT ..., 34, 61
IDataOperation...........ccccccvvvvviiiininnnnn, 33, 62
IDIMENSIONccevvviiiiiiiiiiiiiieee e, 31, 62
IDIiSCreteTiMEeScccvvvvvviiiiiiiiiiiiiieeee 39, 63

The OpenMI Association © 2007

[ElementSet..........cccveeiiiiiiiiiiiiieeees 29, 64
[EVENT....eiiiiiiiiiee e 40, 66
IExchangeltemcccccccvviiiiinnnnnn, 35, 67
lInputExchangeltem.........cccccccvvvveeeen. 35, 67
ILINK o 35, 67
ILinkableComponent...............ccccceee.... 36, 68
ILISTENET ..o 40, 69
IManageState.........ccccoeveeviiiieiinneeen, 39,70
IOutputExchangeltem......................... 35,70
IPublisher ..., 39,71
IQUANTITY. ..eee it 31,72
IScalarSetccvveeiiiiiiiiiee 32,72
ISpatialReference.............ccccccvvvnnnnn. 29,72
ITIME. e 30, 73
ITImeSpan.......cccccccvvviiiie 30, 73
ITIMeStamp......cccvvvvvveeiiiieiiieeeeieveeeee, 30, 73
TUNIE o 31,73
IValueSetccuveeeiieiiiiiiieeeees 32,73
IVECION ..o 32,74
IVECtorSet ..., 32,74
OpeNnGIS ... 29

Page 79 of 79

