
The OpenMI Document Series

Part E -
org.OpenMI.DevelopmentSupport

technical documentation
For OpenMI (Version 1.4)

Title OpenMI Document Series: Part E -
org.OpenMI.DevelopmentSupport technical documentation for
the OpenMI (version 1.4)

Editor Peter Gijsbers, WL | Delft Hydraulics, Delft, The Netherlands

Authors Rob Brinkman, WL | Delft Hydraulics, Delft, The Netherlands
Peter Gijsbers, WL | Delft Hydraulics, Delft, The Netherlands

Document production Peter Gijsbers, WL | Delft Hydraulics, Delft, The Netherlands

Current version V1.4

Date 21/05/2007

Status Final © The OpenMI Association

Copyright All methodologies, ideas and proposals in this document are the
copyright of the OpenMI Association. These methodologies,
ideas and proposals may not be used to change or improve the
specification of any project to which this document relates, to
modify an existing project or to initiate a new project, without first
obtaining written approval from the OpenMI Association who
own the particular methodologies, ideas and proposals involved.

Acknowledgement This document has been produced as part of the OpenMI-Life
project.

The OpenMI-Life project is supported by the european
Commission under the Life Programme and contributing to the
implementation of the thematic component LIFE-Environment
under the policy area "Sustainable management of ground water
and surface water managment" Contract no : LIFE06
ENV/UK/000409.

The first version of this document has been produced as part of
the HarmonIT project; a research project supported by the
European Commission under the Fifth Framework Programme
and contributing to the implementation of the Key Action
“Sustainable Management and Quality of Water” within the
Energy, Environment and Sustainable Development. Contract
no: EVK1-CT-2001-00090.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 3 of 28

Preface
OpenMI stands for Open Modeling Interface and aims to deliver a standardized way of linking of
environmental related models. This document describes supporting classes as being utilized in the
OpenMI Software Development Kit. It is the fifth document in the OpenMI report series, which
specifies the OpenMI interface standard, provides guidelines on its use and describes software
facilities for migrating, setting up and running linked models.
Other titles in the series include:
A. Scope

B. Guidelines

C. org.OpenMI.Standard interface specification

D. org.OpenMI.Backbone technical documentation

E. org.OpenMI Development Support technical documentation (this document)

F. org.OpenMI.Utilities technical documentation

The interface specification is intended primarily for developers. For a more general overview of the
OpenMI, see Part A (Scope).

The official reference to this document is:
OpenMI Association (2007) The org.OpenMI.DevelopmentSupport technical documentation. Part E of
the OpenMI Document Series

Disclaimer

The information in this document is made available on the condition that the user accepts
responsibility for checking that it is correct and that it is fit for the purpose to which it is applied.
The OpenMI Association will not accept any responsibility for damage arising from actions based upon
the information in this document.

Further information

Further information on the OpenMI Association and the Open Modelling Interface can be found on
http://www.OpenMI.org.

http://www.OpenMI.org.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 5 of 28

Table of contents
Preface...3

Table of contents ..5

1 Introduction..7

1.1 Background...7

1.2 Requirements ...8

1.3 Scope of this document...8

1.4 Readership ...8

2 OpenMI DevelopmentSupport: Concepts..9

2.1 The OpenMI linking mechanism ..9

2.2 Task description of the OpenMI Development Support ..9

2.3 Conceptual design of org.OpenMI.DevelopmentSupport..9

2.4 The org.OpenMI.DevelopmentSupport namespace ...10

2.4.1 Packages...10

2.4.2 Relations to other namespaces ..10

3 The org.OpenMI.DevelopmentSupport package ...13

3.1 Design considerations...13

3.1.1 Type information ..13

3.1.2 Using references to prevent duplication of similar objects ...13

3.1.3 Information captured in methods ..13

3.2 Static View..14

3.2.1 XmlFile...14

3.2.2 IAggregate and related classes ..15

3.2.3 Meta Info..17

3.2.4 Support classes ...21

3.2.5 Calendar Converter class ...24

3.3 Dynamic view..25

3.3.1 Behaviour logic of XmlFile ..25

3.3.2 Exceptions ...28

3.4 Implementation remarks..28

3.4.1 C#-implementation...28

3.4.2 Java-implementation ..28

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 7 of 28

1 Introduction

1.1 Background
OpenMI stands for Open Modeling Interfaces. It aims to deliver a standardized way to link
environmental related computational models that run simultaneously. In summary, OpenMI primarily
focuses on providing a complete protocol to explicitly define, describe and transfer (numerical) data
between components on a time basis, including associated component access. It thus enables
process interaction being represented more accurately, compared to sequential linkages.

The establishment of OpenMI will support and assist the scientific, consultancy and water
management community in the integrated assessment of water management systems and thus
strategic planning and integrated catchment management required by the European Water Framework
Directive.

This standardized way of linking models is achieved by an intelligent protocol to describe,
define and transfer data. This protocol is translated into a strict set of rules, i.e. formal interfaces, to be
implemented by software code. Any component that implements these interfaces is called an OpenMI
compliant component.

Within OpenMI, a distinction is made between the standardized interfaces, incorporated in the
org.OpenMI.Standard namespace, and an implementation in other namespaces which provide a so-
called Software Development Kit (SDK), see Figure 1. The org.OpenMI.DevelopmentSupport
namespace provides generic support for configurations of linked OpenMI components. It contains a
customizable generic XML-parser to store Compositions, LinkableComponent-OMI files and
associated information on disk. The org.OpenMI.DevelopmentSupport package does not depend on
any other packages within the org.OpenMI domain. Application of this software layer is not mandatory,
but it may save costs and effort to join.

Open Modelling Interfaces

architecture

implements

OpenMI Software Development Kit

org.OpenMI.Standard

org.OpenMI.Backbone

org.OpenMI.Utilities org.OpenMI.Tools

org.OpenMI.DevelopmentSupport

Figure 1 Namespaces in the OpenMI architecture

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 8 of 28

1.2 Requirements
The org.OpenMI.DevelopmentSupport namespace provides low level support to the implementation of
the OpenMI architecture. The following requirements have been kept in mind.

 [Req-DS1] – Provide a readable XML-file structure and OpenMI XML schema definition (XSD)
to store configuration related information

 [Req-DS2] – Provide support to save configuration related OpenMI objects in a readable way to
disk according to the OpenMI XSD.

 [Req-DS3] - Provide support to read persistent XML-files, adhering to the OpenMI XSD, parse
the information and turn them into instantiated OpenMI objects.

 [Req-DS4] – Provide object handling support to accommodate the display of objects and
properties in front end applications

 [Req-DS5] – Provide other low level functionality to support an OpenMI implementation.

1.3 Scope of this document
This report contains the technical documentation of the org.OpenMI.DevelopmentSupport namespace.
The technical documentation addresses the design as well implementation issues

1.4 Readership
This document is meant for code developers who have to implement, extend or maintain the source
code of the OpenMI Software Development Kit. In order to understand this document, one needs to
have basic understanding of model linking, object-orientation and UML-notation (particularly class
diagrams and sequence diagrams). Within the text, the following style-convention is applied:

 OpenMI interface

 OpenMI method

 OpenMI property

 OpenMI argument

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 9 of 28

2 OpenMI DevelopmentSupport: Concepts

2.1 The OpenMI linking mechanism
OpenMI is a pull-based pipe and filter architecture, consisting of communicating components
(providers and acceptors), which exchange data in a pre-defined way and in a pre-defined object
format. Sometimes, this type of architecture is also referred to as a context based request-reply
architecture, in which the context (i.e. the instantiated component) processes and replies to the
requests in synchronized order.

Data exchange in OpenMI is based on direct model access in the same thread. No data is
exchanged using persistent files. In addition, the entire specification of the links can be done at run-
time. For convenience purposes however, it might be useful to support persistent storage of meta-
data, enabling system configuration without actual access to the computational cores.

2.2 Task description of the OpenMI Development Support
Although the OpenMI architecture is fully memory based, the implementation accommodates the
persistent storage of objects in XML. This functionality is specifically utilized so enable reuse of
configurations of linked OpenMI components. To facilitate the development of such functionality in a
generic way, a general XML parser has been developed. The org.OpenMI.DevelopmentSupport
package offers general routines for reading and writing XML files and all related necessary functions.
Note that this package doesn't depend on any OpenMI package.

The main task of the org.OpenMI.DevelopmentSupport namespace is to provide supporting
classes for the Software Development Kit:

 enabling persistent storage and retrieval of configuration related OpenMI objects;

 other low level functionality, amongst others to convert the time information expressed in the
Georgian Calendar to the Modified Julian Data.

To address the first bullet, a generic, customizable XML parser has been implemented using the
introspection mechanisms as available in development language such Java (i.e. introspection) and
.NET (System.Reflection).

2.3 Conceptual design of org.OpenMI.DevelopmentSupport
Figure 2 illustrates the main concept of the org.OpenMI.DevelopmentSupport functionality, namely
transformation of object relations via a hierarchical data structure representation into an XML-tag
representation (and vice versa). All public properties of any object can be saved to an XML file and
later parsed into an object. Meta info is used heavily to customize the layout of the XML file.

Generally, the layout of the XML file is as follows. Each public property of an object is written
as an XML element or an XML attribute. Attributes will only be used for primitive types (int, string,
double etc.) and enumerations. The object representing a property value is written with all his public
properties, in this way creating a tree in the XML file. For properties representing a collection (i.e.
implementers of the IList and IDictionary interface, such as array lists and hash tables), all members
are written as child XML elements.

Additionally, class type information is written under the XML attribute "type". This is only
necessary if 1) the class of the object representing a property value differs from the property definition
in the parent class (this occurs when a subclass is assigned to the property) or 2) in collections,
MetaInfo doesn't define the desired member class type.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 10 of 28

If the data structure isn't hierarchical, i.e. there are objects which represent property values or
collection members more than once, only the first time in the xml file they are written completely. Next
times only a reference to the object is written. MetaInfo must be used to set the reference definition.

+ID = "Discharge"
+Description = "Discharge in m3/s"
+ValueType = "ScalarSet"
+Unit
+Dimension

Quantity

+ID = "m3/s"
+Description = "cubic meter per second"
+ConversionFactorToSI = 1
+OffSetToSI = 0

Unit
-Length = 3
-Time = -1

Dimension

object

attribute: ID="Outflow'
attribute: Description="Outflow from catchments";

attribute: type="org.OpenMI.Backbone.Quantity"

element: Unit
attribute1: ID="m3/s"
attribute2: Description="cubic meter per second"
attribute3: ConversionFactorToSI = "1"
attribute4: OffSetToSI = "0"

element: Dimension
attribute1: Length="3"
attribute2: Time="-1"

attribute: ValueType="ScalarSet"

<Quantity ID="Outflow" Description="Outflow from catchment" ValueType="ScalarSet">
<Unit ID="m3/s" ConversionFactorToSI="1" OffSetToSI="0"/>
<Dimension Length="3" Time="-1"/>

</Quantity>

object representation

hierarchical data
structure representation

XML tag-representation

Figure 2 Transformation of object representation

This transformation process is the basic functionality required for parsing XML-files or serializing
objects in memory. The major class for this transformation process in called XmlFile, which has two
basic functions, namely Read(object, filename) and Write (filename).

The XmlFile-class is supported by a number of other classes and interfaces (see Section 3.2) of
which MetaInfo is essential to customize the hierarchical data structure representation and the
IAggregate interface is essential to contain the actual property values of the object in the hierarchical
data structure.

2.4 The org.OpenMI.DevelopmentSupport namespace

2.4.1 Packages
The org.OpenMI.DevelopmentSupport namespace consists of one package.

2.4.2 Relations to other namespaces
The org.OpenMI.DevelopmentSupport namespace provides object handling and persistent IO
functionality for the org.OpenMI.Utilities.Configuration namespace. The
og.OpenMI.Utilities.configuration.Xml package contains the OpenMI specific MetaInfo for the

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 11 of 28

customization of the XML-parser. org.OpenMI.DevelopmentSupport provides calendar conversion
functionality is used by the org.OpenMI.Utilities.Wrapper package.

The org.OpenMI.DevelopmentSupport namespace is independent of any other OpenMI namespace
(see Figure 3).

pd OpenMI package structure

org.OpenMI.Backboneorg.OpenMI.Standard

org.OpenMI.Utilities.AdvancedControl

org.OpenMI.Utilities.Buffer

org.OpenMI.Utilities.Configuration

org.OpenMI.Utilities.Spatial

org.OpenMI.Utilities.Wrapper

org.OpenMI.DevelopmentSupport

Xml

(from org.OpenMI.Utili ties.Configuration)

«real ize»

«realize»

Figure 3 Overview of packages depending on
org.OpenMI.DevelopmentSupport

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 13 of 28

3 The org.OpenMI.DevelopmentSupport package

3.1 Design considerations
As indicated in Section 2.3, the basic concept underlying the XML-parsing functionality is the
transformation of object relations via a hierarchical data structure representation into an XML-tag
representation (and vice versa). This transformation process is the basic functionality required for
parsing XML-files or serializing objects in memory. The major class for this transformation process in
called XmlFile, supported by a number of other classes and interfaces (see Section 3.2) of which
MetaInfo is essential to customize the hierarchical data structure representation and the IAggregate
interface is essential to contain the actual property values of the object in the hierarchical data
structure.

3.1.1 Type information
When parsing xml files, XmlFile must have information about which type to instantiate. XmlFile tries to
derive this information from the MetaInfo or from the type definition of the class. For example, when
XmlFile encounters the xml element describing the Unit in the Quantity, it looks in the Quantity class
definition to see what the type is of property Unit (the reflection package is used for this). Then XmlFile
knows what type to instantiate for the Unit. In another case it may be possible that it can’t derive the
right type in this way, for example the ElementSet property in an ExchangeItem is defined as
IElementSet. In that case an xml attribute “type” is used, which stores the right class to instantiate (this
could be org.OpenMI.Backbone.ElementSet).

3.1.2 Using references to prevent duplication of similar objects
Sometimes similar objects are referred to by several objects, for example two LinkableComponent-
objects referring to the same Link object, one being the provider the other being the acceptor. When
parsing the xml file, the XmlFile should know that it should instantiate only one Link-object, although it
is encountered more than once (each time it parses an xml element representing a
LinkableComponent). This is solved in the following way: a difference is made between (i) an xml
element, which corresponds with an object to be instantiated, and (ii) an xml element, which refers to
an already instantiated object. In the first case the xml element is written out fully, in the second case
only the identifier(s) of the object are written. MetaInfo is used to inform the XmlFile what properties
identify an object.

Xml files may refer to other xml files where referred information is stored. For example, a
composition xml file has references to model files, where models are stored. The file to be read is
stored in the xml attribute “file”, which holds a relative path to the referred file.

As said, properties of objects are represented in the xml file. Besides that, also elements in
lists (strictly spoken, implementers of IList) are represented as an xml element and key value pairs in
hash tables (strictly spoken, implementers of IDictionary).

3.1.3 Information captured in methods
XmlFile is very useful when all information in objects is accessible via properties, but this isn’t always
the case. Sometimes methods are used to store or retrieve information, having some arguments which
are not known to XmlFile. In that case XmlFile may still be used.

The solution is as follows:

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 14 of 28

Instead of accessing an object directly, an intermediate object is accessed which must implement the
interface IAggregate. This interface enables XmlFile to access all necessary information in the
underlying object in a generic way. Each object is accessed via an aggregate, mostly via a default
aggregate, which uses introspection to access the object properties. But it is possible to write another
implementation of IAggregate, which contains dedicated code (for specific class) which exposes all
information of an object (including the information captured in methods) as properties. This procedure
has been adopted to reproduce all information from the ElementSet class and the Element class (both
are part of the org.OpenMI.Backbone package). In MetaInfo the aggregate class should be registered
for the object class (not necessary for the default aggregate).

3.2 Static View

3.2.1 XmlFile
The XmlFile class contains generic methods to read and write XML files (see Figure 4). All public
properties of any object can be saved to an XML file and later parsed into an object. MetaInfo is used
heavily to customize the layout of the XML file. The general approach to represent an object with its
property values has been discussed in Section 2.3.

cd Dev elopmentSupport

XmlFile

+ Read(target :object) : void
+ Read(target :object, fi le :Fi leInfo) : void
+ GetRead(file :FileInfo) : object
+ GetRead(file :FileInfo, objectType :Type) : object
+ GetRegisteredTarget(root :object, identifier :object) : object
+ GetRegisteredFile(anObject :object) : FileInfo
+ GetRegisteredObjects() : object[]
+ DisposeObject(disposeObject :object) : void
+ Write(target :object) : void
+ Write(target :object, fi le :FileInfo) : void

Figure 4 Methods of class XmlFile

XmlFile Methods
Method Notes
Read (object) Reads an object from file The file to read should have

been registered with the object earlier by a read or write
action

Read (object, file) Reads an object from file

GetRead (file) : object Reads and creates an object from a given file

GetRead (file, type) : object Creates and reads an object from a given file. The class
type of the object to be created is passed, which might
not be specified in the file

GetRegisteredTarget (root, key) : object Gets an object from the XmlFile internal registration given
the key. Since object keys are unique within the scope of
one file, the root of the file is passed.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 15 of 28

GetRegisteredFile (object) : file Gets the file associated with an object. The object should
be the root of some file, i.e. associated with the top xml
element.

GetRegisteredObjects () : list Gets a list of all objects, which are known to be the root
of a file. The root of a file is the object associated with the
top xml element.

DisposeObject (object) Removes an object from the XmlFile registration. To be
used for releasing memory

Write (object) Writes an object to an xml file The registered file of the
object will be used as xml file. This is the file to which the
object was written or read from in an earlier stage

Write (object, file) Writes an object to an xml file

Typical usage of XmlFile

// Writes composition to file

Composition composition = new Composition ();

XmlFile.Write (composition, new FileInfo("composition.xml");

// Reads composition from file

Composition composition = (Composition) XmlFile.GetRead (new
FileInfo("composition.xml"));

3.2.2 IAggregate and related classes
An aggregate is a class that holds a hierarchical data representation of an object. Its generic nature
accommodates easy methods to obtain information about the type and the properties of the object
represented, including properties hidden in method calls. The concept of an Aggregate is based on
common functionality that enables interrogation and serialization of an object. The IAggregate
interface (see Figure 5) is defined as a platform independent interface to functionality that can be
implemented in .NET using System.Reflection or implemented in Java using introspection.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 16 of 28

cd Dev elopmentSupport

«interface»
IAggregate

+ «property» Source() : object
+ «property» Properties() : string[]
+ GetType(property :string) : Type
+ CanWrite(property :string) : bool
+ CanRead(property :string) : bool
+ GetValue(property :string) : object
+ SetValue(property :string, target :object) : void
+ GetReferencedValue(reference :string) : object
+ UpdateSource() : void
+ UpdateAggregate() : void

DefaultAggregate

+ Defaul tAggregate(source :object)
+ «property» Source() : object
+ «property» Properties() : string[]
+ GetType(property :string) : Type
+ CanWrite(property :string) : bool
+ CanRead(property :string) : bool
+ GetValue(property :string) : object
+ SetValue(property :string, target :object) : void
+ GetReferencedValue(reference :string) : object
+ UpdateSource() : void
+ UpdateAggregate() : void

Figure 5 IAggregate interface and default implementation

IAggregate Properties and Methods
Property / Method Notes
Source : object The underlying object which holds the actual information.

Properties : string array List of properties which can be queried in a generic way

GetType (property) : type Gets the class type of one of the properties

CanWrite (property) : bool Tells whether a value can be assigned to the property

CanRead (property) : bool Tells whether a value can be retrieved from the property

GetValue (property) : object Gets the value of a property

SetValue (property, object) Sets the value of a property

GetReferencedValue (property) : object Gets a property value by reference. A reference isn't
necessarily a property, but can be any string, as long as it
can be interpreted by the aggregate

UpdateSource () Tells the aggregate to process all information passed with
SetValue calls

UpdateAggregate () Tells the aggregate to prepare for subsequent GetValue
calls

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 17 of 28

DefaultAggregate Properties and Methods
Property / Method Notes
DefaultAggregate (object) Constructor which gets the underlying source object

Source : object Gets the underlying source object

Properties : string array Gets a list of all properties defined in the class type of the
source. Reflection is used to get this list.

GetType (property) : type Gets the class type of a property by reflection

CanWrite (property) : bool Indicates whether a property can be written to. Reflection is
used.

CanRead (property) : bool Indicates whether a property can be read. Reflection is
used.

GetValue (property) : object Gets a value for a certain property. Reflection is used.

SetValue (property, object) Sets a value for a certain property. Reflection is used

GetReferencedValue (property) : object Gets a referenced value, i.e. a value corresponding with a
reference string within the scope of the source.
Implementation is delegated to
XmlFile.GetRegisteredTarget.

UpdateSource () Intended for updating the source after various SetValue
calls. Takes no action, because all SetValue calls are
delegated directly to the source object with reflection.

UpdateAggregate () Intended for updating the aggregate before various
GetValue calls. Takes no action, because all GetValue calls
are delegated directly to the source object with reflection.

Typical usage of an aggregate by XmlFile. A new object is created and a value for a property is
assigned to it.

// Create a new instance for a known type
object someObject = ObjectSupport.GetInstance(someType);

// Create an aggregate for the new object
IAggregate aggregate = new DefaultAggregate(someObject);

// If writable, set a value for a known property
if (aggregate.CanWrite(property))
{

aggregate.SetValue (property, propertyValue);
}

3.2.3 Meta Info
Not all properties of a hierarchical data structure can be understood correctly without extra
information. This extra information about an object is provided via the MetaInfo class (see Figure 6).
The MetaInfo class registers extra properties about objects. These objects can be any kind of object,
even class types. Usually there is some configuration part of an application, setting these properties,
and some generic utilities, reading these properties. In this way the generic utilities will customize their
behaviour to the demands of that application. For example, this class is heavily used by xml file to
configure its reading and writing formats.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 18 of 28

cd Dev elopmentSupport

MetaInfo

+ Write(file :FileInfo) : void
+ Read(file :FileInfo) : void
+ SetAttribute(target :object, subject :string, targetValue :object) : void
+ SetAttribute(target :object, property :string, subject :string, targetValue :object) : void
+ GetAttribute(target :Type, subject :string) : object
+ GetAttribute(target :Type, property :string, subject :string) : object
+ GetAttributeDefault(targetClass :Type, subject :string, defaul tValue :object) : object
+ GetAttributeDefault(targetClass :Type, property :string, subject :string, defaultValue :object) : object
+ GetProperties(targetClass :Type) : string[]

Figure 6 Methods of class MetaInfo

Method Notes
Write (file) Writes all metainfo to a file

Read (file) Reads all metainfo from file

SetAttribute (class type,
subject, value)

Stores a value for a class (usually as class type or string). Values for
different subjects can be stored.

SetAttribute (class type,
property, subject, value)

Stores a value for a class and property. Values for different subjects
can be stored.

GetAttribute (class type,
subject) : object

Gets the stored information for a class concerning a certain subject.
Not only the class is examined, but also all superclasses and
implemented interfaces.

GetAttribute (class type,
property, subject) : object

Gets the stored information for a class and property concerning a
certain subject. Not only the class is examined, but also all
superclasses and implemented interfaces.

GetAttributeDefault (class type,
subject, default) : object

Gets the stored information for a class concerning a certain subject.
Not only the class is examined, but also all superclasses and
implemented interfaces. If the value is not found, the default value is
returned.

GetAttributeDefault (class type,
property, subject, default) :
object

Gets the stored information for a class and property concerning a
certain subject. Not only the class is examined, but also all
superclasses and implemented interfaces. If the value is not found,
the default value is returned.

GetProperties (class type) Gets a list of all properties in a class for which a value has been
stored. All superclasses and implemented interfaces of the class are
examined too.

The following gives a small example how to set and get information using MetaInfo

// Sets the value true to subject XmlKey of property ID in class Element
MetaInfo.SetAttribute (typeof(Element), "ID", "XmlKey", true);

// Gets the same value and supplies a default value if not found

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 19 of 28

if ((bool) MetaInfo.GetAttributeDefault (typeof(Element)), "ID", "XmlKey",
false)) DoSomething();

The following table explains the MetaInfo properties utilized by the XmlFile class.

Table 1 Explanation of MetaInfo properties of class XmlFile

Property Description

ObjectAggregate queried for: each class type encountered during reading and writing
expected type: string
default value: DefaultAggregate
meaning: Specifies the class type of an aggregate. For each object identified by
an xml element an aggregate is instantiated. The aggregate serves as an "in
between" object between the object and XmlFile.

NOTE: XmlFile expects that the aggregate has a constructor with one argument,
the underlying object.

XmlFile queried for: each class type encountered during writing
expected type: Boolean
default value: false
meaning: Indicates whether an object of the specified type should be written as a
separate XML file. An XML file and file name can be generated if not known to the
XmlFile object. A relative path to this XML file is written in the parent XML file.

On reading, if a reference is encountered to such an XML file, this referred file is
read immediately.

XmlSchema queried for: the class type encountered at the top of an xml file during reading
expected type: string
default value: null
meaning: The name of the xsd file against which xml validation is performed.
When this value is null, no xml validation is performed.

XmlNameSpace queried for: the class type encountered at the top of an xml file during writing
expected type: string
default value: null
meaning: The xml namespace. When validation is performed against a schema
(xsd file), the xml file must have an xml namespace. For correct validation the xml
namespace must be the same as the one specified in the xsd file.

XsdPackage queried for: the class type encountered at the top of an xml file during reading
expected type: string
default value: null
meaning: Indicates the assembly which contains the xsd file (denoted with
XmlSchema).

XmlElement queried for: each property in an object during writing
expected type: Boolean
default value: true
meaning: Indicates whether a property should be written to XML.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 20 of 28

Property Description

XmlKey queried for: each property in an object during writing
expected type: Boolean
default value: false
meaning: Indicates whether a property should be written to XML if the
corresponding object has been written to the XML file before. This occurs when the
data structure isn't hierarchical. Only the first time it is encountered on writing, it is
written out completely. Next times only a reference is written to the first occurrence.
The key of the object is used as reference.

The key of the entire object is the combination of all properties denoted as XML
key. This key should be unique per class type per XML file.

XmlAllowGeneration queried for: each property in an object during writing, which is denoted as an xml
key.
expected type: Boolean
default value: true
meaning: Indicates whether generation of a key value is allowed if the property
value is empty (i.e. null or a string of length zero or a string only containing
spaces). If generation is to be carried out, a unique number is assigned to the
property value. The property type is expected to be an integer or a string.

XmlName queried for: each property in an object during writing and reading
expected type: string
default value: the property name as defined in the class
meaning: Provides the name for the XML element or XML attribute in the XML file
for a property.

XmlRefName queried for: each property in an object during writing and reading, if the object is
or will be written as a reference to a prior object in the XML file.
expected type: string
default value: the XML name
meaning: Provides the name for the XML element or XML attribute in the XML file
for a property,.

XmlItemName queried for: each member of a collection during writing
expected type: string
default value: the single name derived from the XML name of the collection
object, e.g. the single name of the collection name "nodes", "node list", "node set"
or "node collection" will be "node".
meaning: Provides the name for the xml element in the xml file for a collection
member.

XmlRefItemName queried for: each member of a collection during writing, if the member will be
written as a reference to a prior object in the XML file.
expected type: string
default value: the single name derived from the XML name of the collection.
meaning: Provides the name for the XML element in the XML file for a collection
member.

XmlItemType queried for: each collection property in an object during reading and writing
expected type: string

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 21 of 28

Property Description

default value: null
meaning: Defines the class type of collection members. If set, class type
information can be omitted during writing.

XmlTypeAlias queried for: each type definition encountered in the XML file during reading
expected type: string
default value: the same type definition.
meaning: Defines the class name (including namespaces) to be instantiated for a
type definition in the XML file. This is useful if a class has been renamed and XML
files still contain the old class name.

XmlParent queried for: each property in an object during writing
expected type: object
default value: null
meaning: Defines the property of an object, which functions as its parent, i.e. the
xml parent element in the xml file. For example, the IElementSet has “Parent” for
this value. When the aggregate of the element set is asked for the property
“Parent”, it searches for the linkable component which owns the element set.
If the value is null, XmlFile assumes that the object which has this object as a
property is the parent.

XmlIndex queried for: each property in an object during writing
expected type: integer
default value: 1000
meaning: Defines a sorting number of the XML element. During write, XML child
elements are sorted according to this sorting number, if equal alphabetically.

3.2.4 Support classes
To accommodate proper handling of data, a number of support classes have been developed (see
Figure 7). The ObjectSupport class provides generic functions in respect with object handling. The
FileSupport class provides generic functionality to handle relative file paths.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 22 of 28

cd Dev elopmentSupport

ObjectSupport

+ GetCopy(source :object) : object
+ GetCopy(source :object, path :string) : object
+ Copy(source :object, target :object) : void
+ Copy(source :object, target :object, path :string) : void
+ LoadAssembly(assemblyName :string) : void
+ IsLoadedAssembly(assembly :Assembly) : bool
+ GetType(ClassType :string) : Type
+ GetInstance(classType :string) : object
+ GetInstance(classType :string, baseValue :object) : object
+ GetInstance(type :Type) : object
+ GetInstance(type :Type, baseValue :object) : object
+ GetInstance(type :Type, baseValue :object, cul ture :CultureInfo) : object

FileSupport

+ GetRelativePath(baseDirectory :DirectoryInfo, targetFile :FileInfo) : string
+ GetRelativePath(baseDirectory :DirectoryInfo, targetDir :DirectoryInfo) : string
+ ExpandRelativePath(BaseDirectory :DirectoryInfo, TargetFile :String) : FileInfo
+ ExpandRelativeDirectory(BaseDirectory :DirectoryInfo, TargetDir :String) : DirectoryInfo

CollectionSupport

+ ContainsObject(col lection :ICol lection, target :object) : bool
+ ToArray(list :IList) : object[]

Figure 7 Overview of Support classes

ObjectSupport Methods
Method Notes
GetCopy (source) : copied object Gets a deep copy of a specified object. Deep

copying copies all primitive and enumeration
properties and the properties for which MetaInfo
"ObjectCopy" is set to true

GetCopy (source, path) : copied object Gets a deep copy of a specified object and copies
referenced files Deep copying copies all primitive
and enumeration properties and the properties for
which MetaInfo "ObjectCopy" is set to true
If files are encountered, they are copied too. A path
is supplied where copied files will be placed. The
path is relative to the original location of the files

Copy (source, copied object) Deep copies all properties of source into the
properties of target Deep copying copies all primitive
and enumeration properties and the properties for
which MetaInfo "ObjectCopy" is set to true

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 23 of 28

Method Notes

Copy (source, copied object, path) Deep copies all properties of source into the
properties of target, including files Deep copying
copies all primitive and enumeration properties and
the properties for which MetaInfo "ObjectCopy" is
set to true.

If files are encountered, they are copied too. A path
is supplied where copied files will be placed. The
path is relative to the original location of the files

CopyFile (file, path) : copied file Gets a copy of a file. If the file doesn't exist, the
copied file will not exist neither. A relative path is
supplied where the copied file will be placed.

LoadAssembly (assembly name) Loads an assembly. The assembly name can be
either a full path to a file or a full or partial name of
an assembly registered in the GAC. An empty
assembly name is ignored.

IsLoadedAssembly (assembly) Tells whether an assembly has been loaded already

GetType (class name) : type Gets the class object given a string describing the
class. The assemblies loaded with LoadAssembly
are examined

GetInstance (class name) : object Creates a new object. Types with an argumentless
constructor can be created this way

GetInstance (class name, base value) : object Creates a new object using a base value (e.g. a
string with its value). This value is passed as
argument to the constructor. Normally primitives,
enumerations and some value types can be
instantiated this way. Also types with constructors
having one argument can be instantiated.

GetInstance (type) : object Creates a new object. Types with an argumentless
constructor can be created this way

GetInstance (type, base value) : object Creates a new object using a base value (e.g. a
string with its value). This value is passed as
argument to the constructor. Normally primitives,
enumerations and some value types can be
instantiated this way. Also types with constructors
having one argument can be instantiated.

GetInstance (type, base value, culture) : object Creates a new object using a base value (e.g. a
string with its value). This value is passed as
argument to the constructor. Normally primitives,
enumerations and some value types can be
instantiated this way. Also types with constructors
having one argument can be instantiated. Culture
info used for parsing the base value.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 24 of 28

FileSupport Methods
Method Notes
GetRelativePath (directory, file) : string Gets the relative path from a starting

directory to a file

GetRelativePath (directory, directory) : string Gets the relative path from a starting
directory to a directory

ExpandRelativePath (directory, relative path) : file Expands a relative path to a file

ExpandRelativeDirectory (directory, relative path) : directory Expands a relative path to a directory

CollectionSupport Methods
Method Notes
ContainsObject (collection, object) : bool Indicates whether an object is contained by a collection by

comparing references. The Equals method is not used, in
contrary with the Contains method in the ArrayList.

ToArray (collection) : array object Converts a collection to an array

3.2.5 Calendar Converter class
Within OpenMI, time is represented as a Modified Julian Date, i.e. the number of days since
November 17, 1858. As many models and user interfaces communicate in the Gregorian calendar
(e.g. January 1, 2005), a class has been developed to convert calendar information, i.e. convert a
gregorian DateTime object into a Modified Julian Data double and vice versa. This class currently is
named CalendarConverter (see Figure 8).

cd Dev elopmentSupport

CalendarConverter

+ Gregorian2ModifiedJulian(gregorianDate :DateTime) : double
+ ModifiedJulian2Gregorian(modifiedJul ianDate :double) : DateTime

Figure 8 Methods of the class CalendarConverter

Method Notes
Gregorian2ModifiedJulian (DateTime) : double Converts a DateTime object to modified julian

date

ModifiedJulian2Gregorian (double) : DateTime Converts a modified julian date to a DateTime
object

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 25 of 28

3.3 Dynamic view

3.3.1 Behaviour logic of XmlFile
As indicated, ‘read’ and “write’ functions of XmlFile are the main methods that are invoked by external
software packages. The processing of information is done xml-element by xml-element. The logical
behaviour of XmlFile can best be illustrated by activity diagrams showing the decision logic which
determines the internal calls. The activity diagram of Figure 9 shows the algorithm how XmlFile reads
an xml file.

XmlFile processes an xml element and then progresses to all xml sub elements. Each xml
sub-element is processed in the same way (this is performed by a recursive call to read xml element).
When an object is referenced in another unread xml file, first that file is read by a recursive call. When
XmlFile comes to the conclusion that an xml element denotes a reference to an already existing
object, a data store is accessed to retrieve this object. Identified by file, object identifiers and type of
the object, the right instance can be retrieved. If it is not there, an exception is raised. When reading a
fully written out xml element, the instantiated object is stored in the data store, because it may be
referred to further down in the xml file. The data store is persistent during the lifetime of XmlFile.

The activity diagram of Figure 10 illustrates the algorithm for writing an xml-file. When writing
an xml file, more or less the same structure is used as during reading an xml file. Now XmlFile
processes all properties of an object and writes corresponding xml elements and attributes. A
recursive call is used to write sub properties into xml sub-elements.

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 26 of 28

ad Read Xml File

iterative

Read Xml File

Read Xml Element

Instantiate object as
"Main"

Link definition?

Links to another file?

File has been read?

Get object from store

«datastore»
Registered

objects

Put "Main" object in store

Assign subobject to
"Main" object

Read Xml Subelement

Return "Main" object

Read Xml File

Read Referenced Xml
File

Return object from Store

Yes

Yes

No Sub Activi ty

Yes

No

Sub Activity

No

Figure 9 Reading an xml-file; behaviour logic of the class XmlFile

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 27 of 28

ad Write Xml File

iterativ e

Write Xml Fi le

Write Xml File

Write primitiv e obj ect
properties as attributes

Start writing object as
xml element

Object has been written
in another file?

Object has been
wri tten in current fi le?

Object is supposed to be
wri tten in another xml file?

Write file reference as
attribute

Write class definition as
attribute

Write key properties as
attributes

Write other object
properties as xml

elements

Write referenced xml file

Finish writing object
as xml element

Finish wri ting object
as xml element

«datastore»
Registered

objects
Put obj ect in store

Write class definition as
attribute

No

Yes No

Sub Activity

Yes

Sub Activity

No

Yes

Figure 10 Writing an xml-file; logical behaviour of the XmlFile-class

The OpenMI Document Series: Part E - org.OpenMI.DevelopmentSupport technical documentation The OpenMI Association
© 2007

Page 28 of 28

3.3.2 Exceptions
Utilizing a generic parser for reading XML-files requires proper exception handling. Table 2 provides
an overview of the exceptions generated by classes in the org.OpenMI.DevelopmentSupport package.

Table 2 Overview of exceptions generated by
org.OpenMI.DevelopmentSupport

Class Method Exceptions

XmlFile +Read(object)

+Read (object,
objectType)
+GetRead (file)

+GetRead (file,
objectType)

Cannot find file to read

Cannot resolve class type when an object for an xml
element must be instantiated
Cannot find class type

Xml element holds a reference, but referenced object
cannot be found

Schema cannot be found although it has been specified
in MetaInfo
Validation error when xml file doesn't meet specified
schema

XmlFile +Write (object)

+Write (object, file)

Cannot derive key for object which must be written as a
reference. Probably MetaInfo is missing for the class and
subject XmlKey

ObjectSupport +GetType(ClassType) Class cannot be found

ObjectSupport +LoadAssembly
(assemblyName)

Assembly cannot be found in the GAC

DefaultAggregate +GetValue(property) Internal exception raised by the source object when
getting the value

DefaultAggregate +SetValue(property,
target object)

Internal exception raised by the source object when
getting the value

3.4 Implementation remarks

3.4.1 C#-implementation
The correct implementation of all methods has been tested using dedicated unit tests in combination
with the NUnit framework for testing.

3.4.2 Java-implementation
No Java-implementation is available.

