
The OpenMI Document Series

Part F - org.OpenMI.Utilities
technical documentation

For OpenMI (Version 1.4)



Title OpenMI Document Series: Part F - org.OpenMI.Utilities
technical documentation for the OpenMI (version 1.4)

Editor Jan Gregersen, LicTek ApS on behalf of DHI Water and
Environment, Hørsholm, Denmark
Peter Sinding, DHI Water and Environment, Hørsholm, Denmark

Authors Peter Gijsbers, WL | Delft Hydraulics, Delft, The Netherlands
Stefan Westen, Wallingford Software Ltd, Wallingford, UK
Rob Brinkman, WL | Delft Hydraulics, Delft, The Netherlands
Jan Curn, DHI Hydroinform, Prague, Czech Republic

Document production Peter Gijsbers, WL | Delft Hydraulics, Delft, The Netherlands

Current version V1.4

Date 21/05/2007

Status Final © The OpenMI Association

Copyright All methodologies, ideas and proposals in this document are the
copyright of the OpenMI Association. These methodologies,
ideas and proposals may not be used to change or improve the
specification of any project to which this document relates, to
modify an existing project or to initiate a new project, without first
obtaining written approval from the OpenMI Association who
own the particular methodologies, ideas and proposals involved.

Acknowledgement This document has been produced as part of the OpenMI-Life
project.

The OpenMI-Life project is supported by the european
Commission under the Life Programme and contributing to the
implementation of the thematic component LIFE-Environment
under the policy area "Sustainable management of ground water
and surface water managment" Contract no : LIFE06
ENV/UK/000409.

The first version of this document has been produced as part of
the HarmonIT project; a research project supported by the
European Commission under the Fifth Framework Programme
and contributing to the implementation of the Key Action
“Sustainable Management and Quality of Water” within the
Energy, Environment and Sustainable Development. Contract
no: EVK1-CT-2001-00090.



Preface
OpenMI stands for Open Modeling Interface and aims to deliver a standardized way of linking of
environmental related models. This document describes the wrapping and other utilities as being
provided in the OpenMI Software Development Kit. It is the sixth document in the OpenMI report
series, which specifies the OpenMI interface standard, provides guidelines on its use and describes
software facilities for migrating, setting up and running linked models.
Other titles in the series include:
A. Scope

B. Guidelines

C. org.OpenMI.Standard interface specification

D. org.OpenMI.Backbone technical documentation

E. org.OpenMI.Development Support technical documentation

F. org.OpenMI.Utilities technical documentation (this document)

The interface specification is intended primarily for developers. For a more general overview of the
OpenMI, see Part A (Scope).

The official reference to this document is:
OpenMI Association (2007) The org.OpenMI.Utilities technical documentation. Part F of the OpenMI
Document Series

Disclaimer

The information in this document is made available on the condition that the user accepts
responsibility for checking that it is correct and that it is fit for the purpose to which it is applied.
The OpenMI Association will not accept any responsibility for damage arising from actions based upon
the information in this document.

Further information

Further information on the OpenMI Association and the Open Modelling Interface can be found on
http://www.OpenMI.org.

http://www.OpenMI.org.


The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 4 of 93

Table of contents
1 Introduction..................................................................................................................................7

1.1 Background...........................................................................................................................7

1.2 Requirements .......................................................................................................................8

1.3 Scope of this document.........................................................................................................8

1.4 Readership ...........................................................................................................................8

2 OpenMI utilities: Concepts............................................................................................................9

2.1 The OpenMI linking mechanism ............................................................................................9

2.2 Task description of the OpenMI utilities ...............................................................................10

2.3 Outline of the org.OpenMI.Utilities namespace ....................................................................10

2.3.1 Packages.....................................................................................................................10

2.3.2 Relations to other namespaces ....................................................................................10

3 The org.OpenMI.Utilities.Buffer package ....................................................................................13

3.1 General description.............................................................................................................13

3.2 org.OpenMI.Utilities.Buffer: Static View ...............................................................................13

3.2.1 SmartBuffer..................................................................................................................13

3.3 Dynamic view......................................................................................................................14

3.4 Implementation remarks......................................................................................................14

3.4.1 C#-implementation.......................................................................................................14

3.4.2 Java-implementation ....................................................................................................15

4 The org.OpenMI.Utilities.Spatial package...................................................................................17

4.1 General description.............................................................................................................17

4.2 Static View..........................................................................................................................18

4.3 Dynamic view......................................................................................................................19

4.3.1 Retrieving the possible methods...................................................................................19

4.3.2 Initialising the ElementMapper......................................................................................20

4.3.3 Possible Exceptions .....................................................................................................21

4.4 Implementation remarks......................................................................................................22

4.4.1 C#-implementation.......................................................................................................22

4.4.2 Java-implementation ....................................................................................................22

5 The org.OpenMI.Utilities.Wrapper package ................................................................................23

5.1 General description.............................................................................................................23

5.2 Static View..........................................................................................................................24

5.3 Dynamic view - GetValues ..................................................................................................25

5.4 Implementation remarks......................................................................................................28

5.4.1 C#-implementation.......................................................................................................28

5.4.2 Java-implementation ....................................................................................................28

6 The org.OpenMI.Utilities.AdvancedControl package...................................................................29

6.1 General description.............................................................................................................29

6.1.1 Advanced control functionality why and when...............................................................29



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 5 of 93

6.1.2 Iteration controller ........................................................................................................29

6.1.3 Optimization controller..................................................................................................31

6.1.4 Calibration controller ....................................................................................................32

6.1.5 Logical switch...............................................................................................................33

6.2 Static View..........................................................................................................................33

6.3 Dynamic View.....................................................................................................................36

6.4 Implementation remarks......................................................................................................38

6.4.1 C#-implementation.......................................................................................................38

6.4.2 Java implementation ....................................................................................................38

7 The org.OpenMI.Utilities.Configuration package.........................................................................39

7.1 General description.............................................................................................................39

7.2 Static View..........................................................................................................................39

7.3 XML Specification ...............................................................................................................47

7.4 Implementation remarks......................................................................................................51

7.4.1 C#-implementation.......................................................................................................51

7.4.2 Java implementation ....................................................................................................51





The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 7 of 93

1 Introduction

1.1 Background
OpenMI stands for Open Modeling Interfaces. It aims to deliver a standardized way to link
environmental related computational models that run simultaneously. In summary, OpenMI primarily
focuses on providing a complete protocol to explicitly define, describe and transfer (numerical) data
between components on a time basis, including associated component access. It thus enables
process interaction being represented more accurately, compared to sequential linkages.

The establishment of OpenMI will support and assist the scientific, consultancy and water
management community in the integrated assessment of water management systems and thus
strategic planning and integrated catchment management required by the European Water Framework
Directive.

This standardized way of linking models is achieved by an intelligent protocol to describe,
define and transfer data. This protocol is translated into a strict set of rules, i.e. formal interfaces, to be
implemented by software code in the org.OpenMI.Standard namespace. Any component that utilizes
this namespace is called an OpenMI compliant component.

Europe has a huge number of existing models which it is neither feasible nor desirable to
rewrite. Therefore, a primary design objective of the OpenMI is that the cost, skill and time required to
migrate an existing model to the standard should not be a deterrent to its use. To achieve this
objective, a software layer has been designed with a number of utilities that supports the
encapsulation of model components. This software layer is part of the OpenMI Software Development
Kit. Application of this SDK is not mandatory, but it may save costs and effort to join. This report
provides the technical documentation of these utilities, combined in the org.OpenMI.Utilities
namespace. The relation with other namespaces in the OpenMI architecture is displayed in Figure 1-1.

Open Modelling Interfaces

architecture

implements

OpenMI Software Development Kit

org.OpenMI.Standard

org.OpenMI.Backbone

org.OpenMI.Utilities org.OpenMI.Tools

org.OpenMI.DevelopmentSupport

Figure 1-1 Namespaces in the OpenMI architecture



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 8 of 93

1.2 Requirements
The main purpose of the org.OpenMI.Utilities package is to reduce the reengineering effort of legacy
code (mainly computational cores) in order to become OpenMI compliant components. As indicated a
wrapping technology will be applied for this purpose.
The org.OpenMI.Utilities namespace is designed taking the following conditions as a starting point:

 [Cond-UT1] - The model developer has full access to the source code of the model.

 [Cond-UT2] -The model a time step based model

 [Cond-UT3] -The model engine is silent

 [Cond-UT4] -The model engine can be compiled to a native/win32 dll

 [Cond-UT5] -The model engine is separate from any GUI.

The following requirements are identified for the org.OpenMI.Utilities namespace.

 [Req-UT1] - the namespace should provide functionality that handle as much as possible OpenMI
specific requests without interfering with the engine core

 [Req-UT2] - the namespace should handle all messaging (event s ands exceptions) with the
OpenMI

 [Req-UT3] - the namespace should provide an internal interface to the engine which is more
natural from the engine perspective

 [Req-UT4] - the namespace should provide support to buffer data, and to clear its buffer when
desired

 [Req-UT5] - the packages should only depend on primitives (int, string, double etc.) or on data
structures as defined in the org.OpenMI.Standard namespace

 [Req-UT6] - the packages should provide minimal support for spatial and temporal mapping

 [Req-UT7] - the support should be as efficient as possible to ensure high performing modelling
systems

1.3 Scope of this document
This report contains the technical documentation of the org.OpenMI.Utilities namespace. The technical
documentation addresses the design as well implementation issues. After discussing the major
concepts in chapter 2, the various packages are discussed in chapter 3 (org.OpenMI.Utilities.Buffer),
chapter 4 (org.OpenMI.Utilities.Spatial), chapter 5 (org.OpenMI.Utilities.Wrapper), chapter 6
(org.OpenMI.Utilities.AdvancedControl) and chapter 7 (org.OpenMI.Utilities.Configuration).

1.4 Readership
This document is meant for code developers who have to implement, extend or maintain the source
code of the OpenMI Software Development Kit. In order to understand this document, one needs to
have basic understanding of model linking, object-orientation and UML-notation (particularly class
diagrams and sequence diagrams). Within the text, the following style-convention is applied:

 OpenMI interface

 OpenMI method

 OpenMI property

 OpenMI argument



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 9 of 93

2 OpenMI utilities: Concepts

2.1 The OpenMI linking mechanism
OpenMI is a pull-based pipe and filter architecture, consisting of communicating components
(providers and acceptors), which exchange data in a pre-defined way and in a pre-defined format.
Sometimes, this type of architecture is also referred to as a context based request-reply architecture,
in which the context (i.e. the instantiated component) processes and replies to the requests in
synchronized order.

OpenMI defines both the component interfaces as well as how the data is defined that is being
exchanged. The components in OpenMI are called LinkableComponents to indicate that it involves
components that can be linked together.

The data transfer between instances of a LinkableComponent is handled within a single
thread, i.e. an instance handles only one request at a time before acting upon another request.
Invoking the last component in the chain of linked components triggers data exchange in an OpenMI-
system. Once this component is triggered, computation, synchronization and data exchange between
all components is handled autonomously without any type of supervising authority.

OpenMI accommodates legacy code by encapsulating this code into a wrapper (see Figure 2-1).
As many tasks are similar for all wrappers, a generic design has been made and implemented to
reduce the effort involved.

The                approach

The standard
OpenMI interface
provided through a
wrapper

Database

Economic
Model

River
Model

Rainfall
Runoff
Model

Tools – eg graphs

GUI

Utilities - eg unit conversion

Configuration tools – eg model linking

.GetValues

Figure 2-1 The OpenMI approach for linking models



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 10 of 93

2.2 Task description of the OpenMI utilities
The utilities packages described in this document are not part of the OpenMI standard and as such not
required to be used in order to make OpenMI compliant components.

The purpose of creating these utilities is to offer the model builder or the model integrator
utilities that will make migration of models to OpenMI easier and faster. The intention is not to create
utilities that do everything that a model builder could wish for. Thus very sophisticated methods will not
be covered. Such methods should when needed be implemented by the model provider. However, the
design of the tools should enable the model builder to extend the existing functionality and in this way
obtain utilities with the required functionality.

The spatial utilities are intended accessed from the inside of the OpenMI linkable components.
For most cases the actual access will take place from the inside of the model wrapper. This means
that from the outside a linkable component will look the same whether the component uses the utilities
or the component is using it's own implementation of such utilities.

2.3 Outline of the org.OpenMI.Utilities namespace

2.3.1 Packages
The org.OpenMI.Utilities namespace includes the following four packages:

 org.OpenMI.Utilities.Buffer

 org.OpenMI.Utilities.Spatial

 org.OpenMI.Utilities.Wrapper

 org.OpenMI.Utilities.AdvancedControl

 org.OpenMI.Utilities.Configuration

2.3.2 Relations to other namespaces

As illustrated in Figure 2-2, the packages depend on org.OpenMI.Standard, org.OpenMI.Backbone
and org.OpenMI.DevelopmentSuport. Further, the Wrapper package depends on the Buffer package
and the Spatial package.

More importantly all parameters used on public methods in the packages are assumed to
implement the interfaces from the org.OpenMI.Standard namespace, only. Hence the packages are
applicable for all components that implement the org.OpenMI.Standard.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 11 of 93

pd OpenMI package structure

org.OpenMI.Backboneorg.OpenMI.Standard

org.OpenMI.Utilities.AdvancedControl

org.OpenMI.Utilities.Buffer

org.OpenMI.Utilities.Configuration

org.OpenMI.Utilities.Spatial

org.OpenMI.Utilities.Wrapper

org.OpenMI.Dev elopmentSupport

Xml

(from org.OpenMI.Util ities.Configuration)

«real ize»

«realize»

Figure 2-2 Overview of package relations for org.OpenMI.Utilities





The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 13 of 93

3 The org.OpenMI.Utilities.Buffer package

3.1 General description
Water related models are typically doing time step based calculations. Based on values calculated for
one time step and external boundary values a set of values for the next time step is calculated.
Normally only values for the current time step and the previous time step are kept in memory. When
such models are running with links to other models or linkable components in an OpenMI context they
need to be able also to deliver values associated to earlier time steps, values that are in-between time
steps and even values that lies ahead of the current time step (extrapolated values).

The Buffer package provides buffering functionality that will store values needed for a particular
link in memory and functionality that will interpolate values or extrapolate values.

3.2 org.OpenMI.Utilities.Buffer: Static View
The Buffer package consists of the SmartBuffer class only.

3.2.1 SmartBuffer

The buffering functionality is obtained through the public methods for filling the buffer, emptying the
buffer and finally a method for retrieving interpolated, extrapolated or aggregated data.

The buffer filling is performed by the AddValues method that adds objects offering the
IValueSet interface and associated objects offering the ITime interface.

The emptying of the buffer is undertaken by the Clear method that called with an object that
implements the ITimeSpan interface deletes all ValueSets that falls within the given TimeSpan.

Retrieving data is performed by the GetValues method that called with an object that
implements the ITime interface returns an object that implements the IValueSet (the
org.OpenMI.Backbone.ValueSet). The GetValues determines itself whether interpolation, extrapolation
or aggregation is to be performed



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 14 of 93

SmartBuffer

+ SmartBuffer()
+ «property» RelaxationFactor() : double
+ «property» DoExtendedDataVeri fication() : void
+ «property» ValuesCount() : int
+ «property» TimesCount() : int
+ AddValues(time :ITime, valueSet :IValueSet) : void
+ GetValues(requestedTime :ITime) : IValueSet
+ Clear(timeSpan :IT imeSpan) : void
+ CheckBuffer() : void
+ GetTimeAt(Index :int) : ITime
+ GetValuesAt(Index :int) : IValueSet
+ CheckTime(time :ITime) : void
- MakeCopyOfValues() : IValueSet
- MapFromTimeSpansToTimeSpan(requestedTime :IT imeSpan) : IValueSet
- MapFromTimeSpansToTimeStamp(requestedTimeStamp :ITimeStamp) : IValueSet
- MapFromTimeStampsToTimeSpan(requestedTime :IT imeSpan) : IValueSet
- MapFromTimeStampsToTimeStamp(requestedTimeStamp :ITimeStamp) : IValueSet

«interface»
org.OpenMI.Standard::IValueSet

+ «property» Count() : int

«interface»
org.OpenMI.Standard::IVectorSet

+ GetVector(elementIndex :int) : IVector

«interface»
org.OpenMI.Standard::IScalarSet

+ GetScalar(elementIndex :int) : double

«interface»
org.OpenMI.Standard::IVector

+ «property» XComponent() : double
+ «property» YComponent() : double
+ «property» ZComponent() : double

«interface»
org.OpenMI.Standard::ITime

«interface»
org.OpenMI.Standard::ITimeStamp

+ «property» ModifiedJulianDay() : double

«interface»
org.OpenMI.Standard::ITimeSpan

+ «property» Start() : ITimeStamp
+ «property» End() : ITimeStamp

0..*

0..*
1

0..1

0..*

Figure 3-1  SmartBuffer

3.3 Dynamic view
The buffer is utilized by the SmartWrapper. See Section 5.2 for details.

3.4 Implementation remarks

3.4.1 C#-implementation
The C#-implementation does not utilize any specific .NET features.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 15 of 93

Table 3.4.1 provides an overview of the .NET framework assemblies that have been utilized in the
various classes of org.OpenMI.Utilities.Buffer.

Table 3.4.1 Overview of .NET framework assemblies utilized within
org.OpenMI.Utilities.Buffer

.NET framework assembly utilized by org.OpenMI.Utilities.Buffer classes

System all classes

System.Collections SmartBuffer

System.IO SmartBuffer

The correct implementation of all methods has been tested using dedicated unit tests in combination
with the NUnit framework for testing.

The org.OpenMI.Utilities.Buffer package is available as open source under LGPL licence on Source
Forge (http://sourceforge.net/projects/openmi)

3.4.2 Java-implementation
No information available yet

http://sourceforge.net/projects/openmi




The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 17 of 93

4 The org.OpenMI.Utilities.Spatial package

4.1 General description
Basically the spatial utilities will convert one ValueSet associated to one ElementSet to a new
ValueSet that corresponds to another ElementSet. The conversion will be a two step procedure,
where the first step (Initialize) will be executed only ones. Subsequently conversion will be executed
by the MapValues method.

The Initialize method will create a conversion matrix with the same number of rows as the
number of elements in the ElementSet associated to the accepting component and the same number
of columns as the number of elements in the ElementSet associated to the providing component.

Mapping is possible for any zero, one, and two-dimensional elements. Mapping for
three.dimensional ElementSets is not supported in the current implementation.
Zero-dimensional elements will always be points, one-dimensional elements will always be polylines,
and two-dimensional elements will always be polygons.

The spatial package does not contain very advanced methods. This job will be left to the
model provider that needs such methods. However, the architecture of the spatial utilities will be
created in such a way that it will facilitate easy extension. This means that the model provider does not
need to start from scratch but can build on what has already been provided in the Software
Development Kit.

Figure 4.1.1: Spatial mapping examples



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 18 of 93

4.2 Static View
The org.OpenMI.Utilities.Spatial package consists of the ElementMapper class and a number of
support classes. The ElementMapper class uses the functionality of the support classes. The user of
the spatial utility package (the person building model engine wrappers) will access the functionality of
ElementMapper class only. However, people that want to build their own ElementMapper or extend
the functionality of the existing ElementMapper can use the support classes.

The support classes XYPoint, XYPolyline and XYPolygon are implementations for 0, 1 and 2
dimensional data respectively. XYLine is a support class used by XYPolyline and XYPolygon. The
XYGeometry class is a collection of general geometry functions. All functions in XYGeometry are static
methods that performs calculations on input given as parameters (typically input of type: XYPoint,
XYLine, XYPolyline and/or XYPolygon) and returns a result.

cd SpatialForDocumentation

ElementMapper

+ ElementMapper()
+ Ini tialise(string, IElementSet, IElementSet) : void
+ MapValues(IValueSet) : IValueSet
+ UpdateMappingMatrix(string, IElementSet, IElementSet) : void
+ GetValueFromMappingMatrix(int, int) : double
+ SetValueInMappingMatrix(double, int, int) : void
+ GetAvailableMethods(ElementType, ElementType) : ArrayList
+ GetIDsForAvai lableDataOperations(ElementType, ElementType) : ArrayList
+ GetAvailableDataOperations(ElementType) : ArrayList

XYPoint

+ XYPoint()
+ XYPoint(double, double)
+ XYPoint(XYPoint)
+ «property» X() : double
+ «property» Y() : double
+ Equals(Object) : bool

XYLine

+ XYLine()
+ XYLine(double, double, double, double)
+ XYLine(XYPoint, XYPoint)
+ XYLine(XYLine)
+ «property» P1() : XYPoint
+ «property» P2() : XYPoint
+ GetLength() : double
+ GetMidpoint() : XYPoint
+ Equals(Object) : bool

XYGeometryTools

+ CalculatePointToPointDistance(XYPoint, XYPoint) : double
+ DoLineSegmentsIntersect(double, double, double, double, double, double, double, double) : bool
+ DoLineSegmentsIntersect(XYPoint, XYPoint, XYPoint, XYPoint) : bool
+ DoLineSegmentsIntersect(XYLine, XYLine) : bool
+ CalculateIntersectionPoint(XYPoint, XYPoint, XYPoint, XYPoint) : XYPoint
+ CalculateIntersectionPoint(XYLine, XYLine) : XYPoint
+ CalculateLengthOfPolylineInsidePolygon(XYPolyl ine, XYPolygon) : double
+ CalculatePolylineToPointDistance(XYPolyline, XYPoint) : double
+ IsPointInPolygon(XYPoint, XYPolygon) : bool
+ IsPointInPolygon(double, double, XYPolygon) : bool
+ CalculateSharedArea(XYPolygon, XYPolygon) : double

XYPolyline

+ XYPolyline()
+ XYPolyline(XYPolyline)
+ «property» Points() : ArrayList
+ GetX(int) : double
+ GetY(int) : double
+ GetLine(int) : XYLine
+ GetLength() : double
+ Equals(Object) : bool
+ Validate() : void

XYPolygon

+ XYPolygon()
+ XYPolygon(XYPolygon)
+ GetArea() : double
+ GetLine(int) : XYLine
+ GetTriangulation() : ArrayList
+ Equals(Object) : bool
+ Validate() : void

-_p2-_p1

Figure 4.2.1: Class diagram for the spatial package

The above mentioned classes work on consistent ElementSets, i.e. ElementSets where all elements
have the same ElementType. By definition, an element of type XYPoint must contain one vertex; an
element of type XYLine must contain two vertices, while an element of type XYPolyline requires at
least 2 vertices. An element of type XYPolygon requires at least 3 vertices, while the last vertex of a
polygon should correspond to the first one. To validate an ElementSet, a separate class has been
developed called ElementSetChecker (see Figure 4.2.2).



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 19 of 93

cd Spatial

ElementSetChecker

+ CheckElementSet(IElementSet) : void

Figure 4.2.2: Class view of the ElementSetChecker

4.3 Dynamic view
The main concept of the ElementMapper is that a mapping matrix is calculated at initialization time
and the MapValue method is called at simulation time. The MapValue method multiplies the from-
values onto the mapping matrix to get the to-values during simulation. The core part of the
ElementMapper is, hence, placed in the initialization part where the mapping matrix is calculated.

4.3.1 Retrieving the possible methods
When initialising the ElementMapper a methodID has to be passed as one of the parameters. The
methodID is a string that needs to be recognisable to the ElementMapper, hence the string should
preferably come from the ElementMapper itself.

For this purpose the ElementMapper offers a GetAvailableDataOperations method that given
the from ElementTypes returns a list of method IDs. This list should be included edited or not in the
DataOperation list of the IOutputExchangeItem. In this way the method IDs of the ElementMapper will
be offered as data operations and subsequently passed back into the ElementMapper as an argument
for the Initialize method.

The description strings for the available methods are listed in Table 4.3.1.

From ElementType To ElementType Method descriptor

XYPoint XYPoint Nearest

Inverse

XYPolyline Nearest

Inverse

XYPolygon Mean

Sum

XYPolyline XYPoint Nearest

Inverse

XYPolygon Weighted Mean

Weighted Sum

XYPolygon XYPoint Value

XYPolyline Weighted Mean

Weighted Sum

XYPolygon Weighted Mean

Weighted Sum

Table 4.3.1: List of available data operations



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 20 of 93

4.3.2 Initialising the ElementMapper

A wrapper that adds the ILinkableComponent interface to an engine typically uses the
ElementMapper. The SmartWrapper from the utility package is an example of such a wrapper.
The sequence diagram included in Error! Reference source not found. shows the calling sequence
invoked by a wrapper that initialises an ElementMapper to be able to map values from an ElementSet
named fromElements onto an ElementSet named toElements. Both elementSets consist of Elements
of ElementType XYPolygon.

sd InitializeElementMapperForDocumentation

LinkableRunEngine

ElementMapper ElementSetChecker XYPolygon XYGeometryTools

[1]

[2]

[3]

[4]

[5]

ElementMapper()

Ini tialise(methodIDescription,fromElements,toElements)

UpdateMappingMatrix(methodDescription,fromElements,toElements)

CheckElementSet(fromElements)

CheckElementSet(toElements)

methodIDNumber:= GetMethodID(methodDescription,fromElementType,toElementType)

toPolygon:= XYPolygon(toElements)

fromPolygon:= XYPolygon(fromElements)

SharedArea:= CalculateSharedArea(toPolygon,fromPolygon)

GetTriangulation() for to- and from- Polygon

FindEar()

TriangleIntersectionArea

return CalculateSharedArea

_mappingMatrix(i,j )=SharedArea/Denominator(MethodID)

return Ini tialise

Figure 4-1: Sequence diagram for ElementMapper Initialisation

1. At initialisation time the LinkableRunEngine creates an instance of the ElementMapper for each
link. The ElementMapper is initialised using the ElementSets of the link and a mapping method
descriptor from the link DataOperations.

2. Initialize will set a flag indicating that the ElementMapper is initialised and calculate the mapping
matrix. Since recalculation of the mapping matrix is to be offered at simulation time, also, the
calculation is performed in the public method called UpdateMappingMatrix. UpdateMappingMatrix
initially verifies that the input ElementSets are valid ElementSets. Besides verification, the method
includes a selection block that based on the ElementTypes of the source- and target- ElementSets



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 21 of 93

and the MethodDescriptor chooses the method to be used for the calculation of the mapping
matrix elements.

3. The shared area between every XYPolygon in the source ElementSet and every XYPolygon in the
target ElementSet is calculated. The shared area is used for the calculation of the mapping matrix
elements.

4. In order to calculate the shared area of two arbitrarily shaped polygons each polygon is divided
into a set of triangles using a simple ear-cutting algorithm. Subsequently the shared area of each
combination of triangles is calculated and summed to give the shared area of the polygons.

5. The shared areas are nominated with either the total area of the polygon itself (weighted sum) or
by the total area covered in that polygon (weighted mean) dependent on the mapping method
specified with the methodDescriptor argument.

4.3.3 Possible Exceptions

The Spatial package uses nested exceptions through the use of the InnerException property.
Exceptions thrown by private methods are caught in the public methods and added the Exception from
the public method as InnerException. Table 4.3.2 provides an overview of possible exceptions.

Class Method Description Has Inner-
Exception

ElementMapper objects needs to be initialised before the
MapValue method can be used

-

Dimension mismatch between inputValues and mapping
matrix

-

MapValues

Invalid datatype used for inputValues parameter.
MapValues failed

-

methodDescription unknown for point to point mapping -

Point to point mapping failed +

methodDescription unknown for point to polyline mapping -

Point to polyline mapping failed +

methodDescription unknown for point to polygon mapping -

Point to polygon mapping failed +

methodDescription unknown for polygon to point mapping -

Polyline to point mapping failed +

methodDescription unknown for polygon to point mapping -

Polyline to polygon mapping failed +

methodDescription unknown for polygon to point mapping -

Polygon to point mapping failed +

methodDescription unknown for polygon to polyline
mapping

-

Polygon to polyline mapping failed +

methodDescription unknown for polygon to polygon
mapping

-

Polygon to polygon mapping failed +

Mapping of specified ElementTypes not included in
ElementMapper

-

UpdateMappingMatrix

UpdateMappingMatrix failed to update mapping matrix +

GetValueFromMappingMatrix GetValueFromMappingMatrix failed. +

SetValueInMappingMatrix SetValueInMappingMatrix failed. +

ElementMapper

ValidateIndicies Negative row index not allowed. -



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 22 of 93

Row index exceeds mapping matrix dimension. -

Negative column index not allowed.

Column index exceeds mapping matrix dimension. -

GetMethodID methodDescription: %1 not known for fromElementType:
%2 and to ElementType: %3. GetMethodID failed.

(where %1-%3 are the actual values passed as
parameters to the method)

-

CreateXYPoint Cannot create XYPoint -

CreateXYPolyline Cannot create XYPolyline -

CreateXYPolygon Cannot create XYPolygon -

XYGeometryToo
ls

CalculateIntersectionPoint Attempt to calculate intersectionpoint between non
intersecting lines. CalculateIntersectionPoint failed

-

Argument must be a polygon with 3 points -

Failed to find intersection polygon -

TriangleIntersectionArea

TriangleIntersectionArea failed +

Table 4.3.2: Possible exceptions of the ElementMapper

4.4 Implementation remarks

4.4.1 C#-implementation
The C#-implementation does not utilize any specific .NET features.

Error! Reference source not found. provides an overview of the .NET framework
assemblies that have been utilized in the various classes of org.OpenMI.Utilities.Spatial.

.NET framework assembly utilized by org.OpenMI.Utilities.Spatial classes

System all classes

System.Collections ElementMapper, XYGeometryTools, XYPolygon, XYPolyline,

Table 4.4.1: Overview of .NET framework assemblies utilized within
org.OpenMI.Utilities.Spatial

Function descriptions and interface descriptions are given as XML comments in the source code.

The correct implementation of all methods has been tested using dedicated unit tests in combination
with the NUnit framework for testing.

The org.OpenMI.Utilities.Spatial package is available as open source under LGPL licence on Source
Forge (http://sourceforge.net/projects/openmi)

4.4.2 Java-implementation

No information available yet

http://sourceforge.net/projects/openmi


The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 23 of 93

5 The org.OpenMI.Utilities.Wrapper package

5.1 General description
During the development of the OpenMI standard the project team was also migrating existing models.
We discovered that for numerical model engines that are doing time step based calculation there were
many commonalties in the wrappers even though those model were different with respect to domain
and dimension. An example of such models could be a one-dimensional finite difference based river
model engine and a two-dimensional finite element based ground water model engine. It was
therefore decided to develop a Wrapper package that could assist developers in migration of such
kind of model engines.

The OpenMI standard puts a lot of responsibilities on the LinkableComponents. Such components
must implement all be bookkeeping for handling links added through the AddLink method and they
may have to return values that are interpolated, extrapolated or aggregated in time and space in order
to conform with the GetValues request. When you look at the ILinkableComponent interface you will
not find any methods that directly will trigger the model engine to run or do a time step, such things are
assumed to be handled behind the scene. So, to figure out, based on the interface definitions alone,
what exactly do to your model system may seem difficult.  The design of the Wrapper package, Buffer
package, and the Spatial package will provide you with one possible way to go.

This chapter provides the technical documentation of the wrapper package. Descriptions of how to
use this package are given in document B, Guidelines, book 4. It is highly recommended you read this
book before reading this chapter.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 24 of 93

5.2 Static View

cd WrapperOv erView

«interface»
IAdvancedEngine

«interface»
IEngine

«interface»
IRunEngine

LinearConversionDataOperation

LinkableEngine

LinkableRunEngine

SmartBufferDataOperation

SmartInputLink

SmartLink

SmartOutputLink

TimeValueSet

SmartBufferElementMapper

«interface»
ILinkableComponent

«interface»
IPublisher

MarshalByRefObject
LinkableComponent

«interface»
ILink

0..*1

#_engineApiAccess

0..*1

-_l inearDataOperation

1

1

1

1

0..1

1

#_engine

Figure  5-1 Class diagram for the Wrapper classes and classes used in
other packages.

The Wrapper package classes are shown on figure 5-1 above. The collared classes on the figure
belong to the wrapper package. The white classes are included in the figure in order to illustrate the
relation between the wrapper classes and these classes.

The LinkableEngine class is the main class in the wrapper package. If you follow the inheritance
hierarchy on figure 5-1, you can see that the LinkableEngine implements the ILinkableComponent
interface. When using the wrapper package for model migration the developer will derive his linkable
component from this class. The LinkableEngine in derived from the LinkableRunEngine class. There
are historical reasons for this. Basically, the LinkableRunEngine class and the LinkableEngine class



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 25 of 93

could be merged, but in order to maintain backwards compliancy two separate classes still exists in
the wrapper package. The LinkableEngine class will access the specific model engine through the
IEngine interface or the IAdvancedEngine interface. The LinkableEngine keeps internal lists of
SmartInputLinks and SmartOutputLinks. Each of these SmartLinks has contains the backbone
implementation of the ILink interface. Each SmartOutputLink owns an instance of the SmartBuffer
class (from the Buffer package). If the link is geo-referenced also an instance of the ElementMapper
class is owned by the SmartOutputLink

5.3 Dynamic view - GetValues
The key to understanding the wrapper package is the implementation of the GetValues method. The
implementation of the GetValues method is shown on figure 5-2. the sequence diagram illustrates an
example of two models linked bi-directionally with georeferenced links. The figure has notes with
numbers. And explanation for each note is given below:

1. The LinkableEngine class will search through it’s internal list of output links to find the link
which has a LinkID identical to the LinkID passed in the argurment list of the GetValues call.

2. The LinkableEngine has an internal flag (Boolean) which when true indicates that the engine
in the process of gathering data from other components in order to prepare for performing a
time step. The purpose of this flag is to avoid deadlocks between bi-directional linked models.
If this flag is true when the GetValues is invoked, the LinkableEngine will proceed to step 20,
an extrapolate values from already available values in the buffer, rather that performing time
steps.

3. The output link found in step 1 is asked for the last buffered time.

4. Based on information about the last buffered time, the LinkableEngine can determine if it
needs to perform time steps or if the requested values already are available in the buffer. If
values are available the LinkableEngine can proceed to step 18.

5. The engine is now in stage of gathering data from other component in order to prepare for the
time step. In order to avoid deadlocks the IsBusy flag is set to true.

6. On each input link in the list of input links the UpdateInput method is invoked.

7. The GetInputTime method is invoked in the engine. If the engine does not need input data for
this particular quantity for the current time step null is returned, otherwise the time for which
input is needed is returned. The returned time can be either a TimeStamp or a timeSpan.

8. GetValues is invoked.

9. The retrieved values are set in the engine

10. The gathering of data from outside is completed and the IsBusy flag is changed back to false.

11. The Engine is now ready to do a time step and the PerformTimeStep is invoked.
PerformTimeStep may return false, which indicates that the time step was not completed. The
reason for this may be that the model is using adaptive time steps, and is in the process of
reducing the time step length. So if performTimeStep returns false, things start from step 4
again.

12. The time step has now been completed and the buffers can be updated with the calculated
values. For each OutputLink in the list of OutputLinks the UpdateBuffer method is invoked.

13. The engine can be accessed either through the ILinkebleEngine interface or through the
IAdvancedEngine interface. The IAdvancedEngine interface is an extension to the IEngine
interface. This extension was made in order to facilitate models where different quantities are
calculated based on different time steps. If the engine implements the IAdvancedEngine



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 26 of 93

interface the engine is queried for a TimeValues object. The TimeValues object combines
values and the time for which it applies.

14. If the engine does not implement the IAdvancedEngine interface it is assumed that the
calculated values apply for the current time of the engine. Consequently, the GetCurrentTime
is invoked in order to obtain this time.

15. If the engine does not implement the IAdvancedEngine interface the calculated values are
obtained from the engine through invocation of GetValues.

16. If the current link is geo-referenced the ElementMapper object associated to this link is used to
make the spatial transformations through invocation of the MapValues method.

17. The calculated and mapped values are added to the buffer associated to the current link
through invocation of the AddValues method.

18. The EarliesInputTime property of the requesting linkable component is queried.

19. The buffer is cleared for values that lies before the EarliestInputTime obtained in step 18.

20. The current OutputLink object is queried for the calculated values.

21. The current OutputLink queries the associated buffer for values. Temporal operations are
done as part of this operation, e.g. interpolation, extrapolation, or aggregation.

22. Any other data operations associated to the current link are performed. This could be linear
conversion.

23. Unit conversion.

24. Final return to the requesting LinkableComponent.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 27 of 93

sd GetValues

alt if (IsBysy == false)

Model A
:ILinkableComponent

Model B
:ILinkableComponent

Engine
:IAdv ancedEngine

InputLink
:SmartInputLink

OutputLink
:SmartOutputLink

Buffer
:SmartBuffer

elementMapper
:ElementMapper

loop While t < lastBufferedTime

1

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2

4

IValueSet:= GetValues(time,l inkID)

Identify which output link is in play

ITimeStamp:= GetLastBufferedTime()

lastBufferedTime

IsBusy = true

*UpdateInput()

ITime:= GetInputTime(QuantityID,ElementSetID)

Return inputTi me

[inputTime != null ]:  IValueSet:= GetValues(time,l inkID)

[inputTime != null]: SetValues(Quanti tyID,ElementSetID,values)

IsBusy = false

bool:= PerformTimeStep()

wasTimeStepCompleted

[wasTimeStepCompleted]: *UpdateBuffer()

[engine i s IAdvancedEngine]:  TimeValueSet:= GetValues(quantityID,ElementSetID)

Time and Values

[engine is not IAdvancedEngine]:  org.OpenMI.Standard.ITime:= GetCurrentTime()

time

[engine is not IAdvancedEngine]:  IValueSet:= GetValues(QuantityID,ElementSetID)

values

IValueSet:= MapValues(inputValues)

AddValues(time,valueSet)

ITimeStamp:= EarliestInputTime()

ClearBefore(earli estInputTime)

IValueSet:= GetValue(time)

IValueSet:= GetValues(requestedTime)

PerformDataOperations

IValueSet:= ConvertUnit(values)

5.3.1 Sequence diagram for the GetValues metod.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 28 of 93

5.4 Implementation remarks

5.4.1 C#-implementation

Function descriptions and interface descriptions are given as XML comments in the source code.

The correct implementation of all methods has been tested using dedicated unit tests in combination
with the NUnit framework for testing.

The org.OpenMI.Utilities.Wrapper package is available as open source under LGPL licence on Source
Forge (http://sourceforge.net/projects/openmi)

5.4.2 Java-implementation
No information available yet

http://sourceforge.net/projects/openmi


The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 29 of 93

6 The org.OpenMI.Utilities.AdvancedControl
package

6.1 General description

6.1.1 Advanced control functionality why and when
The data exchange and synchronization mechanism of OpenMI is designed in such way that
LinkbaleComponents can autonomously exchange data without any centralized functionality to
manage the data exchange. However, in some specific situations, extra control capacity is needed to
direct convergence of computational results. This functionality typically is desired for iteration
purposes, as well as for optimization and calibration.

A separate utility package has been designed to support these advanced control features. The
package, named org.OpenMI.Utilities.AdvancedControl, utilizes the GetValues mechanism of the
LinkableComponent, as well as the state management functionality (implemented through the
IManageState interface) to direct the convergence of computational results. The controllers
themselves are LinkableComponents as well, so their data (i.e. the new parameter values or boundary
conditions) can be accessed by a model based LinkableComponent as well.

The following control functionality has been identified:

 The iteration controller is needed when implicit models are linked bi-directionally and iterations
within time-steps are needed

 The calibration controller component is responsible for calibrating one model or a set of linked
simulation engines. The optimisation controller can be used to find values of variables that
minimize or maximize an objective function while satisfying a set of constraints. In the OpenMI
framework this will normally be used in conjunction with a set of linked models.

 The logical switch allows switching inputs depending on an input condition

6.1.2 Iteration controller

When multiple implicit model engines are linked bi-directionally, iterations within time-steps may be
required to obtain correct numerical values. An implicit model engine requires the input value on the
next time-step in order to calculate the output value on the next time-step. An explicit model engine
requires only the input on the current time-step to calculate the output on the next time-step. When
simulation engines are linked bi-directionally and no iterations within time-steps are used, the link is
effectively explicit. This may mean that the simulation engines have to use a much smaller time-step.
An alternative may be to use iterations within time-steps. The simulation engines have to support
saving and restoring of the engine state when the iteration controller is used.

When the IterationController is used, the models do not exchange values directly but through
the iteration controller (see Figure 6-1). The iteration controller is in control of the iterations and
requests the models to step back one time-step. The iteration controller decides when the iterations
have converged. The iteration controller throws an exception when there is no convergence in the
iteration.

The IterationController has a number of data slots numbered 1,2, 3, etc. In order to connect
quantities through the IterationController, the output exchange item of the providing component should
be connected to a certain slot (for instance 1), and the input exchange item of the receiving



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 30 of 93

component should be connected to the same slot (for instance 1). One slot should only be used for 1
link.

Figure 6-1 Position of iteration controller within a model combination

The requirements of an IterationController are

 All bi-directional links are linked through the iteration controller and not directly. This is
necessary because the iteration controller is in control of iterations. It allows the iteration
controller to check that the values are converging.

 The iteration controller decides when to stop iterating, based on a stopping criterion.

 The iteration controller has a configurable number of minimum and maximum iterations. A flag
is used to indicate if the iteration controller throws an exception when the maximum number of
iterations is exceeded.

 The iteration controller is responsible for managing the simulation engine states during the
iterations.

 The iteration controller is itself linkable component and it is triggered externally. From the
outside the iteration controller and the linked simulation engines look like a
LinkableComponent.

 The iteration controller does not have a Graphical User Interface (GUI), although a simple
example GUI would be useful for testing. The GUI and the iteration controller should be
completely separate components.

Before using an iterated link, it is highly recommended to try using a bi-directional link first. Only when
there are strong backwater effects are iterated links really needed. Usually a bi-directional link with a



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 31 of 93

small time-step will work, for instance for the example given here a bi-directional link with no iterations
will gives the same result. A bi-directional link is much easier to set-up and will run much faster. Also,
the models used will have to be able to restore their state to an earlier time, something that not all
OpenMI compliant models will be able to do. Please check with the model supplier to ensure that the
model supports restore state before trying to use any of the controllers.

6.1.3 Optimization controller
The main difference between optimization and calibration is that in calibration usually a large number
of values are calibrated and in optimization usually a small number of values are calibrated.
Optimization can also be to make a choice between different scenarios instead of finding the best
value of a parameter. Optimization may also be the choice between different control strategies or to
optimize a control strategy.

Optimization problems are made up of three basic ingredients:

 An objective function that we want to minimize or maximize. The objective function can be
linear or non-linear.

 A set of unknowns or variables which affect the value of the objective function. The variables
can be continuous or discrete or mixed.

 A set of constraints that allow the unknowns to take on certain values but exclude others. The
constraints can be linear or non-linear.

The optimization controller is a generic component for finding the values of the variables that minimize
or maximize an objective function while satisfying a set of constraints. The optimization controller will
have a generic interface so that any optimization algorithm can be linked to it.

Model BModel A

Optimization controller

new
parameters

Optimization
algorithm

model
output

performance Objective
function

Figure 6-2 Position of the optimization controller (blue is OpenMI
compliant)

The requirements that have been kept in mind for the OptimizationController are:

 Specify an objective function. The objective function could be a model in itself, with one output
value. This would allow for good flexibility in the system because it is easy to change the
objective function by just plugging in another one.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 32 of 93

 Specify if the objective function should be minimized or maximized. This could be set during
the initialization of the optimization controller.

 Specify the variables to be optimised. This could be done by linking variables in models to the
optimisation controller.

 Specify constraints
o Specify a minimum and maximum for variables

o Specify linear constraints

o Specify non-linear constraints

 Specify a starting value for variables.

 The optimization controller will raise events about optimization progress.

 The optimization controller will raise an error event when no solution can be found that satisfies
all constraints.

 Manual and automatic optimization should be possible. For manual optimization, it should be
possible to adjust values.

 The optimization algorithm (linear programming, dynamic programming, conjugate gradient,
etc.) should be user definable and should plug in to the optimization controller so that it is easy
to plug in different algorithms.

6.1.4 Calibration controller

Although models can be calibrated individually, when models are linked together into a linked model
this linked model has to be calibrated as well. The calibration controller is a generic component to
calibrate linked models. It will provide a generic interface so that specific calibration algorithms can be
used. In most cases the objective of calibration is to minimise an error function. The error function is
usually defined as the difference between measured data and calculated data. The purpose of the
calibration is to find the set of parameter values that minimise the error function. Calibration can be
seen as an optimisation problem because the error function is optimised and the parameter values are
the unknowns in the optimisation. Figure 6-3 illustrates the data flow around a calibration controller.

Calibration controller

Models

Measured values

Figure 6-3 Position of calibration controller

The requirements of a CalibrationController are:



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 33 of 93

 Manual and automatic calibration should be possible. With the manual calibration, the user
should be able to change parameter values and run the simulation. With automatic calibration,
the user should be able to choose the parameters that are going to be calibrated.

 The calibration component should be able to compare computed with measured values and
calculate statistics for the calibration.

 A mechanism is needed to specify the following:

o Model parameters that can be changed. The simulation engines will perform a
GetValues() call to the calibration controller to retrieve the model parameters.

o Minimum and maximum value for each parameter.

o Initial value for each parameter.

 A mechanism is needed to change the parameter values after each iteration.

 A mechanism is needed to decide when to stop calibrating.

 A mechanism to make the calibrated values “fixed”, e.g. to write them out to the input file. Once
values are calibrated, the parameters are not inputs any longer. It should be possible to make
calibrated values persistent.

 The calibration controller will send events about calibration progress and statistics

6.1.5 Logical switch

The logical switch is used to switch between different inputs depending on a logical condition. An
example of a logical condition is a threshold for a water level or a threshold for a flow.

6.2 Static View
Figure 6-4 shows the UML diagram for the advanced controllers. The generic Controller class is
derived from LinkableComponent and both the IterationController and OptimizationController classes
derive from the Controller class. As can be seen, the controllers contain an internal buffer which holds
buffer elements.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 34 of 93

cd AdvancedControl

LinkableComponent
Controller

- StateTable:  Hashtable = new Hashtable()
# isComputing:  bool = false

# KeepAllStates() : void
# RestoreAllStates() : void

IterationController

- buffer:  Buffer = new Buffer()
- relaxation:  double = 0.25
- maxIter:  int = 25
- eps:  double = 1e-6

+ Prepare() : void
+ «property» ComponentDescription() : string
+ «property» ComponentID() : string
+ «property» ModelID() : string
+ «property» ModelDescription() : string
+ «property» Earl iestInputTime() : ITimeStamp
+ «property» TimeHorizon() : IT imeSpan
+ Finish() : void
+ GetPublishedEventType(int) : EventType
+ GetPublishedEventTypeCount() : int
+ Validate() : string
+ Initial ize(IArgument[]) : void
+ GetValues(ITime, string) : IValueSet

BufferElement

- _ID:  string
- _valueSet:  IValueSet

+ BufferElement(string, IValueSet)
+ «property» ID() : string
+ «property» ValueSet() : IValueSet

Buffer

- l ist:  ArrayList = new ArrayList()

+ Clear() : void
+ Get(string) : IValueSet
+ Add(string, IValueSet) : void

OptimizationController

- parameters:  ArrayList = new ArrayList()
- buffer:  Buffer = new Buffer()
- evaluationCount:  int = 0

+ Prepare() : void
+ «property» ComponentDescription() : string
+ «property» ComponentID() : string
+ «property» ModelID() : string
+ «property» ModelDescription() : string
+ «property» EarliestInputTime() : ITimeStamp
+ «property» TimeHorizon() : ITimeSpan
+ GetPublishedEventType(int) : EventType
+ GetPublishedEventTypeCount() : int
+ Validate() : string
+ Finish() : void
+ AddParameter(ParameterDescriptor) : void
+ GetParameters() : ArrayList
+ Initial ize(IArgument[]) : void
+ EvaluateCostFunction(ITime, Solution) : double
+ GetValues(IT ime, string) : IValueSet

-buffer-buffer

Figure 6-4 The advanced controller classes

To enable convergence of a data set, additional range information is required about the parameter or
quantity to be controlled. A ParameterDescriptor class (Figure 6-5) is used by the optimization and
calibration controllers to describe the minimum, maximum, and default values for parameters.

cd Adv ancedControl

ParameterDescriptor

- _ID:  string
- _minimum:  double
- _maximum:  double
- _currentValue:  double

+ ParameterDescriptor(string, double, double, double)
+ «property» ID() : string
+ «property» Minimum() : double
+ «property» Maximum() : double
+ «property» CurrentValue() : double

Figure 6-5 ParameterDescriptor class



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 35 of 93

The optimization and iteration controllers have to store candidate solutions for their optimization
problem. A Solution class is used for this purpose to store candidate solutions (Figure 6-6).

cd Adv ancedControl

IComparable
Solution

+ _values:  double ([])
+ _minimum:  double ([])
+ _maximum:  double ([])
+ _cost:  double
+ random:  Random = new Random()

+ Solution(double[], double[], double[], double)
+ Solution(Solution, Solution)
+ randomize() : void
+ mutate() : void
+ CompareTo(object) : int

Figure 6-6 Solution class to store candidate optimal solutions

The optimization and iteration controller require a mathematical algorithm to assess the objective
function in order to identify optimal solutions. For demonstration purposes a sum of squared
differences is used. This algorithm has been implemented as a LinkableComponent (see Figure 6-7 )
to illustrate that any mathematical assessment could be implemented in a similar way. The controllers
them selves use an internal search algorithm (a genetic algorithm) to identify new candidate solutions,
but this action could also passed on to an external algorithm.

cd Adv ancedControl

LinkableComponent
SumSquaredDifference

- _beginTime:  double
- _endTime:  double
- _timeStep:  double

+ Prepare() : void
+ «property» ComponentDescription() : string
+ «property» ComponentID() : string
+ «property» ModelID() : string
+ «property» ModelDescription() : string
+ «property» Earl iestInputTime() : ITimeStamp
+ «property» TimeHorizon() : ITimeSpan
+ GetPubl ishedEventType(int) : EventType
+ GetPubl ishedEventTypeCount() : int
+ Validate() : string
+ Finish() : void
+ Ini tialize(IArgument[]) : void
+ GetValues(ITime, string) : IValueSet
+ GetInputExchangeItem(int) : IInputExchangeItem
+ «property» InputExchangeItemCount() : int
+ GetOutputExchangeItem(int) : IOutputExchangeItem
+ «property» OutputExchangeItemCount() : int

Figure 6-7 Example performance assessor: SumSquareDifference



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 36 of 93

6.3 Dynamic View
For the iteration controller, all interaction is based on state management and GetValues calls (see
Figure 6-8, the sequence diagram associated to two rivers connected in Figure 6-1). Before iteration
starts, the model state is saved so it can be restored at each iteration loop. Each iteration loop starts
with restoring the initial state, after which the controller asks for a Q-lower bound (receiving a call back
for an H-lowerbound) and an H-upperbound (receiving a call back for Q-lowerbound). After a
relaxation by the controller, the updated Q’ and H’ are returned by the controller thus enabling the
models to H and Q.

sd Iteration

:IterationController ex3a
:LinkableComponent

ex3b
:LinkableComponent

Deployer
:LinkableComponent

loop Iteration

[while not converged]

IValueSet:= GetValues(time,Q)

SaveState()

SaveState

RestoreState

RestoreState

GetValues(time,Q)

GetValues(time,H)

GetValues(time,H)

GetValues(time,Q)

Relaxation

Q'

H

Relaxation

H'

Q

Q

Figure 6-8 Sequence diagram for an iteration controller



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 37 of 93

The sequence diagram for the optimization controller (Figure 6-9) is much simpler. The optimization
controller starts its optimization loop with a default parameter set and asks the Performance assessor
(Cost Function) for the associated costs. To provide the costs, the CostFunction asks for the
parameters and returns (after calculation) the costs. Using those costs, a new parameter set can be
determined by the OptimizationController.

sd Optimization

:OptimizationControllerDeployer :LinkableComponent CostFunction :LinkableComponent

loop Optimization

[whi le optimum not found]

GetValues(time,LinkID)

GetValues(time ,LinkID)

GetValues(time,parameters)

paramete rs

cost

Figure 6-9 Sequence diagram for OptimizationController

The CalibrationController basically functions the same as the OptimizationController. However, it
contains an extra control loop as it has to calibrate the model for an entire parameter set over all time
steps. Figure 6-10 provides the associated sequence diagram.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 38 of 93

sd Calibration

Deployer
:LinkableComponent

MeasuredValues
:LinkableComponent

M odel
:LinkableComponent

:OptimizationController :SumSquaredDifference

loop

[for al l ti mesteps]

loop

[for al l parameters]

GetVa lues()

SaveState()

GetValues()

RestoreState()

GetValues()

values

GetValues()

GetValues()

parameters

val ues

squared sum of di fferences

Figure 6-10 Sequence diagram of CalibrationController

6.4 Implementation remarks

6.4.1 C#-implementation
The C# implementation utilizes no specific .NET features. The classes require the System, the
System.Diagnostics and the System.Collections assembly. The correct implementation of all methods
has been tested using dedicated unit tests in combination with the NUnit framework for testing.

The org.OpenMI.Utilities.AdvancedControl package is available as open source under LGPL licence
on Source Forge (http://sourceforge.net/projects/openmi)

6.4.2 Java implementation
Not yet available.

http://sourceforge.net/projects/openmi


The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 39 of 93

7 The org.OpenMI.Utilities.Configuration package

7.1 General description
The org.OpenMI.Utilities.Configuration namespace provide facilities to setup (i.e. configure),
save/retrieve and deploy a combination of linked models. Three functional levels have been identified:

 administer the composition, i.e. the network of links and linked components

 persistent storage and retrieval in XML (parsing and serializing by the generic XML parser
of the org.OpenMI.DevelopmentSupport package, customized by an XmlConfiguration
class)

 run a composition, performed by the SystemDeployer

Note that this package has been developed to be support the incorporation of OpenMI in existing
GUI’s. The straightforward graphical user interface shipped with the open source release of OpenMI
(i.e. OmiEd) does not utilize this package.

7.2 Static View
The following diagram displays the composition and classes it needs.

cd org.OpenMI.Utilities.Configuration

Composition

+ Composition()
+ Dispose() : void
+ «property» ID() : string
+ «property» DetailedDescription() : string
+ «property» Description() : string
+ ToString() : string
+ «property» LinkableComponents() : IList
+ «property» Links() : IList
+ «property» Trigger() : ILinkableComponent
+ AddModel(model :ILinkableComponent) : void
+ RemoveModel(model :ILinkableComponent) : void
+ AddLink(link :ILink) : void
+ RemoveLink(id :string) : void
+ RemoveLink(link :ILink) : void
+ «property» TimeStepping() : TimeStepping
+ Validate() : string

ArrayList
LinkCollection

+ LinkCollection()
+ Add(data :object) : int
+ Remove(data :object) : void

TimeStepping

+ TimeStepping()
+ Dispose() : void
+ «property» Start() : double
+ «property» Step() : double
+ «property» End() : double
+ ToString() : String

-_timeStepping

-_links

Figure 7-1 Composition and needed classes

The Composition class keeps a set of linkable components and links together. It consists basically of a
collection of links and a collection of linkable components. The Composition takes care that the links in
this collection are synchronized with the links added to the linkable components through the methods
in the Composition class. Except these collections a trigger component and time stepping information
are essential properties. The Validate method is essential for validation of the composition.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 40 of 93

Method / Property Notes

Composition () Default constructor

Dispose () Default dispose

ID : string Unique identification of the composition

DetailedDescription : string Meaningful description for the end user

Description : string Meaningful name for the end user

ToString() : string Name of the object in various win-controls

LinkableComponents : IList List of all linkable components used in the composition

Links : IList List of all links in the composition. Adding or removing a link
from this list adds / removes that link also to / from the
linkable components specified in the link

Trigger : ILinkableComponent Linkable component which is to be invoked as the first in the
chain of linkable components

AddModel (ILinkableComponent) Adds a linkable component to the composition

RemoveModel (ILinkableComponent) Removes a linkable component from the composition

AddLink (ILink) Adds a link to the composition and to the linkable
components specified in the link

RemoveLink (link id) Removes a link from the composition and from the linkable
components specified in the link

RemoveLink (ILink) Removes a link from the composition and from the linkable
components specified in the link

TimeStepping : TimeStepping Definition of start, step and end time of the composition

Validate () : string Validates whether the composition can be run. Returns an
empty string if okay, otherwise error message. The following
checks are performed:

1. Trigger has been set

2. Trigger is part of the list of linkable components

3. The trigger has at least one output exchange item
(otherwise it cannot be asked for values to initiate the
computation)

4. The component id and model id are set for each linkable
component

5. The time stepping information has been set

6. The time step has a value unequal to zero

7. All links have an id and they are all different.

8. All links have a source and target linkable component,
source and target element set and source and target
quantity and they all have an id unequal to null.

9. The units in the quantities in the links have been set.

10. The data operations in the links have an id.

11. The Validate methods of the linkable components are
invoked



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 41 of 93

The LinkCollection is a collection of links used in the composition. Adding or removing a link from this
collection adds / removes that link also to / from the linkable components specified in the link.

Method Notes

LinkCollection () Empty constructor

Add (object) : int Adds a link to the collection and adds the link to the specified linkable
components in the link. Ignores an object not implementing ILink. Throws an
exception if the ID of the link is not unique within this collection.

Returns position in collection, -1 if not added

Remove (object) Removes a link from the collection and removes the link from the linkable
components specified in the link. Ignores an object not implementing ILink.

The TimeStepping class defines the period over which a composition performs a computation

Method / Property Notes

TimeStepping () Default constructor

Finalize () Default Finalize (takes no action)

Dispose () Default Dispose (takes no action)

Start : double Start date and time of the computation. The date and time is expressed in
modified julian date (number of days since November 17, 1858)

Step : double Time step in seconds

End : double End date and time of the computation. The date and time is expressed in
modified julian date (number of days since November 17, 1858)

ToString() : string Representation in various win controls. Returns string containing start, end
and step values

cd org.OpenMI.Utilities.Configuration

SystemDeployer

+ SystemDeployer()
+ Dispose() : void
+ Create(composition :Composition) : void
+ «property» Blocking() : bool
+ Start() : void
+ Stop() : void
+ Pause() : void
+ Resume() : void
+ «property» Paused() : bool
+ «property» Running() : bool
+ «property» Composition() : Composition
+ OnEvent(Event :IEvent) : void
+ GetAcceptedEventType(acceptedEventTypeIndex :int) : EventType
+ GetAcceptedEventTypeCount() : int

Figure 7-2 System Deployer

The SystemDeployer is a class for running a Composition. Therefore there is a method (Create) to
accept a Composition. The Composition can be run in a separate thread if desired. In that case it can
be paused, resumed and killed.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 42 of 93

Method / Property Notes

SystemDeployer () Default constructor

Finalize () Default finalizer

Dispose () Default dispose

Create (composition) Prepares the controller for running a composition. Performs validation
and throws an exception if not okay. Adds a dummy linkable
component for invoking the trigger linkable component in the
composition.

Blocking : bool Indicates whether the calling application will be blocked during the
execution. A blocked application is an application that doesn't respond
to any requests, either programmatically or via a user interface. If
blocking is false, the composition run is executed in a separate thread.
Recommended value: false for user interface applications, true for
console applications.

Start () Starts the execution of the composition run

Stop () Immediately stops the execution of the composition run. Ignored if
blocking is true or not running.

Pause () Pauses the execution of the composition run. Ignored if there is no run.

Resume () Continues the execution of the composition run after it has been
paused, otherwise ignored.

Paused : bool Indicates whether the execution is paused at the moment.

Running : bool Indicates whether the execution is running at the moment. If paused,
this value returns true.

Composition : composition The composition the deployer is configured for.

cd org.OpenMI.Utilities.Configuration

LinkableComponent
DefaultLinkableComponent

+ DefaultLinkableComponent()
+ GetValues(time :ITime, LinkID :string) : IValueSet
+ GetPublishedEventType(providedEventTypeIndex :int) : EventType
+ GetPublishedEventTypeCount() : int
+ «property» ComponentDescription() : string
+ Prepare() : void
+ Validate() : string
+ «property» T imeHorizon() : IT imeSpan
+ «property» Earl iestInputTime() : ITimeStamp
+ «property» ComponentID() : string
+ Initial ize(properties :IArgument[]) : void
+ «property» ModelDescription() : string
+ «property» ModelID() : string
+ Finish() :  void

Figure 7-3 Default Linkable Component

The default linkable component is a component which is used as a dummy linkable component. It is
instantiated by the deployer in order to be able to ask the trigger component for values.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 43 of 93

Method Notes

DefaultLinkableComponent () Empty constructor

GetValues (time, link id) : IValueSet Empty implementation, returns null. Sets the current time
to the requested time.

GetPublishedEventType (int) : EventType Empty implementation, raises exception when called

GetPublishedEventTypeCount () : int Gets number of published event types, being zero

ComponentDescription : string Gets component description (empty string)

Prepare () Prepares for execution (takes no action)

Validate () : string Validates established links (takes no action)

TimeHorizon () Dummy implementation for time horizon (returns null)

EarliestInputTime (): time Returns current time

ComponentID : string Component ID (empty string)

Initialize (arguments) Default implementation of Initialize (takes no action)

ModelDescription : string Model description (empty string)

ModelID : string Model ID (empty string)

Finish () Finishes computation (takes no action)

cd Xml

XmlConfiguration

+ Initialize() : void

Figure 7-4 XmlConfiguration

The class XmlConfiguration holds all MetaInfo needed for proper functioning of XmlFile. In this case
proper functioning means that it can read and write xml files for linkable components and
compositions.

Method Notes

Initialize () Configures XmlFile for reading and writing compositions and linkable components.
This method must be called before the first read or write action with XmlFile.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 44 of 93

cd Xml

ModelAggregate

- _model:  ILinkableComponent
- _arguments:  ArrayList = new ArrayList()

+ ModelAggregate(object)
+ «property» Properties() : string[]
+ GetType(string) : Type
+ CanRead(string) : bool
+ CanWrite(string) : bool
+ GetValue(string) : object
+ SetValue(string, object) : void
+ GetReferencedValue(string) : object
+ UpdateSource() : void

LinkAggregate

- _operations:  ArrayList = new ArrayList()
- _link:  Link

+ LinkAggregate(object)
+ «property» Properties() : string[]
+ GetType(string) : Type
+ CanRead(string) : bool
+ CanWrite(string) : bool
+ GetValue(string) : object
+ UpdateSource() : void
+ UpdateAggregate() : void

ElementSetAggregate

+ ElementSetAggregate(object)
+ «property» Properties() : string[]
+ GetValue(string) : object
- GetParent() : object

ElementAggregate

- _vertices:  ArrayList = new ArrayList()
- _element:  Element

+ ElementAggregate(object)
+ «property» Properties() : string[]
+ GetType(string) : Type
+ CanRead(string) : bool
+ CanWrite(string) : bool
+ GetValue(string) : object
+ UpdateSource() : void
+ UpdateAggregate() : void

DataOperationAggregate

- _dataOperation:  IDataOperation
- _arguments:  ArrayList = new ArrayList()

+ DataOperationAggregate(object)
+ «property» Properties() : string[]
+ GetType(string) : Type
+ CanRead(string) : bool
+ CanWrite(string) : bool
+ GetValue(string) : object
+ SetValue(string, object) : void
+ UpdateAggregate() : void
+ UpdateSource() : void

BackboneElementSetAggregate

- _elements:  ArrayList = new ArrayList()
- _elementSet:  ElementSet

+ BackboneElementSetAggregate(object)
+ «property» Properties() : string[]
+ GetType(string) : Type
+ CanRead(string) : bool
+ CanWrite(string) : bool
+ GetValue(string) : object
+ UpdateSource() : void
+ UpdateAggregate() : void

«interface»
DevelopmentSupport::IAggregate

+ «property» Source() : object
+ «property» Properties() : string[]
+ GetType(string) : Type
+ CanWrite(string) : bool
+ CanRead(string) : bool
+ GetValue(string) : object
+ SetValue(string, object) : void
+ GetReferencedValue(string) : object
+ UpdateSource() : void
+ UpdateAggregate() : void

DevelopmentSupport::DefaultAggregate

- _source:  object = null

+ DefaultAggregate(object)
+ «property» Source() : object
+ «property» Properties() : string[]
+ GetType(string) : Type
+ CanWrite(string) : bool
+ CanRead(string) : bool
+ GetValue(string) : object
+ SetValue(string, object) : void
+ GetReferencedValue(string) : object
+ UpdateSource() : void
+ UpdateAggregate() : void

DimensionAggregate

+ DimensionAggregate(object)
+ «property» Properties() : string[]
+ GetType(string) : Type
+ CanRead(string) : bool
+ CanWrite(string) : bool
+ GetValue(string) : object
+ SetValue(string, object) : void

Figure 7-5 Implementations of IAggregate

A number of implementations exist of the interface IAggregate. They are needed as a bridge between
XmlFile (in org.OpenMI.DevelopmentSupport) and some classes which can’t expose their properties in
a generic way. For example, a dimension (IDimension) doesn’t have properties all possible
dimensions (length, time, etc.), but exposes this information through other methods (in this case
GetPower). However, the xml file we want to read and write does have xml elements for length, time,
etc. The aggregate DimensionAggregate acts as a bridge between these xml elements and the
methods of IDimension.

ModelAggregate : IAggregate for linkable components
Method / Property Notes
ModelAggregate (object) Default constructor, taking the underlying linkable component as

argument

Properties : string[] Gets the properties of the linkable component, being only
"Arguments"

GetType (property) : type Gets the type of the property

CanRead (property) : bool Tells whether a property can be read. Always true, since only calls
are expected for property "Arguments"



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 45 of 93

CanWrite (property) : bool Tells whether a property can be written. Always false

GetValue (property) : object Gets the value of a property, i.e. the list of arguments

SetValue (property, object) Sets the value of a property. Takes no action.

GetReferencedValue (reference) Gets a referenced value. If the reference equals
"<TypeName>";"<ID>", where the type name denotes a class
implementing IElementSet, the element set with the specified ID is
searched in all exchange items of the linkable component.
This is useful because element sets are not stored in xml files, but
produced by the linkable component (which probably reads them
somewhere from its own files). However, the element sets can be
referenced in xml files (especially in links in compositions). When
reading such an xml file, an element set must be assigned to the
link. That element set is retrieved from the linkable component by
this method.
In all other cases the call is delegated to
XmlFile.GetRegisteredTarget

UpdateSource () Updates the underlying linkable component by calling its Initialize
method with the arguments

LinkAggregate : IAggregate for links (defined in the backbone)
Method / Property Notes
LinkAggregate (object) Default constructor, taking the underlying link as argument

Properties : string[] Gets a list of properties which are accessed in a generic way.

GetType (property) : type Class type of a property

CanRead (property) : bool Tells whether a property can be read

CanWrite (property) : bool Tells whether a property can be written

GetValue (property) : object Gets the value of a property

UpdateSource () Updates the underlying link by adding data operations to it

UpdateAggregate () Gets the arguments from the underlying link so that they can be
accessed with GetValue calls

ElementSetAggregate : IAggregate for element sets
Method / Property Notes
ElementSetAggregate (object) Default constructor, taking the underlying element set as argument

Properties : string[] Gets a list of properties which are accessed in a generic way.

GetValue (property) : object Gets the value of a property. If the property is “Parent”, The linkable
component which owns the element set is returned. To find this
linkable component, all exchange items of linkable components
registered in XmlFile are examined.
In XmlConfiguration is specified that the XmlParent of IElementSet is
“Parent”. See XmlFile documentation how the tag XmlParent is
processed.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 46 of 93

BackboneElementSetAggregate: IAggregate for element sets (defined in the backbone)
Method / Property Notes
BackboneElementSetAggregate (object) Default constructor, taking the underlying object as

argument

Properties : string[] List of properties which can be accessed in a generic way

GetType (property) : type Class type of a property

CanRead (property) : bool Tells whether a property can be read

CanWrite (property) : bool Tells whether a property can be written

GetValue (property) : object Gets the value of a property

UpdateSource () Updates the underlying element set by adding element to it
with the AddElement method

UpdateAggregate () Updates the aggregate by retrieving elements from the
element set

ElementAggregate : IAggregate for elements in the backbone
Method / Property Notes

ElementAggregate (object) Default constructor, taking the underlying element as argument

Properties : string[] Gets a list of properties which can be accessed in a generic way

GetType (property) : type Class type of a property

CanRead (property) : bool Tells whether a property can be read

CanWrite (property) : bool Tells whether a property can be written

GetValue (property) : object Gets the value of a property

UpdateSource () Updates the underlying element by adding vertices to it with the
AddVertex method

UpdateAggregate () Updates the aggregate by retrieving vertices from the element

DimensionAggregate : IAggregate for dimensions (defined in the backbone)
Method / Property Notes

DimensionAggregate (object) Default constructor, taking the underlying element as argument

Properties : string[] Gets a list of all dimension bases

GetType (property) : type Class type of a dimension value, always int

CanRead (property) : bool Tells whether a dimension value can be read, always true

CanWrite (property) : bool Tells whether a dimension value can be written, always true

GetValue (property) : object Gets the value of a dimension

GetValue (property) : object Sets the value of a dimension

DataOperationAggregate : IAggregate for data operations (defined in the backbone)
Method / Property Notes
DataOperationAggregate (object) Default constructor, taking the underlying object as argument

Properties : string[] List of properties which can be accessed in a generic way

GetType (property) : type Class type of a property



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 47 of 93

CanRead (property) : bool Tells whether a property can be read

CanWrite (property) : bool Tells whether a property can be written

GetValue (property) : object Gets the value of a property

SetValue (property, value) Sets the value of a property

UpdateAggregate () Gets the arguments from the underlying data operation so
that they can be accessed with GetValue calls

UpdateSource () Updates the underlying data operation by calling its Initialize
method with the arguments

7.3 XML Specification
This paragraph describes how the xml files of compositions should be built up. For validation of
composition xml files, a schema is used: composition.xsd. Therefore describing the xml format of
composition xml files comes down to describing the xsd file, since the xml parser of composition files
accept all xml files which meet the composition.xsd file.

A graphical representation of this file on a high level is given below.

Figure 7-6 Composition.xsd overview

The attributes ID and Assembly of the composition specify which class to instantiate (being
org.OpenMI.Utilities.Configuration.Composition or a subclass of it). The assembly is a full path to an
assembly file or a full or partial name of an assembly in the GAC. See also XmlFile in
org.OpenMI.DevelopmentSupport how XmlFile can parse xml files.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 48 of 93

Figure 7-7 Composition.xsd linkable component definition

The linkable component only has three attributes, Type, Assembly and File. They are interpreted by
XmlFile in org.OpenMI.DevelopmentSupport in its standard way: Type defines the type class of the
linkable component to instantiate, Assembly defines the assembly where this type resides and file is a
relative path to a file where subsequent properties of the linkable component are defined. This file is
also known as the OMI file (see org.OpenMI.Standard).

The trigger element is expanded as a linkable component too

Figure 7-8 Composition.xsd time stepping definition

The begin, end and timestep are required and defined in the xml element TimeStepping.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 49 of 93

Figure 7-9 Composition.xsd link definition

The link structure in xml is similar to the interface ILink (see org.OpenMI.Standard), so it consists of an
ID and description as attribute and a number of data operations, a source and target element set,
quantity and attached linkable components.
A quantity is either defined as type Quantity or RefQuantity, depending on whether they have been
written out fully or referencing an already defined quantity. SourceComponent and TargetComponent
are both defined as LinkableComponents, SourceElementSet and TargetElementSet as ElementSets
(linkable components and element sets are always defined as references). There is an optional list of
data operations.

Figure 7-10 Composition.xsd element set definition

The element set is defined as an identifier in combination with a reference to the linkable component
file (the OMI file). Since the linkable component is responsible for populating the element set and this
is done often by the linkable component itself, it is most convenient to refer to the element set which
has been created by the linkable component.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 50 of 93

Figure 7-11 Composition.xsd quantity definition

The quantity consists of some attributes defining the type and the identifier and tow xml elements
defining the dimension and unit. If attributes are omitted, their default value is assumed (zero for all
dimensions and OffsetToSI, one for ConversionFactorToSI).



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 51 of 93

Figure 7-12 Composition.xsd quantity as reference definition

As a quantity can also be defined as a reference to an already known quantity, the xml element for the
quantity can also consist of the usual xml attributes for a referenced object. These are the type,
assembly, file and identifier of the quantity.

Figure 7-13 Composition.xsd data operation definition

A data operation consists of an identifier and a list of arguments. Except for the type identifying
attributes (Type and Assembly) the attributes resemble the properties of the corresponding classes.

7.4 Implementation remarks

7.4.1 C#-implementation
The C# implementation utilizes no specific .NET features. The classes require the System and the
System.Collections assembly. The correct implementation of all methods has been tested using
dedicated unit tests in combination with the NUnit framework for testing.

The org.OpenMI.Utilities.Buffer package is available as open source under LGPL licence on Source
Forge (http://sourceforge.net/projects/openmi)

7.4.2 Java implementation
Not yet available.

http://sourceforge.net/projects/openmi




The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 53 of 93

Annex I Package Details

Annex I-A org.OpenMI.Utilities.Buffer package

Data:
The content of the SmartBuffer are lists of corresponding times and ValueSets, where times can be
TimeStamps or TimeSpans and the ValueSets can be ScalarSets or VectorSets.
SmartBuffer objects may not contain mixtures of TimeSpans and TimeStamps and may not contain
mixtures of ScalarSets and VectorSets.

The number of Times (TimeSpans or TimeStamps) must equal the number of ValueSets ( ScalarSets
or VectorSets) in the SmartBuffer.

The data structures can be expressed in mathematical terms as follows:
List of TimeStamps:

0 1 2 1 1 2 1, , ,...., , , ,....., ,n n n N N
b b b b b b b b bt t t t t t t t t (A1.A.1)

where bt is a list of buffered TimeStamps, n
bt is the nth TimeStamp in the list, and N is the number of

TimeStamps in the list of TimeStamps.

It is required that:
1

0... 2

n n
b b n N

t t (A1.A.2)

List of TimeSpans:
0 1 2 1 1 2 1

0 1 1 1 2 1
, , , , , , ,

, , , , , , ,

, , ,...., , , ,....., ,

, ,....., , , ,...., ,

n n n N N
b b b b b b b b b

n n n N N
b b b b b b b b b b b b b b

b e b e b e b e b e b e b e

T T T T T T T T T

t t t t t t t
t t t t t t t

(A1.A.3)

where bT is a list of buffered TimeSpans, n
bT is the nth TimeSpan, bbt , is the TimeStamp that holds the

begin time of the TimeSpan, ebt , is the TimeStamp that holds the end time of the TimeSpan, and N is

the number of TimeSpans in the list of TimeSpans.

It is required that:
1

, , 0... 2

n n
b e b b n N

t t (A1.A.4)

List of ScalarSets:



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 54 of 93

1
1,

1
2,

1
1,

1
,

1
1,

1
1,

1
0,

2
1,

2
2,

2
1,

2
,

2
1,

2
1,

2
0,

1
1,

1
2,

1
1,

1
,

1
1,

1
1,

1
0,

1,2,1,,1,1,0,

1
1,

1
2,

1
1,

1
,

1
1,

1
1,

1
0,

1
1,

1
2,

1
1,

1
,

1
1,

1
1,

1
0,

0
1,

0
2,

0
1,

0
,

0
1,

0
1,

0
0,

1

2

1

1

1

0

,...,,,,...,,,
,...,,,,...,,,

.....,......,..
,...,,,,...,,,
,...,,,,...,,,
,...,,,,...,,,

.....,......,..
,...,,,,...,,,
,...,,,,...,,,

.

.

N
Mb

N
Mb

N
ib

N
ib

N
ib

N
b

N
b

N
Mb

N
Mb

N
ib

N
ib

N
ib

N
b

N
b

n
Mb

n
Mb

n
ib

n
ib

n
ib

n
b

n
b

n
Mb

n
Mb

n
ib

n
ib

n
ib

n
b

n
b

n
Mb

n
Mb

n
ib

n
ib

n
ib

n
b

n
b

MbMbibibibbb

MbMbibibibbb

N
b

N
b

n
b

n
b

n
b

b

b

b

sssssss
sssssss

sssssss
sssssss
sssssss

sssssss
sssssss

s
s

s
s

s

s
s

s  (A1.A.5)

where bs is a list of buffered ScalarSets, n
bs is the nth ScalarSet in the buffered list, n

ibs , is the ith scalar

(double) in the nth ScalarSet, M is the number of scalars in each ScalarSet, and N is the number of
buffered ScalarSets.
List of VectorSets:

1
1,

1
2,

1
1,

1
,

1
1,

1
1,

1
0,

2
1,

2
2,

2
1,

2
,

2
1,

2
1,

2
0,

1
1,

1
2,

1
1,

1
,

1
1,

1
1,

1
0,

1,2,1,,1,1,0,

1
1,

1
2,

1
1,

1
,

1
1,

1
1,

1
0,

1
1,

1
2,

1
1,

1
,

1
1,

1
1,

1
0,

0
1,

0
2,

0
1,

0
,

0
1,

0
1,

0
0,

1

2

1

1

1

0

,...,,,,...,,,
,...,,,,...,,,

.....,......,..
,...,,,,...,,,
,...,,,,...,,,
,...,,,,...,,,

.....,......,..
,...,,,,...,,,
,...,,,,...,,,

.

.

N
Mb

N
Mb

N
ib

N
ib

N
ib

N
b

N
b

N
Mb

N
Mb

N
ib

N
ib

N
ib

N
b

N
b

n
Mb

n
Mb

n
ib

n
ib

n
ib

n
b

n
b

n
Mb

n
Mb

n
ib

n
ib

n
ib

n
b

n
b

n
Mb

n
Mb

n
ib

n
ib

n
ib

n
b

n
b

MbMbibibibbb

MbMbibibibbb

N
b

N
b

n
b

n
b

n
b

b

b

b

vvvvvvv
vvvvvvv

vvvvvvv
vvvvvvv
vvvvvvv

vvvvvvv
vvvvvvv

v

v

v

v

v

v

v

v  (A1.A.6)

where | bv |is the buffered list of VectorSets, n
bv is the nth VectorSet in the buffered list, n

ibv ,  is the ith

Vector in the nth VectorSet, M is the number of Vectors in each VectorSet, and N is the number of
buffered VectorSets.

Each Vector is represented by three co-ordinates (doubles):
n

ib
n

ib
n

ib
n

ib vvvv 3,,2,,1,,, ,, (A1.A.7)

where ,, 2,,1,,
n

ib
n

ib vv  and n
ibv 3,, are values (doubles) for the x, y, and z directions, respectively.

Methods:
org.OpenMI.Utilities.SmartBuffer.SmartBuffer

Constructor method for the SmartBuffer class.

org.OpenMI.Utilities.SmartBuffer.AddValues(time : ITime, values: IValueSet) : void Public

The AddValues method will add data to the SmartBuffer object.
Parameters:



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 55 of 93

 time : object that implements the ITime interface and either the ITimeStamp or the ITimeSpan
interface. The times in the time list of the SmartBuffer must all implement ITimeStamp or all
implement the ITimeSpan. Mixed “interface types” are not allowed.

 values : object that implements the IValueSet interface and either the IScalarSet or the IVectorSet
interface. The values in the value list of the SmartBuffer must all implement IScalarSet or all
implement the IVectorSet. Mixed “interface types” are not allowed.

Return values:

none
Exceptions:

 time parameter implemenets neither ITimeStamp nor ITimeSpan.

 valueSet parameter implements neither IScalarSet nor IVectorSet.

AddValues failed to add time and valueSet to the SmartBuffer

org.OpenMI.Utilities.SmartBuffer.GetValues(time: ITime) : IValueSet Public

The returned object that implements IValueSet is calculated by the GetValues( ) method using
interpolation, aggregation, or extrapolation in order to make the IValuesSet correspond to the
requested time. The time parameter must either implement ITimeStamp or ITimeSpan and thereby
also ITime. The returned object will either be of type ScalarSet or VectorSet depending on the
interface implemented on the values added to the buffer.
Parameters:

 time : object that implements the ITime interface and either the ITimeStamp or the ITimeSpan
interface. The times in the time list of the SmartBuffer must all implement ITimeStamp or all
implement the ITimeSpan. Mixed “interface types” are not allowed.

Return value:
ScalarSet or VectorSet found by interpolation, extrapolation or aggregation. I.e. the returned object
implements IValueSet.
Exceptions:

 Requested TimeMapping not available.

GetValues failed to get value from the SmartBuffer.

org.OpenMI.Utilities.SmartBuffer.Clear ( timeStamp : TimeStamp ) : void Public

Removes corresponding sets of objects that implements ITime and IValuesSets from the SmartBuffer
for which the time falls within the time span defined by timeStamp.

Parameters:

 timeStamp: ITimeStamp

Return value:

 none

Exceptions:

none



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 56 of 93

org.OpenMI.Utilities.SmartBuffer.CheckBuffer (  ) : void Public

Checks consistency of the stored times and valueSets.

Parameters:

 none

Return value:

 none

Exceptions:

 Different numbers of values and times in buffer.

 Buffer is empty

 Illegal data type for time in buffer.

 Illegal data type for values in buffer.

 BeginTime is larger than or equal to EndTime in timespan.

 EndTime is not equal to StartTime for the following time step.

Timestamps are not encreasing in buffer.

GetTimeAt (index : int) : ITime Public

Returns the time at the index location.

Parameters:

 index : int

Return value:

The index´th time from the time list is returned. The type depends on the type originally added. The
returned object implemets the ITime interface.

Exceptions:

 Negative index not allowed.

 Index exceeds the contents of the SmartBuffer.

GetTimeAt failed to return time from SmartBuffer.

GetValuesAt (index : int) : IValueSet Public

Returns the values at location index.

Parameters:

 index : int



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 57 of 93

Return value:

The index´th valueSet from the values list is returned. The type depends on the type originally added.
The returned object implemets the IValueSet interface and is, by the way, identical (in regard of
values) to the object originally added using the AddValues mehtod.

Exceptions:

 Negative index not allowed.

 Index exceeds the contents of the SmartBuffer.

GetValuesAt failed to return ValueSet from SmartBuffer.

MapTimeStampsToTimeStamp( tr : ITimeStamp) : IValueSet Private

MapTimeStampsToTimeStamp is a private method that is called from the public GetValues method, if
the buffered times are objects that implements ITimeStamp and if the requested time is an object that
implements ITimeStamp. Depending on the contents of the SmartBuffer a ScalarSet or a ValuesSet
will be returned. Either way the returned object will be an object that implements IValueSet.
Parameters:

 tr : ITimeStamp

Detailed description:

The buffered objects are objects that either implement IScalarSet or IVectorSet. The algorithms used
for objects with IScalarSet interface are shown below. For objects with IVectorSet the same algorithms
are used for the three components in each Vector.

The ScalarSet to return ( irx , ) is calculated as described in equations (A1.A.8), (A1.A.9), (A1.A.10),

and (A1.A.11)

if (N = 1)

10

0
,, MitoiForibir sx (A1.A.8)

else if ( 0
br tt )

10
0
,

0
10

1
,

0
,

, 1
MitoiForibbr

bb

ibib
ir stt

tt
ss

x (A1.A.9)

else if ( 1N
br tt )

10

1
,

1
21

2
,

1
,

, 1
MitoiFor

N
ib

N
brN

b
N
b

N
ib

N
ib

ir stt
tt
ss

x (A1.A.10)

else if ( 10 N
brb ttt )



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 58 of 93

Find n for which 1n
br

n
b ttt and irx , is calculated as follows:

02

,1
,

1
,

,

itoMiFor

n
ib

n
brn

b
n
b

n
ib

n
ib

ir stt
tt
ss

x (A1.A.11)

where rt is the TimeStamp passed as input parameter to this method, is the relaxation parameter

(property of the SmartBuffer class). 1,0 . The remaining symbols are as described in eq. (A1.A.1)
through (A1.A.7).

Exceptions:

 none

MapTimeSpansToTimeSpan ( tr : ITimeSpan) : IValueSet Private

MapTimeSpansToTimeSpan is a private method that is called from the public GetValues method, if
the buffered times are objects that implements ITimeSpan and if the requested time is an object that
implements ITimeSpan. Depending on the contents of the SmartBuffer a ScalarSet or a ValuesSet will
be returned. Either way the returned object will be an object that implements IValueSet.
Parameters:

 tr : ITimeSpan

Detailed description:

The buffered objects are objects that either implement IScalarSet or IVectorSet. The algorithms used
for objects with IScalarSet interface are shown below. For objects with IVectorSet the same algorithms
are used for the three components in each Vector.

if (N = 1): Only one time step in the buffer

10

0
,, Mitoiforibir sx

if (N > 1): Calculate using step 1 through step 3 as described below:
Step 1: Initialise the result ScalarSet

10, 0
Mitoiforirx

Step 2: For each time step in the buffered list of TimeSpans determine how big a fraction of the
requested TimeSpan that overlaps this time step. Then add the corresponding contribution to xr,i



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 59 of 93

, ,
, , , , , , ,

, , 0 1

, , , , , , , 0 1

,
, , , , , , , , ,

n n
b e b bn n n

r b b b r e b e r i r i b i
r e r b for i toi M

n n n
b b r b r e b e r i r i b i for i toi M

bn n n n
b b r b r b b e r e b e r i r i b i

t t
if t t t t x x s

t t

else if t t t t x x s

t
else if t t t t t t x x s ,

, , 0 1

, ,
, , , , , , , , ,

, , 0 1 0 1

n
e r b

r e r b for i toi M

n
r e b bn n n n

r b b b r e b b r e b e r i r i b i
r e r b for i toi M for n ton N

t
t t

t t
else if t t t t t t x x s

t t

(A1.A.12)

Step 3: For requested TimeSpans that partially lays outside the buffered values extrapolated
contributions must be added:

10

0
,

1
,

0
,

1
,,

0
,0

,
,,

,
0
,

,,
0
,,

0
,, 1

Mitoifor
ebeb

ibibbrbb
ib

brer

brbb
irirbberbbbr tt

sstt
s

tt
tt

xxttttif

(A1.A.13)

10

2
,

1
,

2
,

1
,

1
,,1

,
,,

1
,,

,,
1

,,
1

,, 1
Mitoifor

N
bb

N
eb

N
ib

N
ib

N
bberN

ib
brer

N
eber

irir
N

ebbr
N

eber tt
sstt

s
tt
tt

xxttttif

(A1.A.14)

Step 4: For requested TimeSpans that our fully outside the buffered values

1 11 2
, , , ,, ,1 1

, , , , 1 2
, ,

0 1

1
2

N NN N
r e r b b e b bb i b iN N

r b b e r i b i N N
b e b e

for i to i M

t t t ts s
if t t x s

t t

(A1.A.15)

0 00 1
, , , ,, ,0 0

, , , 0 1
, ,

0 1

1
2

r e r b b e b bb i b i
r e b b b i

b e b e
for i to i M

t t t ts s
if t t s

t t
(A1.A.16)



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 60 of 93

Algorithm explanation:

Below you will find two specific examples of the algorithm.

1 1 2 2
, , , , , ,1 2

, , , ,
, , , , , ,

n n n n n
r b b b b e b b b e b bn n n

r i b i b i b i
r e r b r e r b r e r b

t t t t t t
x s s s

t t t t t t



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 61 of 93

1 0 0 0 0
, , , , , ,0

, 0 1 0 0
, , , ,

(1 )
2 2

2 2

b i b i b b b e r b b e
b i

b b b e b b b e

s s t t t t
a s

t t t t

0 1 0
, , , ,0

, 1 0
, ,

(1 ) b b r b b i b i
b i

b e b e

t t s s
a s

t t

brer

bber
ib

ebeb

ibibbrbb
ib

brer

brbb
ir tt

tt
s

tt
sstt

s
tt
tt

x
,,

0
,,0

,0
,

1
,

0
,

1
,,

0
,0

,
,,

,
0
,

, 1

where the first term is handled in step 3 and the last term is handled in step 2.

1 0 0 0
, , , , , ,0

, , 0 1 0 0
, , , ,

(1 )
2 2

2 2

b i b i b b b e r b r e
r i b i

b b b e b b b e

s s t t t t
x s

t t t t



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 62 of 93

.
1 0 0 0

, , , , , ,0
, , 1 0

, ,

(1 ) b i b i b b b e r b r e
r i b i

b e b e

s s t t t t
x s

t t

Exceptions:

 none

MapTimeStampsToTimeSpan ( tr : ITimeSpan ) : IValuesSet Private

MapTimeStampsToTimeSpan is a private method that is called from the public GetValues method, if
the buffered times are objects that implements ITimeStamp and if the requested time is an object that
implements ITimeSpan. Depending on the contents of the SmartBuffer a ScalarSet or a ValuesSet will
be returned. Either way the returned object will be an object that implements IValueSet.

Parameters:

tr : ITimeSpan

Detailed description:

The buffered objects are objects that either implement IScalarSet or IVectorSet. The algorithms used
for objects with IScalarSet interface are shown below. For objects with IVectorSet the same algorithms
are used for the three components in each Vector.

if (N = 1): Only one time step in the buffer

10

0
,, Mitoiforibir sx

if (N > 1): Calculate using step 1 through step 3 as described below:

Step 1: Initialise the result ScalarSet

10, 0
Mitoiforirx

Step 2:



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 63 of 93

1
, ,

1 1
, ,

, ,
, , 0... 1

1
, ,

1
, , , ,

, , , 1

0... 1

if

2

else if

2

n n
r b b r e b

n n n n
b i b i b b

r i r i
r e r b i M

n n
b r b r e b

n n
b i b i r e r bn n

r i r i b i bn n
b b i M

t t t t

s s t tx x
t t

t t t t

s s t t
x x s t

t t

1 1
, , ,

1 1 1
, , , ,

, , , 1
, , 0... 1

1
, , ,

,

else if

2

else if

n n n
b r b r b b r e b

n n n n
b i b i b r b b r bn

r i r i b i n n
b b r e r b i M

n n n
r b b r e b r e b

r i r

t t t t t t

s s t t t t
x x s

t t t t

t t t t t t

x x
1

, , , ,
, , 1

, , 0... 1 0... 2

5.2.10.3

2

n n n n
b i b i r e n r e bn

i b i n n
b b r e r b i M n N

s s t t t t
s

t t t t

Step 3: For requested TimeSpans that partially lays outside the buffered values extrapolated
contributions must be added:

0 0
, ,

0 1 00
, , ,, 0

, , , 1 0
, ,

0... 1

1
2

r b b r e b

b r b b i b ib r b
r i r i b i

r e r b b b
i M

if t t t t

t t s st t
x x s

t t t t

1 1
, ,

1 1 21
, , ,, 1

, , , 1 2
, ,

0... 1

1
2

N N
r e b r b b

N N NN
r e b b i b ir e b N

r i r i b i N N
r e r b b b

î M

if t t t t

t t s st t
x x s

t t t t

1
,

1 2
, , , ,1 1

, , 1 2

0... 1

1
2

N
r b b

N N
b i b i r b r eN N

r i b i nN N
b b î M

if t t

s s t t
x s t

t t



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 64 of 93

0
,

1 0
, ,, ,0 0

, , 1 0

0... 1

1
2

r e b

r e r bb i b i
r i b i b

b b
î M

if t t

t ts s
x s t

t t

Algorithm explanation:
Below more details of how the algorithms are deducted shown.

1 1 1 1
, , , , , ,1 1 1

, ,1 12 2

n n n n n n
b i b i r b b b i b i b r bn n n

b i b b in n n n
b b b b

s s t t s s t t
a s t s

t t t t

1 2
, ,

2

n n
b i b is s

b

3 2 2 3 2 2
, , , , , ,2 2 2

, ,3 2 3 22 2

n n n n n n
b i b i b r e b i b i r e bn n n

b i b b in n n n
b b b b

s s t t s s t t
c s t s

t t t t

1 22 1
, ,

,
, , , , , ,

n nn n
b r b r e bb b

r i
r e r b r e r b r e r b

t t t tt tx a b c
t t t t t t



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 65 of 93

1 1 1
, , , ,1

, , 1
, ,

1 22 1
, ,

, ,

2 3
, , ,2

,
, ,

2

2

n n n n
b r b b i b i b r bn

r i b i n n
r e r b b b

n nn n
b i b ib b

r e r b

n n n
r e b b i b in

b i
r e r b

t t s s t t
x s

t t t t

s st t
t t

t t s s
s

t t

2 2
,

3 2 2

n
r e b

n n
b b

t t
t t

1 0 0 1 0 0
, , , , , ,0 0 0

, ,1 0 1 0(1 ) (1 )
2 2

b i b i r b b b i b i b r b
b i b b i

b b b b

s s t t s s t t
a s t s

t t t t

0 1
, ,

2
b i b is s

b

0 0
, ,

,
, , , ,

b r b r e b
r i

r e r b r e r b

t t t t
x a b

t t t t

0 1 0 0 0 0 1
, , , , , , ,0

, , 1 0
, , , ,

(1 )
2 2

b r b b i b i b r b r e b b i b i
r i b i

r e r b b b r e r b

t t s s t t t t s s
x s

t t t t t t



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 66 of 93

where the firs term is handled in step 3 and the last term is handled in step 2.

1 0
, , , ,0 0

, , 1 01
2

b i b i r b r e
r i b i b

b b

s s t t
x s t

t t

Exceptions:

 none

MapTimeSpansToTimeStamp ( tr : ITimeStamp ) : IValuesSet Private

MapTimeSpansToTimeStamp is a private method that is called from the public GetValues method, if
the buffered times are objects that implements ITimeSpan and the requested time is an object that
implements ITimeStamp. Depending on the contents of the SmartBuffer a ScalarSet or a ValuesSet
will be returned. Either way the returned object will be an object that implements IValueSet.

Parameters:

tr : ITimeStamp

Detailed description:

The buffered objects are objects that either implement IScalarSet or IVectorSet. The algorithms used
for objects with IScalarSet interface are shown below. For objects with IVectorSet the same algorithms
are used for the three components in each Vector.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 67 of 93

The ScalarSet to return ( irx , ) is calculated as described in equations (A1.A.17), (A1.A.18), (A1.A.19),

and (A1.A.20)

if (N = 1)

10

0
,, MitoiForibir sx (A1.A.17)

else if ( 0
r bbt t )

0 1
, , 0 0

, ,0 1 0 1
1b i b i

r i r bb b i For i to i M
bb bb

s s
x t t s

t t
(A1.A.18)

else if ( 1N
r bt t )

1 2
, , 1 1

, , ,1 2
, , 0 1

1
N N
b i b i N N

r i r b e b iN N
b e b e For i to i M

s s
x t t s

t t
(A1.A.19)

else

, , , , 0... 1 1...0
if n n n

b b r b e r i b i i M n N
t t t x s (A1.A.20)

where rt is an object with ITimeStamp passed as input parameter to this method, is the relaxation

parameter (property of the SmartBuffer class). The remaining symbols are as described in eq. (A1.A.1)
through (A1.A.7).

Exceptions:

 none

Properties:
[property] RelaxationFactor : double Public

Sets or gets the relaxation factor used for time weighting in extrapolation algorithms

Get:  Return value: double relaxationFactor

Set: Parameter: double relaxationFactor

[property] TimesCount : int Public

Gets the number of records in the buffer.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 68 of 93

Get:  Return value: int numberOfRecords

[property] ValuesCount : int Public

Gets the values in each ValueSet  in the buffer.

Get:  Return value: int numberOfValuesInEachValueSet

[property] DoExtendedDataVerification : bool Public

Gets or sets the _doExtendedDataVerification variable. When _doExtendedDataVerification is true the
private Buffer.CheckBuffer( ) method will be invoked at following locations.

Get:  Return value: int numberOfValuesInEachValueSet



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 69 of 93

Annex I-B org.OpenMI.Utilities.Spatial package
Short description:
The ElementMapper maps a ValueSet (ScalarSet or VectorSet) associated to one ElementSet
(FromElements) onto a ValueSet that is associated to another ElementSet (ToElements).

bAc

where

elementsproviderofnumberm
elementsacceptorofnumbern

mappingVectorSetfor
c,.....c,......c,c
c,.....c,......c,c

c

mappingScalarSetforc,.....c,......c,cc

a.....a
.......
....a..
......a

a....aa

A

mappingVectorSetfor
b,.....b,......b,b
b,.....b,......b,b

b

mappingScalarSetforb,.....b,......b,bb

m,i,,,

m,i,,,

ni

m,n,n

j,i

,

m,,,

m,j,,,

m,j,,,

mj

1111101

1001000

110

1101

01

101000

1111101

1001000

110

ScalarSets maps to ScalarSets, VectorSets maps to VectorSets.

The matrix element, ai,j, contains the mapping of the j´th element of the InputElementSet onto the i´th
element of the OutputElementSet. The mapping elements depend on the mapping method and the
element geometry.
For scalar mapping the vector element, bj, contains the j´th scalar of the ValueSet associated with the
InputElementSet. For vector mapping )b,b(b j,j,j 10  contains the j´th vector of the ValueSet

associated with the InputElementSet.

Similarly, the vector element, ci, contains the i´th scalar of the ValueSet associated with the
OutputElementSet for scalar mapping and for vector mapping )c,c(c i,i,i 10  contains the i´th vector

of the ValueSet associated with the OutputElementSet.

The mapping is a two step procedure. First step (Initialise) sets up the mapping matrix, A, and is
executed only ones. This step depends on the geometry and method choice only. Second step is the
actual mapping where ElementSets with their current ValueSet are mapped onto one another by
multiplication with the mapping matrix, A.

Data:
MappingMatrix: Two-dimensional double Array containing the coefficients of A.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 70 of 93

NumberOfRows: Integer holding the number of rows in A., which is also the number of
Elements in the OutputElementSet.

NumberOfColumns: Integer holding the number of columns in A., which is also the number of
Elements in the InputElementSet.

IsInitialised: Boolean flag telling weather MappingMatrix, NumberOfRows,
NumberOfColumns and in principle also IsInitialised are initialised.

org.OpenMI.Utilities.ElementMapper:

Methods:
Initialise(string methodDescriptor, IElementSet fromElements,  IElementSet toElements): void Public

The Initialize method will create a conversion matrix with the same number of rows as the number of
elements in the ElementSet associated to the accepting component and the same number of columns
as the number of elements in the ElementSet associated to the providing component.
Parameters:

 methodDescriptor: String specifying the mapping method to use. Could be Nearest, Inverse,
Weighted Mean or one of the other method descriptors returned by GetAvaliableMethods.

 fromElements: Object that through its IElementSet interface describes the geometry that is to
mapped from.

 toElements: Object that through its IElementSet interface describes the geometry that is to
mapped to.

Return values:

 none
Exceptions:

 none

MapValues(IValueSet InputValues) : IValueSet Public

Maps the values in the inputValues onto a ValueSet using the mapping matrix.

Parameters:

 inputValues: Object that has the IValueSet interface and that is to be mapped using the mapping
matrix.

Return values:

 Object with the IValueSet interface. InputValues implements IScalarSet a ScalarSet is returned
and similarly a IVectorSet results in a VectorSet. Either way the returned object implements
IValueSet.

Exceptions:

 ElementMapper objects needs to be initialised before the MapValue method can be used.

 Dimension mismatch between inputValues and mapping matrix.

 Invalid datatype used for inputValues parameter. MapValues failed.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 71 of 93

UpdateMappingMatrix(string methodDescriptor, IElementSet
fromElements, IElementSet toElements) : void Public
UpdateMappingMatrix is where the mapping matrix is processed. UpdateMappingMatrix is called from
the initialize but may also be called directly in case the mapping matrix are to be updated during
simulation.

Parameters:

 methodDescriptor : String specifying the mapping method to use. Could be Nearest, Inverse,
Weighted Mean or one of the other method descriptors returned by GetAvaliableMethods.

 fromElements: Object that through its IElementSet interface describes the geometry that is to
mapped from.

 toElements: Object that through its IElementSet interface describes the geometry that is to
mapped to.

Return values:

 none
Detailed description:

The UpdateMappingMatrix method includes an algorithm choice based on fromElementType,
toElementType and methodDescriptor. The available algorithms are described in the following.

XYPoint  XYPoint:

Nearest:

The nearest method assigns the value of the point closest to the point in question. In case of more
points being “closest”, the value assigned will be the mean of the closest values.

In order to populate the mapping matrix, A, a matrix of point to point distances, li,j, is created. Next the
minimum distance for each point each point, Li, is found by inspection. Finally elements of the
mapping matrix, ai,j, are assigned with the point present relative to total number of points in polygon.

i

j,i
j,i

m

j
j,ii

j,i

ij,i
j,i

m;jj,ii

ijj,i

L
l

a

lL

Llif
Llif

l

)lmin(L

)c,bint(ToPointcePotanDisl

1

0

10

0
1

where bj is the j´th XYPoint in the InputElementSet and ci is the i´th XYPoint of the OutputElementSet.

Inverse:



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 72 of 93

In order to populate the mapping matrix, A, a matrix of point to point inverse distances, li,j, is created. Next
the total distance from point i to the all points of the InputElelmentSet , Li, is found by summation.
Finally elements of the mapping matrix, ai,j, are assigned with the inverse length relative to the
summed inverse lengths.

i

j,i
j,i

m

j
j,ii

ij
j,i

L
l

a

lL

)c,bint(ToPointcePotanDis
l

1

0

1

where bj is the j´th XYPoint in the InputElementSet and ci is the i´th XYPoint of the OutputElementSet.

XYPoint XYLine:

Nearest:

The nearest method assigns the value of the point closest to the XYline in question. In case of more
points being “closest”, the value assigned will be the mean of the value of the closest points.

In order to populate the mapping matrix, A, a matrix of point to polyline distances, li,j, is created. Next the
minimum distance for each line, Li, is found by inspection. After this the matirx l may be overwritten
with ones for distances being the minimum distance for each line.
Finally each row of the matrix is normalized with the row sum to deal with several points being
”closest”.

i

j,i
j,i

m

j
j,ii

j,i

ij,i
j,i

m;jj,ii

ijj,i

L
l

a

lL

Llif
Llif

l

)lmin(L

)c,b(ToLineintcePotanDisl

1

0

10

0
1

where bj is the j´th XYPoint in the InputElementSet and ci is the i´th XYPolyLine of the
OutputElementSet.

Inverse:

In order to populate the mapping matrix, A, a matrix of point to line reciprocal distances, li,j, is created. Next
the total distance from line i to the all points of the InputElelmentSet , Li, is found by summation.
Finally elements of the mapping matrix, ai,j, are assigned with the inverse length relative to the
summed inverse lengths.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 73 of 93

i

j,i
j,i

m

j
j,ii

ij
j,i

L
l

a

lL

)c,b(ToLineintcePotanDis
l

1

0

1

where bj is the j´th XYPoint in the InputElementSet and ci is the i´th XYPolyLine of the
OutputElementSet.

XYPoint  XYPolygon:

Mean:

The polygon is assigned a value found by averaging the point contributions. In this way a polygon that
has no points inside is assigned value 0, a polygon enclosing one point only is assigned the value of
the point and finally a polygon enclosing more than one point is assigned with the mean of the point
values.

In order to populate the mapping matrix, A, a matrix of point enclosed, li,j, is created. li,j is assigned value one
if the point is enclosed and zero otherwise. Next the total number of points inside the i´th XYPolygon, Li, is
found by summation. Finally elements of the mapping matrix, ai,j, are assigned with the point present
relative to total number of points in polygon.

i

j,i
j,i

m

j
j,ii

ijj,i

L
l

a

lL

)c,b(InsideintIsPol
1

0

where bj is the j´th XYPoint in the InputElementSet and ci is the i´th XYPolygon of the
OutputElementSet.

Sum:

The polygon is assigned a value found by summing the point contributions. In this way a polygon that
has no points inside is assigned value 0, a polygon enclosing one point only is assigned the value of
the point and finally a polygon enclosing more than one point is assigned with the sum of the point
values.

In order to populate the mapping matrix, A, a matrix of point enclosed, li,j, is created. li,j is assigned value one
if the point is enclosed and zero otherwise.

)c,b(InsideintIsPol ijj,i

where bj is the j´th XYPoint in the InputElementSet and ci is the i´th XYPolygon of the
OutputElementSet.

XYPolyLine XYPoint:

Nearest:



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 74 of 93

The nearest method assigns the value of the XYPolyLine passing closest to the XYpoint in question.
In case of more lines being “closest”, the value assigned will be the mean of the value of the closest
lines.

In order to populate the mapping matrix, A, a matrix of polyline to point distances, li,j, is created. Next the
minimum distance for each line, Li, is found by inspection. After this the matirx, l, is overwritten with
ones for distances being the minimum distance for each point.
Finally each row of the matrix is normalized with the row sum to deal with several lines being ”closest”.

i

j,i
j,i

m

j
j,ii

j,i

ij,i
j,i

m;jj,ii

jij,i

L
l

a

lL

Llif
Llif

l

)lmin(L

)b,c(ToLineintcePotanDisl

1

0

10

0
1

where bj is the j´th XYPolyLine in the InputElementSet and ci is the i´th XYPoint of the
OutputElementSet.

XYPolyLine XYPolyLine:

Methods for line line mapping are left out since no meaningful uses have been recognised.

XYPolyLine  XYPolygon:

Weigthed Mean:

The polygon is assigned a value found by length weighting of the line contributions. In this way a
polygon that is not intersected by any line is assigned value 0, a polygon intersected with one line only
is assigned the value of the line and finally a polygon intersected by more than one value is assigned
a length weighted mean of the line values.

The mapping matrix, A, is populated by initially evaluating the length, li,j, of the j´th Polyline inside the
i´th XYPolygon, li,j. Next the total line length inside the i´th XYPolygon, Li, is found by summation.
Finally elements of the mapping matrix, ai,j, the line length in the polygon relative to the total line length
in the polygon are calculated.

i

j,i
j,i

m

j
j,ii

ijj,i

L
l

a

lL

)c,b(dePolygonlylineInsiLengthOfPol
1

0



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 75 of 93

where bj is the j´th XYPolyline in the InputElementSet and ci is the i´th XYPolygon of the
OutputElementSet.

Weighted Sum:

The polygon is assigned a value found by length weighting of the line contributions. In this way a
polygon that is not intersected by any line is assigned value 0, a polygon intersected with one line only
is assigned the value times the length in polygon to total length ratio. A polygon intersected by more
than one value is assigned the sum of values times their length in polygon to total length ratio.

The mapping matrix, A, is populated by initially evaluating the length, li,j, of the j´th Polyline inside the
i´th XYPolygon, li,j and dividing this with the length of j´th polyline.

)b(Length
l

a

)c,b(dePolygonlylineInsiLengthOfPol

j

j,i
j,i

ijj,i

where bj is the j´th XYPolyline in the InputElementSet and ci is the i´th XYPolygon of the
OutputElementSet.

XYPolygon  XYPoint:

Value:

The polygon to point method is simple. Points included in a polygon are assigned the value of the
polygon in which they are included

Hence the mapping matrix is populated as:

)c,b(InsideintIsPoa ijj,i

where bj is the j´th XYPolygon in the InputElementSet and ci is the i´th XYPoint of the
OutputElementSet.

Points on edges shared between more polygons are given a mean of the polygon values.

XYPolygon  XYPolyLine:

Weighted Mean:

The polyline is assigned a value found by length weighting of the polygon contributions. In this way a
line that is not in a polygon is assigned value 0, a line contained completely inside a polygon is
assigned the value of the polygon and a line passing more polygons is assigned a length weighted
mean of the polygon values.

The mapping matrix, A, is populated by initially evaluating the length of the i´th XYPolyline inside the
j´th XYPolygon relative to the total length of the i´th XYPolyline.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 76 of 93

i

j,i
j,i

m

j
j,ii

i

ij
j,i

L
l

a

lL

)c(lylineLengthOfPo
)c,b(dePolygonlylineInsiLengthOfPo

l

1

0

where bj is the j´th XYPolygon in the InputElementSet and ci is the i´th XYPolyline of the
OutputElementSet.

Weighted Sum:

The polyline is assigned a value found by length weighting of the polygon contributions. In this way a
line that is not in a polygon is assigned value 0, a line contained completely inside a polygon is
assigned the value of the polygon and a line passing more polygons is assigned a length weighted
mean of the polygon values.

The mapping matrix, A, is populated by initially evaluating the length of the i´th XYPolyline inside the
j´th XYPolygon relative to the total length of the i´th XYPolyline.

)(
),(

,
i

ij
ji clylineLengthOfPo

cbdePolygonlylineInsiLengthOfPo
a

where bj is the j´th XYPolygon in the InputElementSet and ci is the i´th XYPolyline of the
OutputElementSet.

XYPolygon  XYPolygon:

Weigthed Mean:

Polygons are assigned values found by area weighting of polygon contributions. A polygon not at all
covered by any polygon is assigned the delete value. A polygon fully or partly covered by one polygon
only is assigned the value of that polygon and, finally, a polygon fully or partly covered by more than
one polygon is assigned a area weighted mean of the polygon values.

The mapping matrix, A, is populated by initially evaluating the area, li,j, of the j´th polygon inside the
i´th polygon. Next the total area covered inside the i´th XYPolygon, Li, is found by summation. Finally
elements of the mapping matrix, ai,j, is assigned the ratio between the single area and the summed
area.

i

j,i
j,i

m

j
j,ii

ijj,i

L
l

a

lL

)c,b(olygongonInsidePAreaOfPolyl
1

0



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 77 of 93

where bj is the j´th XYPolygon in the InputElementSet and ci is the i´th XYPolygon of the
OutputElementSet.

Weighted Sum:

Where the Weighted Mean method is well suited for “state variables”, e.g. water level, the “Weighted
Sum” method is more suitable for distributed quantities such as rain pr area. For distributed quantities
the default method will tend to over estimate, whereas the distributed is more of a mass conserving
method.

Polygons are assigned values found by area weighting of polygon contributions. A polygon not at all
covered by any polygon is assigned the delete value. A polygon fully or partly covered by one polygon
only is assigned the value of that polygon weighted with covered are over full area and, finally, a
polygon fully or partly covered by more than one polygon is assigned a sum of area weighted
contributions.

)c(Area
)c,b(olygongonInsidePAreaOfPoly

a
i

ij
j,i

where bj is the j´th XYPolygon in the InputElementSet and ci is the i´th XYPolygon of the
OutputElementSet.´

Exceptions:

 methodDescription unknown for point to point mapping

 Point to point mapping failed

 modDescription unknown for point to polyline mappingeth

 Point to polyline mapping failed

 methodDescription unknown for point to polygon mapping

 Point to polygon mapping failed

 methodDescription unknown for polyline to point mapping

 Polyline to point mapping failed

 methodDescription unknown for polygon to point mapping

 Polyline to polygon mapping failed

 methodDescription unknown for polygon to point mapping

 Polygon to point mapping failed

 methodDescription unknown for polygon to polyline mapping

 Polygon to polyline mapping failed

 methodDescription unknown for polygon to polygon mapping

 Polygon to polygon mapping failed

 Mapping of specified ElementTypes not included in ElementMapper

 UpdateMappingMatrix failed to update mapping matrix

GetAvailableMethods(fromElementType: ElementType, toElementType: ElementType): ArrayList
Public



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 78 of 93

The method returns a list of method strings describing the methods available for the given combination
of from- and  to- ElementTypes. The method is typically to be used to fill the
ExchangeModel.OutputExchangeItem´s Dataoperation list.
Parameters:

 fromElementType: ElementType of the elements in the ElementSet  that is to mapped from.

 toElementType: ElementType of the elements in the ElementSet  that is to mapped to.
Return values:

 List of strings describing the available mapping methods.
Exceptions:

none

GetValueFromMappingMatrix(row: int, column: int) : double Public

Retrieves element  (row, column) from the mapping matrix.
Parameters:

 row: row index. 0-based.

 column: column index. 0-based
Return values:

 Value of element (row, column).
Exceptions:

 GetValueFromMappingMatrix failed.

SetValueInMappingMatrix(Row: int, Column: int) : void Public

Sets element (row, column) in the mapping matrix.
Parameters:

 row: row index. 0-based.

 column: column index. 0-based.
Return values:

 None
Exceptions:

 SetValueInMappingMatrix failed.

org.OpenMI.Utilities.XYGeometryTools:

All methods are static methods.

Methods:
CalculateInterSectionPoint (XYLine: L1, XYLine L2) : XYpoint Public

Returns the intersection point for the two lines L1 and L2. Actual intersection must be ensured prior to
use of this method by use of DoLineSegmentsIntersect. The intersection point is calculated as:



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 79 of 93

4343

2121

43
44

33

21
22

11

4343

2121

43
44

33

21
22

11

221243211121

221243211121

yyxx
yyxx

yy
yx
yx

yy
yx
yx

yand

yyxx
yyxx

xx
yx
yx

xx
yx
yx

x

)y.L,y.L()y,y()y.L,y.L()y,y(
)x.L,x.L()x,x()x.L,x.L()x,x(

Since it is, beforehand, ensured that the lines cross there is no risk of zero-division.
Parameters:

 L1: XYLine to test.

 L2: XYLine to test.
Return values:

 Intersection point as a XYPoint.
Exceptions:

 Attempt to calculate intersection point between non-intersecting lines. CalculateIntersectionPoint
failed.

CalculateLengthOfPolylineInsidePolygon (XYPolyline: PL, XYPolygon PG) : double Public

The method calculates the length of the polyline, PL, inside the polygon PG. The method loops over
the lines included in PL and adds up the length of each line in the polygon PG. The length of each line
is calculated using the private method, CalculateLengthOfLineInsidePolygon. Line pieces that are
shared between the polygon and the line contributes with half their length.
Parameters:

 PL: the polyline.

 PG: polygon.
Return values:

 Length of polyline, PL, inside polygon, PG.
Exceptions:

 None.

CalculateLengthOfLineInsidePolygon (XYLine: L, XYPolygon PG) : double Private

The method calculates the length a line has inside a polygon. Lines on edges only counts half.

The algorithm works with a list of XYLines, LL, which initially includes the line L only. The XYPolygon,
PG has n lines. Every line of the polygon is tested for intersection with lines from LL. If intersection is
found the intersected line is divided at the intersection point and the two new lines replaces the
intersected line in the line collection, LL.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 80 of 93

end
)j(increase

end
)i(increase

else
)m(increase

).p(P, LLLL
, P).p(LLLL

)L., PG(LLinttionPosecnterCalculateIP
truefound

))L., PGt(LLseceregmentsIntif(DoLineS
)foundnot(and)ni(while

)foundnot(and)mj(while
j
i
m

polygoninverticesofnumbern

jj

jj

ij

ij

21

1

0
0
1

The above creates a line list containing the original line chopped into pieces that are either completely
inside or completely outside the polygon. The IsPointInPolygon method for the midpoint of every line
in the line list decides which line segments are to be included in the length summation.
Parameters:

 L: the line.

 PG: polygon.
Return values:

 Length of line, L, inside polygon, PG.
Exceptions:

 None.

CalculatePolylineToPointDistance (XYPolyline: polyline, XYLine line2) : double Public

Finds the shortest distance between any line segment of the polyline and the point.
Parameters:

 polyline: the polyline

 line2: XYLine
Return values:

 Length between polyline and point.
Exceptions:

 None

CalculateLineToPointDistance (XYLine: L, XYPoint P) : double Private



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 81 of 93

Calculates the distance from a line, L, to a point, P, in the plane. The algorithm decides weather the
point lies besides the line segment in which case the distance is the length along a line perpendicular
to the line. Alternatively the distance is the smallest of the distances to either endpoint.

Algorithm:

otherwise))y.Ly.L()x.Lx.L(,)y.Ly.L()x.Lx.L(min(

),max(for
)y.Ly.L()x.Lx.L(

)y.Ly.L)(x.Px.L()y.Py.L)(x.Lx.L(

cetanDis

ab
cbacosa

bc
acbcosa

)y.Py.L()x.Px.L(c

)y.Ly.L()x.Lx.L(b

)y.Py.L()x.Px.L(a

2
12

2
12

2
12

2
12

2
12

2
12

121112

222

222

2
1

2
1

2
12

2
12

2
2

2
2

2

2

2

Parameters:

 L: XYLine.

 P: XYPoint.
Return values:

 Shortest distance between any point in the line and the point in question.
Exceptions:

 None.

CalculatePointToPointDistance (XYPoint: p1, XYPoint p2) : double Public

Calculates the distance between to points.
Parameters:

 P1: Point

 P2: Point
Return values:

 Length between points.
Exceptions:

 None

CalculateSharedArea (XYPolygon: polygonA, XYPolygon polygonB) : double Public

Calculates the shared area between two arbitrarily shaped polygons in the plane. Both polygons are
triangulated and the shared area is calculated as the sum of the shared areas between the triangles.

Parameters:

 polygonA: XYPolygon



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 82 of 93

 polygonB: XYPolygon
Return values:

 The shared area between the two polygons.
Exceptions:

 None.

CalculateSharedLength (XYLine: lineA, XYLine lineB) : double Private

Calculates the length that two line overlap.
Parameters:

 lineA: XYLine

 lineB: XYLine
Return values:

 Length of the shared line segment.
Exceptions:

 None

DoLineSegmentsIntersect (XYLine: L1, XYLine L2) : bool Private

Determines whether two lines cross. The return value will be true if lines literally cross whereas two
points just sharing a point will result in a false. The algorithm is:

3234

3234
342

3134

3134
341

1412

1412
124

1312

1312
123

221243211121

221243211121

yyyy
xxxx

Det
yyyy
xxxx

Det

yyyy
xxxx

Det
yyyy
xxxx

Det

)y.L,y.L()y,y()y.L,y.L()y,y(
)x.L,x.L()x,x()x.L,x.L()x,x(

Intersects if:

00 342341124123 DetDetDetDet

Parameters:

 L1: XYLine to test.

 L2: XYLine to test.
Return values:

 Boolean indicating whether or not the lines intersects.
Exceptions:

 None.

Intersect (XYPolygon a, XYPolygon b, ref XYPoint p, ref  int i, ref int j, ref XYPolygon c) : void Private



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 83 of 93

The method searches counterclockwise along polygon a for intersections with polygon b. Vertices
passed in the search are added to polygon c if j -1. The intersection vertex is added to polygon c.

Parameters:

 a: XYPolygon to search along.

 b: XYPolygon to search for intersections with.

 p: Input: XYPoint used as starting point for the search. Output: Intersection point.

 i: Input: end index for first line segment of a in the search. Output: End index for last intersected
line segment of a.

 j: Input: -1 if vertices before intersection is not to be added to list. Output: End index for last
intersected line segment of b.

 c: Input/Output: XYPolygon  describing the intersection area between a and b.
Return values:

Intersect returns values in the reference parameters, p, i, j and c.
Exceptions:

 none.

IntersectionPoint(XYLine: lineA, XYLine: lineB, ref XYPoint: intersectionPoint) : bool
Private
Checks if the lines lineA and lineB shares a point either as a real crossing point or as a shared end
point or a end point of the one line being in the other line.
Parameters:

 lineA: XYLine

 lineB: XYLine
Return values:

 returns true if lineA and lineB has shared point.

 The intersectionPoint parameter holds the intersection point if any. Called by reference.
Exceptions:

 None

IsPointInLine (XYPoint: point, XYLine line) : bool Private
Determines if a point is included in a line either in the interior or as one of the end points.
Parameters:

 point: XYPoint
Return values:

 line: XYLine
Exceptions:

 None

IsPointInPolygon (XYPoint: point, XYPolygon polygon) : bool Public

Determines if a point is inside a polygon. The method is an implementation of the Winding number
test, valid for convex as well as concave polygons.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 84 of 93

Parameters:

 point: XYPoint

 polygon: XYPolygon
Return values:

 true if the point is inside the polygon, false if outside or on edge.
Exceptions:

 None

IsPointInPolygonOrOnEdge (XYPoint: point, XYPolygon polygon) : bool Private

Determines if a point is inside or on the edge of a polygon. The method is an implementation of the
Winding number test, valid for convex as well as concave polygons. The method is based on a
combination of IsPointInPolygon and IsPointInLine.
Parameters:

 point: XYPoint

 polygon: XYPolygon
Return values:

 true if the point is inside or on the edge of the polygon, false otherwise
Exceptions:

 None

TriangleIntersectionArea(XYPolygon: a, XYPolygon: b) : double Private

The method calculates the intersection area of triangle a and b both of type XYPolygon. Triangle a has
the vertices a0, a1 and a2. Vertex a1 has coordinates a1,x, a1,y. Edge from vertex a1 to a2 is denoted a12.

The algorithm creates polygon c by following alternately a and b.

reaCalculateA.ctionAreasecterTriangleIn
)c,i,j,p,a,b(InterSect
)c,j,i,p,b,a(InterSect

jjif
)c,i,j,p,a,b(InterSect
)c,j,i,p,b,a(InterSect

jj
)c,j,i,p,b,a(InterSect

ap
j

;i

stop

stop

0

1
1

Parameters:

 a: triangle of type XYPolygon

 b: triangle of type XYPolygon
Return values:



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 85 of 93

 The shared area of the two triangles.
Exceptions:

 none.

org.OpenMI.Utilities.XYPoint:

Methods:
XYPoint (double: x, double: y): void Public

Constructor
Parameters:

 x: x-coordinate

 y: y-coordinate
Return values:

 None
Exceptions:

 None

Properties:
[property] X : double Public

Sets or gets the x-coordinate of the point.

Get:  Return value: double x-coordinate

Set: Parameter: double x-coordinate

[property] Y : double Public

Sets or gets the y-coordinate of the point.

Get:  Return value: double y-coordinate

Set: Parameter: double y-coordinate

org.OpenMI.Utilities.XYPolyline:

Methods:
XYPolyline (): void Public

Constructor.
Parameters:

 None
Return values:

 None
Exceptions:

 None



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 86 of 93

GetLength(): double Public

Sums the length of the line segments of the poly line.
Parameters:

 None
Return values:

 Length of the polyline.
Exceptions:

 None

GetLine(int index): XYLine Public

Extracts the index’th line (0-based) from the polyline.
Parameters:

 Index: int
Return values:

 The index’th XYLine of the polyline
Exceptions:

 None

GetX(int index): void Public

Returns the start x-coordinate of the index’th line (0-based) of the polyline.
Parameters:

 Index: int
Return values:

 X-coordinate
Exceptions:

 None

GetY (int index): void Public

Returns the start y-coordinate of the index’th line (0-based) of the polyline.
Parameters:

 Index: int
Return values:

 Y-coordinate
Exceptions:

 None

Properties
[property] Points : ArrayList Public

Gets the list of points in the line.

Get:  Return value: ArrayList of XYPoints



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 87 of 93

org.OpenMI.Utilities.XYLine:

Methods:
XYLine(): void Public

Constructor
Parameters:

 None
Return values:

 None
Exceptions:

 None

GetLength(): double Public

Calculates the length of the line.
Parameters:

 None
Return values:

 Line Length
Exceptions:

 None

GetMidpoint(): XYPoint Public

Returns the midpoint of the line.

2
,

2
2121

int
yyxxpmidpo

Parameters:

 None
Return values:

 Midpoint: XYPoint
Exceptions:

 None

Properties
[property] P1 : XYPoint Public

Gets the one end-point of the line.

Get:  Return value: XYPoint

[property] P2 : XYPoint Public

Gets the other end-point of the line.

Get:  Return value: XYPoint



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 88 of 93

org.OpenMI.Utilities.XYPolygon:

Methods:
XYPolygon(): void Public

Constructor.
Parameters:

 None
Return values:

 None
Exceptions:

 None

GetArea(): double Public

The area of a polygon is found as the sum of the determinants for each vector along the polygon.

01

01

21

21

10

10 ...5.0
yy
xx

yy
xx

yy
xx

A
n

n

Parameters:

 None
Return values:

 Polygon area
Exceptions:

 None

GetLine(int index): XYLine Public
Extracts the index’th line (0-based) from the polyline.
Parameters:

 Index: int
Return values:

 Index’th line: XYLine
Exceptions:

 None

GetTriangulation(): ArrayList Public

Finds a triangulation of the polygon. The method returns an ArrayList of XYPolygons that are all
triangles. The method is ear cutting until the remaining polygon is a triangle itself.
Parameters:

 None
Return values:

 An Arraylist of triangles of type XYPolygon
Exceptions:



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 89 of 93

none

IsConvex (int pointIndex): bool Public

Decides whether a given point in the polygon is convex or concave. The method is used during when
deciding if a given point is the midpoint of an ear. Ears needs to have a midpoint that is convex.
Parameters:

 pointIndex: int
Return values:

 true if the point in the polygon is convex.
Exceptions:

 None

FindEar () : int Public

Searches along the polygon until a convex point is found. If the triangle composed of the found point,
the point before and the point after constitutes a triangle that is not intersected by other lines of the
polygon, the triangle is said to be an ear and the index of the point is returned.
Parameters:

 None
Return values:

 Index of the midpoint of the ear triangle.
Exceptions:

 None

IsIntersected(int i) : bool Public

Decides if the triangle formed by Pi-1, Pi-1, Pi+1 of the polygon surrounds any of the other points in the
polygon.
Parameters:

 i; Index of the midpoint of the triangle.
Return values:

 true if the triangle formed by Pi-1, Pi-1, Pi+1 includes any of the other polygon points.
Exceptions:

 None
Properties
[property] Points : ArrayList Public

Gets the list of points in the line.

Get:  Return value: ArrayList of XYPoints



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 90 of 93

Annex I-C org.OpenMI.Utilities.Wrapper package

org.OpenMI.Utilities.Wrapper.IEngineApiAccess:

The IEngineApiAccess is the interface the ModelEngine component must implement when used with
the SmartWrapper.

Methods:
Create (Hashtable properties): void Public

The Create method will be invoked just after creation of the object that implements the
IEngineApiAccess interfac
Parameters:

 Properties : Hashtable with the same contents as the Component arguments in the
ILinkableComponent interface. Typically any information needed for initialization of the model will
be included in this table. This could be path and file names for input files.

Return values:

 none
Exceptions:

 none

Initialize() : Void Public

This method will be invoked after the Create method has been invoked and before any other methods
in the IEngineApiAccess interface has been invoked. Typically, the model engine will be populated
when the Initialize method is invoked. E.g. by reading input files.

Parameters:

 None
Return values:

 none
Exceptions:

 None

Finalize() : Void Public

This method will be invoked after all computations are completed.

Parameters:

 none
Return values:

 none
Exceptions:

 None



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 91 of 93

Dispose() : Void Public

This method will be invoked after all computations are completed and after the method Finalize has
been invoked.

Parameters:

 None
Return values:

 none
Exceptions:

 None

PerformTimeStep() : bool  Public

This method will make the model engine perform one time step.

Parameters:

 None
Return values:

 Returns true if the time step was completed, otherwise it will return false
Exceptions:

 None

GetCurrentTime() : lTimeStamp  Public

Get the current time of the model engine

Parameters:

 None
Return values:

 The current time for the model engine
Exceptions:

 None

GetInputTime() : lTimeStamp  Public

Get the time for which the next input is needed for a specific Quantity and ElementSet combination

Parameters:

 quantityID (string):

 elementSetID (string)
Return values:

 Time for the next required values associated to a Quantiy and ElementSet combination
Exceptions:

 None



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 92 of 93

GetEarliestNeededTime () : ITime  Public

Get earliest needed time, which can be used to clear the buffer. For most time stepping model engines
this time will be the time for the previous time step.

Parameters:

 None

Return values:

 Time
Exceptions:

 None

GetValues () : IValuesSet  Public

Get values from the model engine.

Parameters:

 String: QuantityID  associated to the requested values

 String: ElementSetID associated to the requested values
Return values:

 The values
Exceptions:

 None

SetValues () : Void  Public

Set values in the model engine.

Parameters:

 String: QuantityID  associated to the values

 String: ElementSetID associated to the values

 IValuesSet: The values to set
Return values:

 void
Exceptions:

 None

Property: ID

IDstring for the model engine.

Property: Description

Description string for the model engine.



The OpenMI Document Series: Part F - org.OpenMI.Utilities technical documentation The OpenMI Association © 2007

Page 93 of 93


