OpenMI Series OpenMl

The OpenMI Document Series

Part B - Guidelines

For the OpenMI (Version 1.4)

Title

OpenMI Document Series: Part B - Guidelines for the OpenMI
(version 1.4)

Editor

Isabella Tindall, Centre for Ecology and Hydrology, Wallingford, UK

Authors

Peter Gijsbers, WL Delft Hydraulics, Delft, The Netherlands

Jan Gregersen, DHI Water and Environment, Harsholm, Denmark
Stefan Westen, HR Wallingford Group, Wallingford, UK

Flip Dirksen, RIZA, Lelystad, The Netherlands

Costas Gavardinas, National Technical University of Athens, Greece
Michiel Blind, RIZA, Lelystad, The Netherlands

Document production

Stephen Morris, Butford Technical Publishing Ltd., Pershore, UK

Current version V14

Date 21/05/2007

Status Final © The OpenMI Association

Copyright All methodologies, ideas and proposals in this document are the

copyright of the OpenMI Association. These methodologies,
ideas and proposals may not be used to change or improve the
specification of any project to which this document relates, to
modify an existing project or to initiate a new project, without first
obtaining written approval from the OpenMI Association who
own the particular methodologies, ideas and proposals involved.

Acknowledgement

This document has been produced as part of the OpenMI-Life
project.

The OpenMl-Life project is supported by the european
Commission under the Life Programme and contributing to the
implementation of the thematic component LIFE-Environment
under the policy area "Sustainable management of ground water
and surface water managment” Contract no : LIFEO6
ENV/UK/000409.

The first version of this document has been produced as part of
the HarmonIT project; a research project supported by the
European Commission under the Fifth Framework Programme
and contributing to the implementation of the Key Action
“Sustainable Management and Quality of Water” within the
Energy, Environment and Sustainable Development. Contract
no: EVK1-CT-2001-00090.

The OpenMI Association © 2007

Preface

OpenMI stands for the Open Modeling Interface and aims to deliver a standardized way of
linking of environmental related models. This document provides Guidelines for using the
Open Modelling Interfaces and supporting software, the OpenMI. It is the second in the
OpenMI report series, which specifies the OpenMI interface standard, provides guidelines on
its use and describes facilities for migrating, setting up and running linked models. Other titles
in the series include:

A. Scope

Guidelines (this document)

org.OpenMlI.Standard interface specification

org.OpenMl.Backbone technical documentation

org.OpenMI Development Support technical documentation

nmoo»

org.OpenMl.Utilities technical documentation

The Guidelines are divided into five books:

e Book 1 provides an introduction to the OpenMI and describes the processes involved
in creating an OpenMI-compliant model or migrating an existing model.

e Book 2 describes the way in which data are exchanged between OpenMI-compliant
systems.

e Book 3 provides information on how to develop an OpenMI system.

e Book 4 gives instructions for migrating an existing model so that it becomes OpenMI-
compliant.

e Book 5 illustrates the way in which data can be exchanged with software other than
models (e.g text files, spreadsheets and databases).

The Guidelines are intended primarily for developers. For a more general overview of the
OpenMI, see Part A (Scope).

The official reference to this document is:

OpenMI Association (2007) Guidelines. Part B of the OpenMI Document Series
Disclaimer

The information in this document is made available on the condition that the user accepts
responsibility for checking that it is correct and that it is fit for the purpose to which it is
applied.

The OpenMI Association will not accept any responsibility for damage arising from actions
based upon the information in this document.

The OpenMI Document Series: Part B - Guidelines iii

The OpenMI Association © 2007

Further information

Further information on the OpenMI Association and the Open Modelling Interface can be
found on http://www.OpenMl.org.

iv The OpenMI Document Series: Part B - Guidelines

http://www.OpenMI.org.

Contents

BOOK 1

Chapter 1.1

111
1.1.2
1.1.21
1.1.2.2
1.1.2.3
1.1.3
1.14

Chapter 1.2

1.2.1
1211
1.2.1.2
1.2.1.3

1.2.2
1221
1.2.2.2
1.2.2.3

Chapter 1.3

13.1

1.3.2
1321
1.3.2.2

1.3.3

Chapter 1.4

14.1
1411
1.4.1.2

1.4.2

1.4.3
1431
1.4.3.2

1.4.4

BOOK 2

Chapter 2.1

211

2.1.2

2.1.3
2131
2.1.3.2
2133

Chapter 2.2

The OpenMI Document Series: Part B - Guidelines

The OpenMI Association © 2007

INTRODUCING THE OPENMI.......citiiiiiiiieiiiiiiiiee et 1-1
Introduction to the OpenMI ... 1-3
BaCKgroUNdcoovviiiiiiiiiiii 1-4
The OpenMI objectives and benefits............ccoee e, 1-5
AIMS and ODJECLIVES........cooeieiiii e, 1-5
Performance and error handling...........cccccccviiiiii 1-6
BENETILS ..o 1-6
USE CASES. .uuuuiiieeiiiitiiii st e ettt e ettt e e et et e e e e e et et e e e et e e e e e eane 1-8
TEIMINOIOGY ... 1-9
Object oriented programming and UML..............uuuvuiiiiiiiiiiiininiiiiniin. 1-13
Object oriented Programming.............ooierreeireeeee e eiribeeee e e e 1-14
(@] 1= ox £ 1-14
CLASSES ..ttt e e e e e e e e e 1-14
INNEIIEANCE.t 1-15
UML Lttt e e r e e e e e aaa e 1-16
(@ P TtS0 [F=To | =Ty 0 PP 1-16
Y=L [0 1=T Lot = T [F=To |- Ty g TP 1-17
INEEITACES ... 1-21
LINKING MOAEIS c.oooviiiiiiiiiiiieeee 1-23
Linking models at rUN-tIMecooiiiiiiiiiieee e 1-24
The request-reply mechanism..........ccoooeiiin 1-26
The pull MEChANISM.....coiiii e, 1-26
Other fRAIUIES. a e e 1-27
The GetValues Method...........oocuuiiiiiiiiiii e 1-28
Developing OpenMI SYStEMScovviiiiiiiiiii 1-31
Overview of an OpenMI-compliant SYSEMuvvvvvvvriiiiriiieninnienieneennnn. 1-32
OPENMI SYSLEIMS. ...ttt e e e e e e e e 1-32
THE OMI il 1-32
DeployMENt PRASESccvvvviiiiiiiiiiieeee 1-33
Migrating existing MOdelS............ccovviiiiiiii 1-34
Criteria for becoming a linkable component..............c.uvvvvvviiiiiiiiiiiiiiiiii. 1-34
The MIgration PrOCESSccieiee e 1-35
Implementations of the OpenMI ..., 1-37
EXCHANGING DATA . ettt 2-1
Data exchange at run-timMecccccvviiiiiii 2-3
The data exchange MechaniSM ...t 2-4
The role of element sets in data eXChangeccooviiiiiiieeeeiiniiieeeeen 2-6
BidireCtional lINKS.........cooiiiiiiii e 2-7
Example 1: Linkage of two dynamic river flow models.............cccceevvininnnnnn. 2-7
Example 2: Linkage of a river model with a plant growth model................... 2-7
Example 3: Linkage of a river model with a weir control module 2-8
Describing the exchange data..........cccccccvvviiiiiiiiiiii 2-9

The OpenMI Association © 2007

221
2.2.2
2.2.3
224
2241
2.24.2
2.24.3
2244
2.2.5
2.2.6
2.26.1
2.26.2
2.2.7

Chapter 2.3
23.1
2.3.2

Chapter 2.4

24.1
24.2
24.3
244
245
24.6

BOOK 3

Chapter 3.1
3.1.1
3.1.2

Chapter 3.2

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7

Chapter 3.3
3.3.1

Chapter 3.4

34.1

3.4.2

3.4.3
Chapter 3.5

3.5.1
3.5.2

vi

INtrOdUCING thE USE CASE ieiiieeiiie e 2-10
What t0 deSCriDe.......ooiiii 2-11
Defining what the values repreSentccccccccviii 2-12
Defining where the values applycccccvvviiiiiiiii 2-15
OPENMI ElEMENESELS. .. uuuuviiiiiiiiiiiiiiiiiiiriiiiierererrrrrrrerreeererrrer e 2-15
Using different types of elementsS.........cccccvvviii 2-17
ChooSiNg an EleMENtTYPE.....uuuuuuriiiiiiiiriiiiiiiiriernnirrerrererereereerrre. 2-20
Dynamic EIEMENESELS.........ccovviiiiiiiiiiiii 2-21
Using data operations to describe how data can be mapped..................... 2-22
Grouping int0 EXChangeItemMSuuuuiiiiiiiiiiiiiiiiiiiiiiiiiirieeieeeieeeeeneeeeneenenen 2-26
EXCRANQEITEMS....ciiiiiiiieiieeeee 2-26
Initially unknown Exchangeltemscccccivii 2-27
An advanced eXample ... 2-31
Configuring links and COMPOSITIONSuuvvvviiiiiiiiiiiiiiiiiierirreee. 2-35
Configuring @ SiNGIe lINK.........uuviiiiii e 2-36
Building @ COMPOSItIONuviiiiiiiiiiiiiiiee e 2-38
Using the OpenMI configuration editorcccueeeieiiniiiiiiiieeee e, 2-39
Starting the configuration €ditOruuuviviiiiiiiiiiiiiii. 2-40
Adding models to the COmMpPOoSItioN...........ccccvviiii 2-41
Establishing connections between the modelsccccccciiii, 2-43
Configuring the CONNECLIONS.........uuuuiiiiiiiiiiiiiiiiiiiiireeeree e 2-44
AdAING A TGN oo 2-45
Running the COMPOSILIONcccoviiiiiiiiii 2-46
DEVELOPING OPENMI SYSTEMSotiiiiiiiiiiiiiiiee et 3-1
OpenMI-compliant SYSEEMS....uuuuuiuuiiiiiiiiiiiiiiiriiirrrereerrerrerrr 3-3
What is an OpenMI SYStEM?ccoviiiiiiiiiiie 3-4
Locating the COMPONENTS..........coovviiiiiiiiiiii 3-5
Establishing OpenMI SyStemMS........ccovvviiiiiiiii 3-7
Phases in using the linkable component interfaceccccvvveveieniiiiinne, 3-8
Phase I: Instantiation and initialization...............ccccuieiiieeniiie e, 3-9
Phase IlI: Inspection and configuration..............cccuvvereeeeennniiiiieee e 3-10
Phase 111 Preparationcvuvviiiiiiiiiiee e 3-12
Phase 1V: Computation/EXEeCULIONcccvviiiiiiiiiiiiiiie e 3-13
Phase V: ComMPIetioncooviiiiiiiii 3-14
Phase VI: DISPOSAlccvviiiiiiiiiiiiii 3-15
Hard-coded SYStEMS......covvviiiiiiiiiiii 3-17
An example of a hard-coded SyStem ..., 3-18
Support for configurable SYSteMSuuuviiiiiiiiiiiiiiiiiiiiii 3-23
Main aspects of a configurable system...........ccccccciiiiiiii, 3-24
Configuring and sustaining a component combination....................veveeeenn. 3-25
Deploying and running the SYSEM ... 3-31
Graphical USEr INtErfaCesuuuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiierrereeereer 3-37
Building VISUAI TOOIS ..ot 3-38
OmiEd, a simple front end of the OpenMI SDK.............uuvvvuvviiiiiiiiiiiiiiiinnn. 3-39

The OpenMI Document Series: Part B - Guidelines

BOOK 4

Chapter 4.1
4.1.1
4.1.2

Chapter 4.2

421
4211
421.2

422

Chapter 4.3
4.3.1
4.3.2

Chapter 4.4

441
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

Chapter 4.5

451
45.2
453
454
455
Chapter 4.6

4.6.1

Chapter 4.7
4.7.1

Chapter 4.8
4.8.1

Chapter 4.9

49.1
4.9.2
4.9.3
49.4

Chapter 4.10

4.10.1
4.10.2

The OpenMI Association © 2007

MIGRATING OPENMI MODELS ...ttt 4-1
INEFOAUCTION L.t 4-3
(@01 o1 1Y oo Ta ¥ o] 7= T g ot = PPN 4-4
The SImple RIVEr @XamPlecoooooiiiiieeeeeeee e 4-6
Planning the migrationccccccvvviiiiiii 4-7
USE CASES. ..uuuuiiieiiiietiiti e e ettt et e et et e e e et et e e e e e e e e e eane 4-8
Use case 1: Connecting to other fvers...........ccccccccciiiiiciciic 4-8
Use case 2: Inflow from geo-referenced catchment database.................... 4-10
Defining eXchange iteMS.........ccvvvviiiiiiiiiiiiee e 4-12
ATV =T o] o 1Yo [PP 4-13
A general Wrapping PatterN..........ccvviiiiiiiii 4-14
The LINKabIEENGINE ..o 4-15
Migration — Step bBY SteP ..vvvvvviiiiiiii 4-17
Step 1: Changing YOUr €NgINE COME......uuuuuuuirirrrerriirernerrreererernererenrnerr. 4-18
Step 2: Creating the .NET assembli€S...........uuuvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin, 4-20
Step 3: Accessing the functions in the engine Core..........ccovvvvvviiviiiiiiiinnnn. 4-22
Step 4: Implementing MyENgINEDOtNEtACCESS........uvvvvvriviviriiiiiiiiiiieriinnnnns 4-24
Step 5: Implementing the MyEngineWrapper Class...........ccvvuviiiiiiiiiiiiinnn. 4-26
Step 6: Implementing MyModelLinkableComponent................euvvvvvvvviinnnnn. 4-28
Step 7: Implementation of the remaining IEngine methodsuuuee. 4-29
Migration of the Simple RiVer.......cccccciii, 4-31
The SIMPIE RIVEN WEaPPET ...t 4-32
Implementation of the Initialize methodcoc 4-33
Implementation of the SetValues method..............ccccooii, 4-36
Implementing the GetValues method ..., 4-37
Implementation of the remaining methods.................ccccco, 4-38
Testing the COMPONENt......ooooiiii i, 4-41
UNIEEESHING ceeveiiiiiiieeeeeeeeeee e 4-42
Implementing IManageState..........cccccvvviiiiii 4-45
The IManageState iNterface.........oooovveieii i, 4-46
THE OMI Il e 4-49
Structure of the OMI ilceeuieiii e 4-50
Design patterns for model migration.........cccccccviiiiiiiiiiii, 4-51
Design patterns for ISIS..........oovvii 4-52
Design patterns for INFOWOrkS RS........ccovviiiiiiiii, 4-53
Design patterns for MIKELLcccvvvviiiiiiiiiiii 4-54
Design patterns for SOBEK ... 4-57
PerfOrManCe ISSUES ... 4-59
MEMOIY CONSUMPLION.......cciiiiiiiiiiiiiiiiiee ettt 4-60
SYSLEIM PrOCESSESieetieeeeit e e et e ettt e et e e et et e e e et e e e e et e e e ean e aeernnnes 4-61

The OpenMI Document Series: Part B - Guidelines Vii

The OpenMI Association © 2007

BOOK 5

Chapter 5.1

511
51.2
5121
51.2.2
513
514
514.1
51.4.2
5.1.5
5151
5.15.2

Chapter 5.2

521

Chapter 5.3

viii

53.1
53.2
53.3
534

NON-MODEL COMPONENTS ...ttt 5-1
Desktop and database applications.........ccccccvvvviiiiiiiic 5-3
ASCH IlES. ettt 5-4
Y] £= =T £SO PPRPN 5-8
Generating an ASCII i€uuuuiiiiiiiiiiiiiiiiiiiiiiiiii e 5-8
Accessing Excel using Visual Studio Tools for the Microsoft Office system..5-8
REPOM ENQINES ...cooviiiiiiiiiiiieeeeeeee e 5-12
DAADASES ...ttt e a e 5-13
AccesSiNg databases.........cooovviiiiiiii 5-13
Accessing databases using ADO.NET ... 5-13
L 1S TR 5-15
Accessing GIS through software libraries............ccccccciiiiiiiiic 5-15
Accessing GIS through ASCIHfileS ..., 5-15
VISUAIIZALION L.t 5-17
The OpenMI DataMONItOr........coooiii i 5-18
Advanced CONLIOIIEISuuiiiiiiiiii e 5-19
10T ¢= Ui o] o IO TSP PT PP PPTTRPPOO 5-20
(@70 110 1 12= 110] o 1 5-26
CaliDratioN ..o e 5-30
L0 o 1= To | =1 4 [PP 5-32

The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction

Book 1

BOOK 1

Chapter 1.1

111
1.1.2
1.1.21
1.1.2.2
1.1.2.3
1.1.3
1.14

Chapter 1.2

1.2.1
1211
1.2.1.2
1.2.1.3

1.2.2
1221
1.2.2.2
1.2.2.3

Chapter 1.3

13.1

1.3.2
1321
1.3.2.2

1.3.3

Chapter 1.4

14.1
1411
1.4.1.2

1.4.2

1.4.3
1431
1.4.3.2

1.4.4

The OpenMI Document Series: Part B - Guidelines

The OpenMI Association © 2007

Introducing the OpenMI

INTRODUCING THE OPENMI. ...ttt 1-1
Introduction to the OpenMI ... 1-3
BaCKgroUNGcooviiiiiiiiiiii 1-4
The OpenMI objectives and benefits............cooee e, 1-5
AIMS and ODJECHIVES.......ccooeiiiiii 1-5
Performance and error handling...........cccccccviiiiiiiiii 1-6
BENETILS .. e 1-6
USE CASES. .uuuuuiiieeiiiitiiti st e ettt e e ettt e e e et et e e e e et e e e e e eane 1-8
TEIMINOIOGY ..o 1-9
Object oriented programming and UMLeevvivvviiiiiiniiiiiiiiiiiininn. 1-13
Object oriented ProgramMINg............eeeeeeueerurerrrennnerrerrrrrrr—.. 1-14
(@] 1= o3 £ 1-14
CIASSES ..tteiiiie ettt e e a e e e 1-14
INNEIIEANCE. ... 1-15
UML Lttt a e e r e e e e e aaa e 1-16
(@ F- TSI 1=V | =Ty 0 PP 1-16
Y=o [0 1=T Lot [F=To |- Ty g I PP 1-17
INEEITACES ... 1-21
LINKING MOAEIS c.ooviiiiiiiiiiiiiee 1-23
Linking models at run-time..........ccccviiiiiiiii 1-24
The request-reply mechanism..........coooeeiii, 1-26
The pull MEChANISM.....cooii i 1-26
Other FEALIUIES. ... e it a e e 1-27
The GetValues Method...........oociviiiiiiiiii e 1-28
Developing OpenMI SYStEMSccvvviiiiiiiiiiii 1-31
Overview of an OpenMI-compliant SYSEMevvvrvvveiiiiieereeieiirieerieennnn. 1-32
OPENMI SYSLEIMS. ...ttt e e e e e eeea s 1-32
THE OMI il 1-32
DeployMENt PRASESccovvviiiiiiiiiiiee 1-33
Migrating existing MOdelS............coovviiiiiiii 1-34
Criteria for becoming a linkable component..............cuvvvviviiiiiiiiiiiiiiiii. 1-34
The MIgration PrOCESScooiiee e 1-35
Implementations of the OpenMI ..., 1-37

Book 1 page 1

Book 1 Introduction The OpenMI Association © 2007

Chapter 1.1 Introduction to the OpenMI

The OpenMI standard has been designed to allow data to be exchanged between
independent models running simultaneously. Any models that are designed to comply with
the requirements of the standard will be able to exchange data, as will any existing models
that are modified to be OpenMI-compliant.

These Guidelines provide developers and users with the information needed to make models
OpenMI-compliant and then to link and run them. Book 1 of the Guidelines provides an
introduction to the OpenMI and describes the processes involved in creating an OpenMI-
compliant model or migrating an existing model.

The book refers to the OpenMI supporting software, i.e. the Software Development Kit and
the Graphical user interface, which contains a number of tools to ease the task of converting
an existing model engine into an OpenMI linkable component. There is no requirement to use
these tools when creating an OpenMI-compliant component but they may make the task
simpler.

This chapter introduces the OpenMI, giving details of its objectives, the models that can be

linked using the OpenMI, the examples against which the standard has been tested and the
terminology used throughout the Guidelines.

The OpenMI Document Series: Part B - Guidelines Book 1 page 3

The OpenMI Association © 2007 Book 1 Introduction

1.1.1 Background

The Water Framework Directive (WFD) calls for integrated water management to be put into
practice and identifies whole catchment modelling as a key part of integrated management.
The challenge that this presents is not only that individual catchment processes be modelled
but also their interactions. Constructing a single model of all catchment processes is not a
feasible option, does not make good use of existing models and doesn’t provide the flexibility
to try alternative models of individual processes. The only realistic mechanism for whole
catchment modelling is integrated modelling. This approach links models of different
processes and hence allows process interactions to be simulated.

Within the FP5 project HarmonlIT, co-funded by the European Commission, the Open
Modelling Interface and supporting software (the OpenMlI) has been developed. The OpenMI
Interface is a standard interface that enables OpenMI components to exchange data as they
run. An OpenMI component is a piece of software that complies with the OpenMl
requirements.

The OpenMI supporting software comprises a Software Development Kit and a Graphical
User Interface. These tools facilitate making new and existing model codes OpenMl-
compliant and they offer facilities to combine OpenMI-compliant components into integrated
modelling systems and then run them.

OpenMI components are not restricted to being models. The interface can also be used for

data exchange with, for example, databases, text files, GUIs, report writers and visualization
aids.

Book 1 page 4 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

1.1.2 The OpenMI objectives and benefits

The OpenMI has been developed with a number of objectives in mind. Adopting the OpenMI
can produce a variety of benefits.

1.1.2.1 Aims and objectives

The aim of the OpenMI is to provide a mechanism by which physical and socio-economic
process models can be linked to each other, to other data sources and to a variety of tools at
run-time, hence enabling process interactions to be better modelled.

Specific objectives are that the mechanism’s design should allow the linking of:

e Models from different domains (hydraulics, hydrology, ecology, water quality,
economics etc.) and environments (atmospheric, freshwater, marine, terrestrial,
urban, rural etc.)

¢ Models based on different modelling concepts (deterministic, stochastic etc.)

e Models of different dimensionality (0, 1, 2, 3D)

e Models working at different scales (e.g. a regional climate model to a catchment
runoff model)

e Models operating at different temporal resolutions (e.g. hourly to monthly or even
annual)

e Models operating with different spatial representations (e.g. networks, grids,
polygons)

¢ Models using different projections, units and categorizations

¢ Models that link to other data sources (e.g. databases, user interfaces, instruments)

¢ Models running on different platforms (e.g. Windows, Unix and Linux)
Note that linked models can be run on different computers, as long as the components are
OpenMI-compliant and an appropriate distributed technology or technology combination is
chosen for implementation; for example, remoting protocols of .NET, Java and WebServices
could be applied, as well as proxy-stub patterns.
More general objectives are that the mechanism:

e Be applicable to new and existing models

e Impose as few restrictions as possible on the modeller’s freedom

e Be applicable to most, if not all, time-based simulation techniques

¢ Require the minimum of change to the program code of existing applications

o Keep the cost, skill and time required to migrate an existing model to a minimum so
that these factors are not a deterrent to the OpenMI’s use

The OpenMI Document Series: Part B - Guidelines Book 1 page 5

The OpenMI Association © 2007 Book 1 Introduction

e Beeasytouse

¢ Not unreasonably degrade performance

1.1.2.2 Performance and error handling
Many models are computationally intensive and for these the maintenance of performance is
an important issue. Particular care has therefore been taken in the design of the OpemMI to
minimize any reduction in performance.
Factors that are likely to affect performance are:

e The complexity of the models

e The amount of data exchanged

e The complexity of the links

e The location of the models

e The communications network over which links run

e The efficiency of the code
The handling of errors in a way that enables the source of the errors to be identified quickly
has also been given careful attention. The OpenMI uses exceptions for error handling and an
event message system to pass progress and debugging information. A number of

conventions, some mandatory and some voluntary, are either required or recommended to be
adopted by code developers.

1.1.2.3 Benefits

The discussion above has explained the need for the OpenMI created by the adoption of the
WFD. What benefits does it bring to the designated authorities, basin managers, regulators,
consultants, modellers and model developers responsible for implementing the WFD? Some
of the arguments for adopting the OpenMI put forward by organizations that have already
adopted or are considering adopting the OpenMl are:

e Protection and enhancement of existing investment in model development (i.e. it is
not necessary to rewrite them completely in order for them to become OpenMI-
compliant)

e The simplification of the model-linking process, leading to an improved ability to
model process interactions

e The ability to use appropriate model combinations and to swap between different
models of the same process, assisting sensitivity analyses and benchmarking

e A reduction in development time and hence cost for decision support systems

e An increased choice for model users, in that they will be able to ‘mix and match’
models from different sources

Book 1 page 6 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

¢ Increased opportunities for model developers, in that individual models become more
saleable because they can be linked to established systems, enhancing the value of
both

e Increased opportunities for the creation of Small and Medium Enterprises (SME),
especially from the academic sector

e Increased opportunities to contribute to the implementation and evolution of EU
policies

e The opportunity for model developers to concentrate their core business (e.g.
computational cores) because they will be able to buy in OpenMI-compliant tools
such as GUIs and post-processing tools

e The OpenMI Software Development Kit and Graphical User Interface, which offer
tools for migrating and linking models and monitoring linked model runs (the tools are
available free under an Open Source licence and would otherwise have to be written
by the developer)

e The small cost of conversion compared with the cost of writing a whole catchment
model from scratch or redeveloping existing models

e The ability for model users to run third-party computational cores in their own
environments

¢ No need to understand other organizations’ I/O procedures

e The ability to change a model’s code without affecting the linking process or interface

The OpenMI Document Series: Part B - Guidelines Book 1 page 7

The OpenMI Association © 2007 Book 1 Introduction

1.1.3 Use cases

A range of scenarios or ‘use cases’ were identified to check that the requirements were
correctly expressed and to ease the development of an architecture for the OpenMI. Some
examples from the full list of cases are shown below:

e Connect two 1D hydrodynamic river models.

e Connect a 1D hydrodynamic model with a water quality transport model.

e Connect a 1D river model with a 3D groundwater model.

e Connect a 1D hydrodynamic river model to vegetation and habitat models.
e Connect a 3D coastal model to a 1D river model.

e Connect a 2D polygon-based root zone model to a 3D regular grid groundwater
model.

e Calibrate a rainfall runoff model linked to a hydrodynamic sewerage model.
¢ Model the propagation of uncertainty through a chain of models.
e Use different units of measurement for the data to be exchanged between models.

e Connect to an agent-based model.

Book 1 page 8 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

1.1.4 Terminology

A number of terms are used when describing the OpenMI standard.

As shown in Figure 1-1, the term model application encompasses all parts of the modelling
system software that is installed on a computer: for example Mikel1l, PHABSIM or InfowWorks-
RS.

Model Application

User interface

l Write
Input file W
This is a
site-specific Run
model (i.e. engine + Read
schematisation/data)
Engine
iWrite
Output File W

Figure 1-1 The general structure of a model application

Typically, such systems consist of a user interface and an engine. Usually, the engine is a
generic representation of a process and is where the calculations for simulating or modelling
that process take place. The user supplies information through the user interface and this is
converted into the input data for the engine.

The data describe a specific scenario in which the process is to be simulated: for example the
Rhine during a time of extreme rainfall. The user runs the engine by selecting an option or
pressing a button on the user interface. The engine reads the input, performs the calculations
and outputs the results to files or displays.

When an engine has read its input it becomes a model. For example, an engine may
represent the generic process of water flowing in an open channel. When it has read in the
data describing the channel network of the Rhine, along with any boundary conditions and
rainfall data, it becomes a model of the Rhine in the scenario to be simulated.

If the code for an engine can be instantiated separately and has a well-defined interface
through which it can accept and provide data, then it is an engine component. The engine’s
interface is the part of the code that handles the transfer of data to and from the engine; it
should not be confused with the user interface, which is the part of the application that the
user sees. The key to enabling models to exchange data lies in standardizing the design of
the engine interface. When an engine component implements such a standard interface, it
becomes a linkable component. An engine that implements the OpenMI interface is called
OpenMI-compliant. Note that the engine is controlled from outside by applications that call the
functions in the engine’s interface.

The OpenMI Document Series: Part B - Guidelines Book 1 page 9

The OpenMI Association © 2007 Book 1 Introduction

The OpenMI defines a standard interface that has three functions:

o Model definition: To allow other linkable components to find out what items this model can
exchange in terms of quantities simulated and the locations at which the quantities are
simulated.

e Configuration: To define what will be exchanged when two models have been linked for a
specific purpose.

¢ Run-time operation: To enable the model to accept or provide data at run-time.
Figure 1-2 shows two model applications whose engines have been made OpenMI-compliant.

Their overall structure remains unchanged but each engine is now a component with an
OpenMI interface.

User interface User interface
Input data 1 Input data 1
[[[
!
—O Oo— :
Get values

<€
Output data 1 Output data 1
l l

Figure 1-2 Two applications after migration to the OpenMI standard

Figure 1-3 illustrates some of the information held in the model definition about the variables
or quantities that two models can either accept or provide. The arrow represents a link
between the two models and indicates that, in this particular case, runoff produced by the
Rainfall Runoff Model will be used to represent lateral inflow in the River Model. There is no
requirement to harmonize the terminology; the linking process creates the appropriate cross-
reference table.

Book 1 page 10 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

Accepts Provides Accepts Provides
Rainfall Runoff Upstream Inflow Outflow
(mm) (md/s) ~ (m3/s) (md/s)
Temperature \ Lateral inflow
(Deg C) (m3/s)
Evaporation Abstractions
(mm) (m3/s)
Discharges
(m3/s)

Figure 1-3 Showing and linking quantities

An element is an object or location for which quantities are computed over time by a model.

Figure 1-4 shows the geographical matching of elements in a river model to those in a
groundwater model. The river model is a vector model and each element represents a single
stretch; the groundwater model is grid-based, each node being an element. Therefore, in
order to link the two models, each element in the river model will usually be linked to several
elements in the groundwater model. The OpenMI supporting software provides tools for
aggregating and disaggregating values passing between models based on different spatial
representations, such as vectors, areas or grids.

River Model

Groundwater Model
Nl

Figure 1-4 Linking element sets

Elements are the
locations where
quantities are

calculated

The OpenMI Document Series: Part B - Guidelines Book 1 page 11

Book 1 Introduction The OpenMI Association © 2007

Chapter 1.2 Object oriented programming and UML

The construction of an OpenMI-compliant model requires a basic understanding of object
oriented programming and in particular the relationship between objects and classes and the
principle of inheritance. Some knowledge of the Unified Modelling Language (UML) is also
necessary.

This chapter explains the principles of object orientated programming and UML. The

information given here is of particular interest to Fortran programmers wishing to migrate
existing Fortran models to the OpenMI.

The OpenMI Document Series: Part B - Guidelines Book 1 page 13

The OpenMI Association © 2007 Book 1 Introduction

1.2.1 Object oriented programming

Object oriented programming (OOP) provides the basis for the languages most commonly
used when developing models: for example C#, C++ and Java. This section gives a brief
introduction to the philosophy and terminology of object oriented programming.

1.2.1.1 Objects

Objects are the basis of object oriented technology since they represent real-life entities.
Objects have a state and behaviour. An object maintains its state through variables, whereas
its behaviour is expressed in terms of its methods. (Note that the term varies: methods are
also called functions, procedures or subroutines depending on the terminology used).

Consider as an example that you want to model real-world bicycles. A bicycle’s state is
expressed in terms of the variables that represent the bicycle’'s speed, direction, pedal
cadence and current gear. You may also want to consider the bicycle’s colour, brand and so
on. A bike would also need methods to express its behaviour, such as a method to apply the
break, change the pedal cadence or change gears.

Therefore an object is a software bundle of variables and related methods.

Typically, methods surround and hide the object's state from other objects in the program.
Packaging an object's variables within the protective custody of its methods is called
encapsulation. In many cases an object may wish to expose some of its variables or hide
some of its methods.

In brief, the two primary benefits of object oriented programming are:

e Modularity: The source code for an object can be written and maintained
independently of the source code for other objects. Also, an object can be easily
passed around in the system. You can give your bicycle to someone else and it will
still work.

¢ Information hiding: An object has a public interface that other objects can use to
communicate with it. The object can maintain private information and methods that
can be changed at any time without affecting the other objects that depend on it. (You
don't need to understand the gear mechanism on your bike to use it.)

1.2.1.2 Classes

Using the previous example, imagine different sorts of bicycle in a race. Each has its own
speed, direction etc. In OOP terminology, all these bicycle objects are instances of the class
of objects known as bicycles. All these objects, despite having different states, being
independent and being different to each other, share the same structure. This commonality is
expressed by the class bicycle. A class is a prototype that defines the variables and the
methods common to all objects of a certain kind.

The difference between classes and objects is often the source of some confusion, as
frequently the terms are wrongly used interchangeably. Always keep in mind that the class
bicycle refers to the general blueprint or description of a bicycle, which does not ‘exist’,
whereas bicycle objects or instances refer to specific bicycles that exist, have a specific
speed, colour etc.

Book 1 page 14 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

1.2.1.3 Inheritance

Probably, the most important feature of OOP is inheritance. Inheritance allows classes to be
defined in terms of other classes. Consider for instance, mountain bikes and racing bikes.
They are both bicycles and share all the common characteristics of bicycles, such as being
able to break, having a speed etc. At the same time though, there are things that differ
between them; a mountain bike might need to represent its suspension unit whereas a racing
bike might need to express its aerodynamic factor.

It would be a waste of time to have to rewrite the classes representing racing bikes and
mountain bikes. OOP languages avoid this by introducing inheritance. Mountain bikes and
racing bikes are bicycles and their respective classes inherit from the bicycle class. This
automatically enables them to inherit the state (the variables) as well as the behaviour (the
methods) of the bicycle class.

Depending on the OOP language there are different terms to express the relationship
between the classes. In C# and C++ the mountain bike class is a derived class and inherits
from the base class bicycle. However, these terms are also described as child class as
opposed to the parent class or subclass as opposed to superclass.

Subclasses can also override inherited methods and provide specialized implementations for
those methods. For example, if you had a mountain bike with an extra set of gears, you would
override the ‘change gears’ method so that the rider could use those new gears. This is often
useful in real situations. Imagine that somebody has developed a library that defines the class
bicycle and some functions that take bicycle objects as arguments. You could inherit from the
bicycle class to define the mountain bike class. Although the instances of mountain bike class
might have more functionality than the simple bike class you can still send an instance of
mountain bike to a function that expects a bicycle object, since a mountain bike is a bicycle.
When the ‘change gear’ method is called in the function, the version of the rewritten mountain
bike class will be called!

The OpenMI Document Series: Part B - Guidelines Book 1 page 15

The OpenMI Association © 2007 Book 1 Introduction

1.2.2 UML

The Unified Modelling Language (UML) is a family of graphical notations that help in
describing and designing software systems, particularly software systems built using the
object oriented programming (OOP) methodology. It is an open standard, controlled by an
open consortium of companies and was born out of the unification of other OOP graphical
modelling languages in 1997.

UML officially describes a total of 13 types of diagrams, each with its own characteristics, but
just two of these are described here: class diagrams and sequence diagrams. The following
sections briefly explore the main properties of these diagrams and illustrate their use by
simple examples. The code that accompanies these examples is written in C# but can be
easily understood if you are familiar with other OOP languages such as Java or C++.

1.2.2.1 Class diagrams

Class diagrams are the most commonly used UML diagrams. A class diagram describes the
types of objects in the system and the various kinds of static relationships that exist among
them. Class diagrams also show the properties and operations of a class and the constraints
that apply to the way objects are connected.

Consider the following code (in C#) for a simple class that represents a bike:

class SimpleBike

{
private float _speed;
private float _direction;
private int _gear;
public void ChangeDirection(float degrees)
{
// Do stuff to change direction
}
public void Break(float time)
{
// Break for some time
}
public void Accelerate(float time)
{
// Accelerate for some time
}
public void ChangeGear(int gear)
{
// Change gear
}
public float GetSpeed()
{
return _speed;
}
}

Figure 1-5 shows the UML class diagram corresponding to that class.

Book 1 page 16 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

SimpleBike

-_speed : float

-_direction : float

-_gear : int

+SimpleBike()

+ChangeDirection(in degrees : float)
+Break(in time : float)
+Accelerate(in time : float)
+GetSpeed() : float

Figure 1-5 UML Class diagram

A class is represented by a single box divided into three sections. The upper section contains
the name of the class.

The middle section contains the attributes, which represent the structural features of the class
(its fields). The attribute notation form is:

visibility name : type = default

The visibility marker indicates whether the attribute is public (+), private (-) or protected (#).
The name typically corresponds to the name of the field in a programming language. The type
following the colon declares the data type of the attribute. Finally, if there is a default value for
the attribute, it is written after the = sign.

The bottom section of the class box contains the operations of the class (its methods or
functions in Java and C++/C# terminology respectively). The notation used to describe
operations is:

visibility name (parameter-list) : return-type

In this case, visibility and name are the same as for attributes. The return-type shows the type
of object that the operation returns. The parameter-list is in the form:

direction name : type = default value

The direction indicates whether the parameter is input (in), output (out) or both (inout). If no
direction is shown, it is assumed to be in. There are several other syntax modifiers you may
encounter in UML class diagrams.

1.2.2.2 Sequence diagrams

In OOP analysis and design, the real objective is to devise ways in which groups of objects
can collaborate to complete some useful task. Different kinds of objects perform different and
specialized functions that when orchestrated correctly produce the desired overall results. In
OOP terms, the objects interact with each other by sending messages. While class diagrams
describe the static structure of a system, sequence diagrams describe interactions among
classes in terms of an exchange of messages over time.

Sequence diagrams display objects, not classes, showing how these objects interact with

each other via messages (method calls and events) over time. To understand the use and the
functionality of these diagrams some sequence diagram symbols and notations are needed.

The OpenMI Document Series: Part B - Guidelines Book 1 page 17

The OpenMI Association © 2007 Book 1 Introduction

Class roles

Class roles describe the way an object will behave in context. Class roles are illustrated by
the UML object symbol (rectangles with the name and type (class) of the instance
underlined), without its attributes and methods. There is a dashed line beneath each object.
This line shows the lifetime of the object. Time flows from the head of the timeline, where the
object is shown, down to the tail at the other end (Figure 1-6).

Object 1A : Class A

[
\
|
\
Figure 1-6 Example of a class role

Activation

A rectangle on the timeline of an object means that the object has the focus of control. These
rectangles are called activation boxes and represent the time an object needs to complete a
task (Figure 1-7).

Object 1A : Class A Object 1B : Class B

|

1: message

!

Figure 1-7 Example of an activation box

Messages

Messages are displayed by arrows and represent communication between objects. There are
seven types of message, shown in Figure 1-8. Any information described in a sequence
diagram must conform to other diagrams involving the same object types. Every message
must have a corresponding operation on that class.

Book 1 page 18 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

1: simple message

1
} 2: synchronous message

]
L
\
\ 3: balking message -
1
‘ -
1 4: timeout message D
"
} 5: procedure call
N
\
} 6: asynchronous message

]
T
} 7: return message
- —— — — — — >D

L

Figure 1-8 The seven different types of messages

Creation and destruction

In a sequence diagram, not all of the objects involved exist from the beginning. During the
execution of the use case, objects can be created and then released for garbage collection
(Figure 1-9).

To show that an object is created, a message is drawn from the creator object to the head of
the created object’s timeline.

Objects can be terminated (ready to be garbage-collected) by drawing an X at the point where
an object’s timeline stops.

The OpenMI Document Series: Part B - Guidelines Book 1 page 19

The OpenMI Association © 2007 Book 1 Introduction

\

\

\

\

\

} 3: Class B Constructor() Obiject 2B :
U Class B

\

\

\

\

\

\

\

\

|

9

X
Figure 1-9 Creating and terminating objects

Loops
UML provides a notation for describing iterations and loops. A repetition or loop within a

sequence diagram is depicted as a rectangle. The condition for exiting the loop is usually
placed at the bottom left corner in square brackets [].

Example

The following example illustrates the use of sequence diagrams. Assume that a bank
customer wants to withdraw money from an ATM. A number of classes must be defined:

e Class CustomerConsole: The objects of this class represent the console of an ATM.
The customer should interact with the user interface to enter his PIN.

e Class ATM: The objects of this class represent the ATM Controller.

o Class Session: Every time a customer uses the ATM an instance of this class is
created, to service the customer.

e Class CardReader: CardReader objects just read the cards of the customers.

e Class Transaction: To get the transaction completed a Transaction instance must be
created and destroyed

A sequence diagram based on the above classes describes how these objects interact with
each other (Figure 1-10).

Book 1 page 20 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

o o :ATM
CardReader CustomerConsole
\ \

! 1: ¢ardlme rted() ‘

f L 2: Session() - Session
| 1
} 3: run(this)
\
| 4: getCardid()
; 5: cardld
,,,,,,,,,,,,,,,,,,,,,, W5
\
1 6: getPin()
| . men N
| 8: Transaction() - Transaction
\
| | 9: run(cardld, pin, this)
\ \
| | 10: completignMessage()
! (] |
| | " X
‘ | : ejectCard()
I \
\ \ T
\ \ 7
| | | X
\ \

Figure 1-10 Sequence diagram for a customer withdrawing money from an ATM

This sequence diagram depicts only the scenario in which the transaction is successful. For
every possible scenario there should be a sequence diagram.

1.2.2.3 Interfaces

The previous sections have shown that classes define the state and behaviour of their
respective objects. Often, though, objects need to interact with other objects on different
terms. Consider for example the inventory program of a retail store. In general, that program
does not and should not care about what kind of objects it contains as long as the objects can
provide information about their price. It can provide a protocol of communication, though, that
classes have to implement in order to be compatible with the inventory. This protocol comes
in the form of a set of method definitions contained within an interface, such as the ‘get price’
method. The interface defines but does not implement these methods. It is the job of other
classes to implement these methods.

In general, an interface is used to define a protocol of behaviour that can be implemented by
any class anywhere in the class hierarchy. Interfaces are useful for the following:

e Capturing similarities among unrelated classes without artificially forcing a class
relationship

¢ Declaring methods that one or more classes are expected to implement

¢ Revealing an object's programming interface without revealing its class

The OpenMI Document Series: Part B - Guidelines Book 1 page 21

Book 1 Introduction The OpenMI Association © 2007

Chapter 1.3 Linking models

The OpenMI standard defines an interface that allows models to exchange data at run-time.
Before an exchange can take place, the participating models must be made OpenMI-
compliant and the quantities that are to be exchanged must be identified and matched. The
models can then be linked at run-time.

This chapter describes the way in which models can be linked and the changes that need to
be made to existing models to make them OpenMI-compliant: it also introduces the request-
reply mechanism, by which data are transferred between models at run-time and describes
the GetValues method, which is at the heart of the data exchange process.

The OpenMI Document Series: Part B - Guidelines Book 1 page 23

The OpenMI Association © 2007 Book 1 Introduction

1.3.1 Linking models at run-time

Computational models are often viewed as software entities that transform input data into
output data: for example, rainfall data into runoff data. This has been taken as the starting
point for the OpenMI, which regards a model as an entity that can accept data and/or provide
data. Linking models is thus interpreted as exchanging data between two model engines,
taking care that output from one model fits the input requirements of the other model. This ‘fit’
should address both the data format as well as the scientific semantics.

Most current models receive data by reading input files and provide data by writing output
files. This procedure is often adopted when creating a sequential link between models; that is,
one model computes an entire time series and passes this series as input to the next model.
However, to enable process interaction and feedback loops, models must run simultaneously
and exchange data on a time basis. This is not possible with sequential links. Although a file-
based approach could still be used at the timestep level of exchange, in most cases it would
lead to unacceptable performance. Therefore, another approach has been selected for the
OpenML.

The OpenMI has adopted a component-based approach, in which the model is accessed
directly at run-time, without using files for data exchange. This is achieved by making all
models, databases and tools into components that support the same minimum set of
properties, methods and events.

In designing the OpenMI the challenge has been to provide a standard, generic interface that
allows models to exchange data when required. To meet this challenge, the process of linking
and running linked models has been analyzed and broken down into four steps. They are:

o Define: Defining the components that can be linked and the data that they can
potentially exchange (accept or provide — the receiving model only has to accept the
guantities that it needs).

e Configure: Configuring the components (populated with input data) to be linked and
specifying the actual data that will be exchanged between the components.

o Deploy: The run-time creation of components (populated with model data) in the
memory of the target computer systems.

e Execute: Running the linked computation (i.e. simulating the interacting processes
represented by the linked models).

To enable these four steps to be taken, the following functions and facilities are required:

e Data definition: In order that links can be established between models by users, the
guantities that each model can potentially accept and provide must be defined and
those definitions must be publicly accessible at both the program and user levels. The
definition must include sufficient information so that the user can make a scientifically
valid link and so that the programs can effect the transfer.

e Generic model access: In order that any model can pass data to any other model, the
interface must be independent of the model’s domain or the concept upon which it is
based. Therefore, there must be a common generic interface that can be used for all
linkable components.

¢ Metadata: Metadata is needed to inform others of the data that can potentially be
provided and accepted by a linkable component.

Book 1 page 24 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

o Definition of exchanged data: To establish a connection between two models a link
mechanism is required to describe the data that will actually be transported between
the two linkable components

e Troubleshooting: Facilities are needed to monitor the information flow and identify
problems and their causes when something goes wrong.

The Open Modelling Interface and Open Modelling supporting software address all these
requirements.

Having defined what the OpenMI does and is, it is perhaps useful to state what the OpenMl is
not. It is not a common data-model specification, it does not contain scientific knowledge on
process interactions and it certainly is not an integrated modelling system. However, the
OpenMI can be used to create such integration.

The OpenMI Document Series: Part B - Guidelines Book 1 page 25

The OpenMI Association © 2007 Book 1 Introduction

1.3.2 The request-reply mechanism

The solution chosen for the OpenMl is a request-reply mechanism: i.e. a model ‘replies to a
request’. Therefore, to be OpenMI-compliant, a model needs to be transformed into an object
or component that can reply to different questions. By implementing a number of relevant
methods and properties this component can become a linkable component. For existing
models, this is achieved by embedding the engine code within a standard wrapper. New
models or codes can be developed directly as a component with the appropriate interface.

Linkable components can exchange data through this request-reply mechanism; a model that
requires input asks a providing model for a set of values for a given quantity at a set of
locations or elements for a given time. The providing model calculates these values and
returns them. This section explains the mechanism in more detail.

1.3.2.1 The pull mechanism

The OpenMI allows one component (e.g. a model) to ‘pull’ data that it needs from another
component across a link. This is a very simple mechanism — just two components connected
by a single link. Complex sets of interconnected components can be constructed by chaining
several components using a number of links. Each component in the chain ‘pulls’ the data it
needs from the model at the other end of its link. Models usually generate data at many points
in space and time. The arguments of the pull method specify the particular point for which
data are being requested.

The data that pass across the link are the output data or results of the providing model and
form the input data or boundary conditions of the receiving model. ‘Results’ could be rainfall,
water level, bottom level, water quality concentrations, fish population counts, vegetation
covers or cost of water. It is worth noting here that the same mechanism can also be used to
obtain data from or store data in a database — this will be explained in more detail later.

The OpenMI enables model engines to compute and exchange data at their own timestep,
without any external control mechanism. Deadlocks are prevented by the obligation of a
component always to return a value whatever the situation. When a model is asked for data, it
decides how to provide them. The model may already have the data in a buffer because it has
previously run the appropriate simulation; it may need to run its own simulation or calculation;
it may make a best estimate by interpolation or extrapolation; or it may not be able to provide
the requested data and so will raise an exception. The exchange of data at run-time is
automated and driven by the pre-defined links, with no human intervention.

An important feature is that components always deal with requests in order of receipt. The
possibility of the calculation sequence becoming confused therefore does not arise. This
approach has much strength but, in particular, it is simple and gives freedom to the developer
both at the domain and at the IT levels. Having freedom also implies accepting responsibility.
The developer will be responsible for deciding how situations are handled where the
requested data are either not available or not available at the requested time, at the
requested location or in the requested unit of measurement. It is considered that the data
supplier will, in general, know best how the available data should be processed to deliver a
value for the requested time and place. The code developer thus decides the level of
sophistication that is appropriate when interpolating or extrapolating to obtain the required
value.

Book 1 page 26 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

The examples in Figure 1-11 show how models can be chained and feedback loops
accommodated using bidirectional links.

Linear chain (unidirectional) Linear chain (bidirectional)
-~ o
s \\ . - \\
‘ RPN A Tri
Ly Trigger 4 “ rigger
ot ‘ '
A Y

- Yo"

A requests B, B requests C, C requests D. A requests B, B requests C, C requests B

D does its work and returns data to C, C does its B returns a best guess to C. C does its work and returns

work and returns data to B, etc. data to B. B does its work and returns data to A.

_______ > Request for data
What
Where
When

— Reply with data

Figure 1-11 Different chain layouts with the pull mechanism

1.3.2.2 Other features
Certain other features of the linking mechanism should be noted:

¢ In some situations, components do not want to invoke computation, but they just want
to monitor or visualize what happens. At such moments, a ‘listener mechanism is
utilized. Models send events to signal when new values are available and based on
such signals generic tools use the pull mechanism to retrieve the desired data. For
example a graphing package could use this facility to update a graph.

o Before run-time, the links between components need to be created (either hard-
coded or configured). For each model, you need to know what inputs the model
requires and what outputs it can make available. During the configuration process,
the links are defined between particular pairs of models, including an indication of
which data will be exchanged across the link and in which direction. The information
on the configured links is passed to the run-time processes. Human involvement will
be needed when the links are being specified (to decide what should be connected to
what); however, some tools are available to support this process.

e The OpenMI describes both sides of a link in terms of the source component and the
target component. Hence, different quantity or variable names can be applied on
either side, as long as their meanings, in scientific terms, are the same. The
dimensions of a quantity need to be described to reduce the risk of different
semantics and unit inconsistencies.

e An OpenMI-compliant model may support the ability to hold its own status. The
OpenMI provides methods by which models can be asked to save their current state
and revert to a previously saved state. This feature creates opportunities for iteration
and optimization. Note that, given the implications for the underlying code, support of
this feature is optional. An exception can be expected if this method is called but not
supported.

e The OpenMI supporting software allows you to combine collections of links in a
composition, which can be created, modified, stored, executed and applied for
scenario analysis.

The OpenMI Document Series: Part B - Guidelines Book 1 page 27

The OpenMI Association © 2007 Book 1 Introduction

1.3.3 The GetValues method

The key to run-time data exchange is the GetValues method illustrated in Figure 1-12. When
one model requires data from another model, the first calls the GetValues method of the
second. The illustration shows the application of the GetValues method in a variety of typical
modelling situations. The examples show how models can be chained and feedback loops
accommodated. In a linked model run, one model will be nominated to act as the trigger that
starts the run. When the calculation reaches a point where data are required from another
model, the GetValues method of that model is used to request the required data — see the
Uni-directional Linear Chain in the illustration.

Linear chain (uni-directional) Linear chain (bi-directional)
GetValues) GetValues Trigger

A requests B, B requests C, C requests D Arequests B, B requests C, C requests B
D does its work and returns data to C, C B returns a best guess to C, C does its
does its work and returns data to B, etc. work and returns data to B, B does its

work and returns data to A

- . —— 5 request
Example Chaining options data returned

Logical decision chain
GetValues
Trigger

GetValues
A requests B, B requests C,

C does its work and returns data to B
if C fails B requests D

B returns datato A

Figure 1-12 Data exchange between models

Several situations can now arise. If the model has already computed the requested data, it
will return them to the requesting model. If it has not computed them, then the model will run
until it can return them, obtaining data from other models in the process as necessary.
However, it may be that the model cannot run because it is waiting for data, for example from
an instrument in the field. In this case, the model must extrapolate in order to return a value.

A similar situation arises when a model answering a request needs data from the requesting
model. This can occur, for example, in backwater calculations where, in order to compute the
flow out of a river reach, it is necessary to know the level in the downstream reach. However,
the level in the downstream reach is dependent on the flow from the upstream reach. In such
cases, an iterative process is required to reach a solution. OpenMI-compliant models are able
to perform such iterations because there is a requirement that they should be able to save
their status at any point and be able to revert to any previously saved status upon request.

An important situation which might arise is that the requesting model asks for data at a point
in space and time that does not match the calculation points in the requested model; for

Book 1 page 28 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

example, one model could be running on an hourly timestep while the other is on a daily
timestep. In this case, the requested model must interpolate and return the required values. In
all cases, the returned values will be qualified so that the requesting model can assess their
reliability.

Before returning the values, the requested model will make any necessary unit conversions. It
will also map the data from the elements of the requested model to those of the requesting
model. The possibility of the calculation sequence becoming confused does not arise, as the
GetValues method always deals with requests in order of receipt. Figure 1-13 shows a
schematic representation of the processes described.

— - ——

Model_C.GetValues

Already Run Model
calculated
?

Retrieve
Vales Buffer

Model_C.GetValues

conversions

Model_B.GetValues
1 &

Figure 1-13 Handling the GetValues process

The OpenMI Document Series: Part B - Guidelines Book 1 page 29

Book 1 Introduction The OpenMI Association © 2007

Chapter 1.4 Developing OpenMI systems

For a model to become OpenMI-compliant, its engine must be transformed into a component
supporting the OpenMI standard interface. This chapter introduces the steps in developing
new OpenMI models and migrating existing models to the OpenMI standard. The steps will be
explained in detail in Books 3 and 4.

The OpenMI Document Series: Part B - Guidelines Book 1 page 31

The OpenMI Association © 2007 Book 1 Introduction

1.4.1 Overview of an OpenMI-compliant system

This section provides an introduction to OpenMI systems and OMI files, which are used to
store information about OpenMI components.

1.4.1.1 OpenMIl systems
An OpenMI system is any software application that includes a set of one or more OpenMI-
compliant components. Such systems can link to other OpenMI-compliant models through
their standard interface. In order to do this, the OpenMI system must incorporate the following
knowledge and functionality:

e The system must know where it can find linkable components.

e The system must know what links exist between linkable components.

e The system must be able to instantiate, deploy and run a combination of linkable
components.

A configurable OpenMI system is one that is able to inspect the exchange items in a linkable
component and hence, for example, provide drag-and-drop style facilities for model linking.

1.4.1.2 The OMI file

The knowledge identified above is stored in the OpenMI components’ OMI files. An OMI file is
an XML file that contains the information needed to instantiate the component and populate it
with input data.

Figure 1-14 shows a simple example of an OMI file. At this stage, it is only necesary to be
aware of the existence of OMI files; it is not important to understand them.

<?XML version="1.0"7?>
<LinkableComponent Type="wlDelft.OpenMIl_WLLinkableComponent" Assembly="wlDelft.OpenMI,
Version=1.4.0.0, Culture=neutral, PublicKeyToken=8384b9b46466c568"
XMLns="http://openmi .org/LinkableComponent.xsd">
<Arguments>

<Argument Key="Model" ReadOnly="true"™ Value="RR" />

<Argument Key="'Schematization" ReadOnly="true"
Value="D:\Rain-RR-CF\Mode I\Cmtwork\sobek_3b.fnm" />

</Arguments>

</LinkableComponent>

Figure 1-14 OMI file example

Book 1 page 32 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

1.4.2 Deployment phases

The deployment of an OpenMI linkable component includes the following phases:

¢ Instantiation and initialization. The application reads the OMI file and constructs the
linkable component. The component is then populated with input data.

e Inspection and configuration. Available exchange items are examined. Links and
other objects are created and added to the component. The status of the component
and the status of its links are validated.

e Preparation. This phase completes any preparatory work before the main
computation process starts. For example, database and network connections are
established, output files are opened and buffers are organized.

e Computation/execution. This phase consists of a loop that is executed for each
timestep. For each pass through the loop, any necessary calculations are performed
and data are exchanged with other linkable components.

e Completion. This phase is invoked when the computation/execution loop has been
completed. Files and network connections are closed, memory is cleaned up and so
on.

o Disposal. This phase is entered when the application is closed. Remaining objects
are removed and memory is de-allocated.

Full details of these phases are given in Book 3.

The OpenMI Document Series: Part B - Guidelines Book 1 page 33

The OpenMI Association © 2007 Book 1 Introduction

1.4.3 Migrating existing models

This section specifies the criteria that an existing model must satisfy in order to become an
OpenMI linkable component. The steps in the migration process are also outlined.

1.4.3.1 Criteria for becoming a linkable component

As described earlier, the OpenMI defines an interface for data exchange between models. In
order to make this possible, the original engine needs to be turned into an engine component
and the engine component needs to implement the OpenMI interface so that the quantities
calculated by the component become accessible to other components. The engine
component then becomes an OpenMI-compliant linkable component.

A similar pattern can be applied for databases or other kinds of data sources. By turning them
into components that implement the OpenMI interface, they become linkable components that
provide direct access to their data at run-time.

To become an OpenMI linkable component, a model must satisfy the following criteria:

e The model must be structured in such a way that initialization is separate from
computation, with boundary conditions being collected in the computation phase and
not during initialization.

e The model must be able to expose information to the outside world on the modelled
guantities it can provide.

e The model must be able to provide the values of the modelled quantities for any
requested point in time and space.

e The model must be able to respond to a request, even when the component itself is
time-independent; if the response requires data from another component, the
component must be able to pass on the time in its own request.

e The model must be able to submit to run-time control by an outside entity.

For components progressing in time, the requirement ‘always’ to return values when
requested imposes the following conditions:

e The delivering component must know what time it has reached. It must recognize
whether it has not yet reached the requested time, it is at the requested time or it has
passed the requested time. Depending on the model and the context, the model will
thus know whether to extrapolate, to compute up to the requested time or to search
its buffer (if available).

e Components must be able to interpolate if the requested time is not in their own
timestep or space frame.

¢ Components must know when they are waiting for data, in which case they will have
to return an extrapolated value.

The easiest way to make a model compliant with the OpenMl is to contain it in a suitable
wrapper. The wrapper controls the run-time activity of pulling data across links. The OpenMiI
Software Development Kit provides a ‘smart wrapper’ that already handles most of the
tedious (and difficult) tasks to be performed.

Book 1 page 34 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

1.4.3.2 The migration process

The OpenMI Software Development Kit contains a number of utilities to ease the task of
converting an existing model engine into an OpenMI linkable component. You do not have to
use these utilities when creating an OpenMI-compliant component but they may make the
task simpler.

Before starting the migration process, you should have a clear idea of how your model will be
used and how it may be linked to other OpenMI components. In particular, you should define
the exchange items for your component: these are the input data that it will require and the
output data that will be made available to other components.

The migration process consists of seven steps:

1. Change the engine core. The model engine should be converted from an EXE file to a
DLL, which can be accessed by other components (Figure 1-15).

original engine revised engine
Main Main Function Initialize
{ { R
Open files > *Open files
*Read input files
Read input files }

Function PerformTimeStep

{

0 Time step loop 0
}

close files Function Finalize

v

«Close files

Figure 1-15 Changing the engine core

2. Create the .NET assemblies. After installing the OpenMI Software Development Kit,
create assemblies for wrapper classes and test classes in the .NET development
environment (Figure 1-16).

The OpenMI Document Series: Part B - Guidelines Book 1 page 35

The OpenMI Association © 2007 Book 1 Introduction

org.OpenMl.Standard
<<Interface>>
ILinkableComponent

1 Implements
3 MI:Jt'I't' o Access org.OpenMl.Utilities.Wrapper
org.OpenMI.Utilities.Wrapper <<Interface>>
LinkableEngine .
1‘ IEngine
Inherit 1 Implements
1
MyLinkableModel MyEngineWrapper
Access
Rivertodel.dll

Figure 1-16 Wrapper classes

3. Access the functions in the engine core. The engine needs to be accessible from
.NET. The MyEngineDLLAccess class makes a one-to-one conversion of all exported
functions in the engine core code to public .NET methods.

4. Implement MyEngineDotNetAccess. This class changes the calling conventions to C#
conventions and converts error messages into .NET exceptions.

5. Implement the wrapper class. The MyEngineWrapper class implements the
ILinkableEngine interface.

6. Implement the linkable component. The MyModelLinkableComponent class must be
implemented. This class defines the linkable component that is accessed by other
models.

7. Implement the remaining IEngine methods. The remaining methods in the
MyEngineWrapper class must be implemented. In some cases you may need to make
changes to the engine core as well as adding code to the IEngine methods.

A full description of this process, with examples, is given in Book 4.

Book 1 page 36 The OpenMI Document Series: Part B - Guidelines

Book 1 Introduction The OpenMI Association © 2007

1.4.4 Implementations of the OpenMI

The OpenMl is defined as an interface in the org.OpenMl.Standard namespace. This allows
anyone to implement the OpenMI in their own way. Software components that implement and
use these interfaces are called OpenMI-compliant.

However, to make it easier to be OpenMI-compliant there is default implementation in the
.NET framework using C#. This implementation is being released as open source under
Lesser GPL license conditions. A less comprehensive implementation in Java will also be
available.

OpenMl architecture

] Open Modelling Interfaces

org.OpenMI.Standard

implements

OpenMI Software Develoipment Kit

[
org.OpenMI.Backbone [<----
1 | o o
Org'opean-UtiIitiES ARRREREREEEY Org-opean.TOO|S‘
— ;

org.OpenMl.DevelopmentSupport ‘

Figure 1-17 OpenMI architecture namespaces

This default implementation, called the OpenMI Software Development Kit, is composed of a
number of software packages (see Figure 1-17):

e The org.OpenMI.Backbone package provides the minimum set of classes required to
implement the standard interface.

e The org.OpenMIl.Utilities namespace provides utilities to support the wrapping of
legacy code, to manipulate data sets and to configure and deploy the components.

e The org.OpenMI.DevelopmentSupport namespace contains generic software to
enable the parsing of XML-files containing compositions of OpenMI components.

e The org.OpenMI.Tools namespace contains a group of front-end tools to enable
interaction with the system.

However, it is emphasized that there is no requirement to use the OpenMI Software
Development Kit to develop OpenMI-compliant components.

The OpenMI Document Series: Part B - Guidelines Book 1 page 37

Book 2 Exchanging data HarmonIT © 2005

Book 2 Exchanging data

BOOK 2

Chapter 2.1

211

212

2.1.3
2131
2.13.2
2.1.3.3

Chapter 2.2

221
2.2.2
2.2.3
224
2241
2242
2.24.3
2244
2.2.5
2.2.6
2.26.1
2.26.2
2.2.7

Chapter 2.3

23.1
2.3.2

Chapter 2.4

24.1
24.2
24.3
244
245
24.6

EXCHANGING DATA . ..ttt ettt e enaee e e snaee e 2-1
Data exchange at ruN-tiMecccccvvviiiiiiiii 2-3
The data exchange mechanism ..., 2-4
The role of element sets in data exchangeccoooeeeeiiiiieiiiiieeeeeeeeeen 2-6
BidireCtional lINKS.........cooiiiiiiii e 2-7
Example 1: Linkage of two dynamic river flow models................ccccceeeinnnn. 2-7
Example 2: Linkage of a river model with a plant growth model................... 2-7
Example 3: Linkage of a river model with a weir control module 2-8
Describing the exchange data...........ccccccvvvvviiiiiic 2-9
INtroducing the USE CASE.........ccceviiiiiiiiii 2-10
What t0 desSCriDe.......coo i 2-11
Defining what the values repreSentcccccccii 2-12
Defining where the values applyccccocvvviiiiiii 2-15
OPENMI ElEMENESELS. .. uuuuviiiiiiiiiiiiiiiiiiiiiiiiierereeerereerererererrrrr e 2-15
Using different types of elementS.........ccccceviiii 2-17
ChooSiNg an EleMENtTYPE.....uuuuuuriiiiiriiriiiiiiiirriiennerrrrerererrerrrnrrer. 2-20
Dynamic EIEMENESELS.........ccovviiiiiiiiiiiiii 2-21
Using data operations to describe how data can be mapped..................... 2-22
Grouping int0 EXChangeItemMSuuuuiiiiiiiiiiiiiiiiiiiiiiiivirieeieeeeeeeeeeeeeereeeeeee 2-26
EXCRANQEItEMS....coiiiiiiiiiieeee 2-26
Initially unknown Exchangeltemsccccvii 2-27
An advanced eXample ... 2-31
Configuring links and COMPOSITIONSuuvvvviiiiiiiiiiiiiiiiiiiiiereeeeeeeer. 2-35
Configuring @ SINGIE INK........uuuuuuiiiiiiiiiiiiii 2-36
Building @ COMPOSItION.......ccciiiiiiiiiiiiii 2-38
Using the OpenMI configuration editorccccccevvviiiiiiii, 2-39
Starting the configuration €ditOruuuuviuiiiiiiiiiiiii . 2-40
Adding models to the COmMpPOoSItioN...........ccviiiii, 2-41
Establishing connections between the modelsccccccciii, 2-43
Configuring the CONNECHIONS.uuuuiiiiiiiiiiiiiiiiiiiiiererrr e 2-44
AdAING A TGN ..o 2-45
Running the COMPOSItIONccoiviiiiiiiii 2-46

The OpenMI Document Series: Part B - Guidelines Book 2 page 1

Book 2 Exchanging data HarmonIT © 2005

Chapter 2.1 Data exchange at run-time

The GetValues function is the essence of the OpenMI data exchange mechanism. This
function allows the exchange of data between two linkable components.

This chapter discusses the syntax of the GetValues function and provides details of the
information needed in order to link two OpenMI-compliant models. In particular, it discusses
the role of element sets, which define the locations for which data is to be exchanged. The
way in which bidirectional links can be handled is also covered.

The OpenMI Document Series: Part B - Guidelines Book 2 page 3

HarmonIT © 2005 Book 2 Exchanging data

2.1.1 The data exchange mechanism

Connecting two linkable components is a complex procedure, requiring the fulfilment of
several conditions in order to be successful and efficient. One of the key issues in this
process is the triggering of the data exchange operation and the specification of the
information to be exchanged. This forms the fundamental operation principle of the OpenMI:
the pull mechanism.

There are three parties involved in each data transfer operation: the requesting component,
the providing component and the link between them. According to the OpenMI specification,
when the requesting component comes to a point in its work where it needs information that
has to be delivered by the providing component, it issues a GetValues call. The providing
component will then proceed in calculating the required value and pass it over the link.

The GetValues function is defined in the ILinkableComponent interface specification (Figure
2-1) as GetValues(time: ITime, linkID: string): IValueSet. Its syntax is both simple and precise
and can be translated as: ‘Provide the value(s) of the required quantity for the required
timestep (or time span) at the required location(s)’.

IPublisher
«interface»
ILinkableComponent

«property» ComponentID() : string

«property» ComponentDescription() : string

«property» ModellD() : string

«property» ModelDescription() : string

«property» InputExchangeltemCount() : int

«property» OutputExchangeltemCount() : int

«property» TimeHorizon() : ITimeSpan

«property» EarliestinputTime() : [TimeStamp

Initialize(properties :IArgument[]) : void
GetInputExchangeltem(inputExchangeltemindex :int) : lInputExchangeltem
GetOutputExchangeltem(outputExchangeltemindex :int) : IOutputExchangeltem
AddLink(link :ILink) : void

RemoveLink(linkID :string) : void

Validate() : string

Prepare() : void

GetValues(time :ITime, linkID :string) : IValueSet

Finish() : void

Dispose() : void

B T T i S S S S S S e e s

Figure 2-1 The OpenMl interface definition of the Linkable Component

The elements of the GetValues function are as follows:

e The timestep or time span is described by the time parameter. According to the
architectural specification, its data type is ITime, which can be either a timestamp
expressed in the Modified Julian Date format or a time span, specified by the start
time and end time, also expressed in the Modified Julian Date format.

e The components involved as well as the location and the quantity of the required
value(s) are hidden inside the link specification (ILink).

Book 2 page 4 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

e The components involved are contained in the SourceComponent and the
TargetComponent. Note that the target requests the source for data while the
numerical values flow from the source to the target.

e The quantity to be exchanged is contained in the SourceQuantity and TargetQuantity
properties of the link.

e The location of the values is described by the SourceElementSet and the
TargetElementSet properties of the link.

e The returned values are in IValueSet format, which is effectively one or more scalar
or vector values.

It is apparent that the syntax of the GetValues command is straightforward, requiring only the
necessary parameters and hiding any inherent technicalities within the definition of the link.

In any linkage the providing component needs to take care that it can deliver the data as
requested by the acceptor. In addition to the identification of components, the TargetQuantity
and the TargetElementSet are essential. The link object also contains the SourceQuantity and
the SourceElementSet to ensure that the end user has control of the information source. By
including the source information, an alias table is created to map semantics without the need
for agreement on variable names.

The OpenMI Document Series: Part B - Guidelines Book 2 page 5

HarmonIT © 2005 Book 2 Exchanging data

2.1.2 The role of element sets in data exchange

The element sets have a key role in a coupled model simulation as they represent the points
of information exchange. This section describes the way in which element sets are defined.

A link between two linkable components in the OpenMI context is not just a pipe of
information but rather an intelligent data path between two precisely defined locations. These
locations are described using the IElementSet interface. But what does an element set really
stand for?

The first thing to consider is the physical aspect of an element set. In real life problems the
interaction between two (or more) physical entities is usually not limited to a single exchange
point but rather stretches across several locations, varying in dimension (point, line, surface)
and exchanged quantity. For example, a groundwater model can provide the groundwater
level at a specific point (single value) or as the average value over a specific polygon.
Therefore, when defining interactions using model abstractions, one has to specify not only
the location but also the type and other properties of this interaction.

The OpenMI IElementSet aims to provide a flexible descriptor for data exchange locations. To
this effect, an element set is an ordered collection of elements (one or more), described by an
ID and possibly by a text description. Each element can be either a simple node without any
geometrical properties or it can be a point, a poly-line, a polygon or even a three-dimensional
shape. Furthermore, it may have a spatial reference or not. However, an element set can only
contain elements of the same type.

The element set does not only fulfil the need for describing a complex physical interaction but
also provides a significant computational optimization: within one call of the GetValues
method, you can exchange values of a quantity across multiple locations at once and not
iteratively for each location. This is where the ValueSet comes in: for each ElementSet there
is a corresponding ValueSet and its values are ordered in the same order as the ElementSet.
Using this one-to-one mapping, references to quantities at a specific location become easy
and efficient.

Book 2 page 6 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

2.1.3 Bidirectional links

Although OpenMI links are unidirectional, many simulations require bidirectional data
exchange. This section presents some typical examples using bidirectional links and briefly
discusses the OpenMI way of handling them.

In the OpenMI architecture the link between two linkable components is considered as a
unidirectional data path between the source and target components. However, there are
many cases where two linked components may need to pass data to each other in both
directions.

2.1.3.1 Example 1: Linkage of two dynamic river flow models

Dynamic river flow models are models that simulate the flow in rivers (discharge volume and
water level), usually based on the Saint-Venant equations. Developing such models is a
complex task and many models have been developed for parts of rivers. Instead of trying to
expand such models to cover larger parts of river basins in a single model, linking the
different regional models is an option, which can be accomplished using the OpenMI. The
benefit of such a linkage is that regional models remain available for separate use and new or
improved regional models can simply be integrated in the larger scale model.

In a standalone regional model a discharge timeseries is usually imposed at the upper
boundaries, which are the upstream ‘inlets’ of the model. The water level is calculated. At the
‘outlets’ of the model a water level timeseries is commonly imposed (lower boundary). If two
models are linked, the water level timeseries of the lower boundary of the upstream model is
replaced by the calculated values of the downstream model and the discharge timeseries of
the downstream model is replaced by the upstream model results. This means that at the
same time the upstream model requires a value for the water level, and the downstream
model requires a value for the discharge (Figure 2-2).

Model A (upstream) Model B (downstream)

Required link

e Boundary: e Boundary:
Requires water level from Requires discharge from
model B, provides discharge model A, provides water level

Figure 2-2 Linking two river flow models
Such interdependence at the same timestep results in a bidirectional link.

2.1.3.2 Example 2: Linkage of a river model with a plant growth model

A key feature of a dynamic river model is the bed roughness, which is the resistance of the
river bed or floodplains. This roughness depends on plant growth, which itself depends on

The OpenMI Document Series: Part B - Guidelines Book 2 page 7

HarmonIT © 2005 Book 2 Exchanging data

flow velocities, among other things. Linking these two types of model thus implies that at the
same timestep in the calculations the flow model requires roughness, while the plant-growth
model requires velocities.

Such an interdependence at the same timestep results in a bidirectional link.

2.1.3.3 Example 3: Linkage of a river model with a weir control module

Dynamic river models are used for real-time flood prevention. Based on the computations of
the models preventative measures are taken, such as lowering or setting up weirs. A control
module receives the water levels from the river model. The river model receives the level to
which weirs are set. If the data used are instantaneous, this is another example of a
bidirectional link.

A precise definition of a bidirectional link can be formulated as a link between two
components where at the same timestep each component requires the other component’s
output in order to complete its calculation.

Clearly a bidirectional link leads to a deadlock in the numerical calculations. However, the
OpenMI architecture provides a solution to this issue: using extrapolation, one of the involved
components can calculate the quantity it has been asked for and thus end the deadlock.

More information about the data exchange pattern for bidirectional links can be found in Part
C Section 3.3.5.2.

Book 2 page 8 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

Chapter 2.2 Describing the exchange data

To use the GetValues function you must be able to define the data that is to be exchanged, its
location and the time period for which data is required. This chapter gives a detailed
description of how these parameters can be determined.

The chapter also introduces the concept of Exchangeltems, which are a combination of the
guantities to be exchanged and the locations (element sets) for which the data is exchanged.

The OpenMI Document Series: Part B - Guidelines Book 2 page 9

HarmonIT © 2005 Book 2 Exchanging data

2.2.1 Introducing the use case

The example described in this chapter is based on a common use case (Figure 2-3). A
lumped rainfall-runoff model is applied to calculate lateral inflows in a river system. The
rainfall-runoff model receives precipitation from a monitoring database. The river model
computes the water levels and stages along the river. Throughout this book, the example is
extended with data coming from a weather forecasting system and a groundwater model that
interact with the rainfall-runoff and river models.

Rain

connected to a

Rainfall-Runoff model

connected to a

River model

Figure 2-3 A common use case

Book 2 page 10 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

2.2.2 \What to describe

Model linkage by means of data exchange requires that both the providing and accepting
models have the same understanding of the values that are being exchanged. Exchanging a
set of values without understanding their meaning is useless. Figure 2-4 illustrates the basic
entities in the OpenMI used to describe the meaning of a set of values.

Figure 2-4 Values and their semantics

The values themselves are scalars or vectors. Their meaning is identified by three axes,
namely what, where and when:

¢ What the values represent and in what unit they are expressed is indicated by the
guantity and its unit. A dimension is added to enable validation of this aspect.

e Where these values apply is indicated by the ElementSet class, which contains an
ordered set of elements. Each element is defined by an ordered set of nodes. These
nodes may be geo-referenced with co-ordinates (but do not need to be).

¢ When the values apply is indicated by the time, either expressed as an instantaneous
moment in time (a timestep) or a period over time (a time span).

The OpenMI Document Series: Part B - Guidelines Book 2 page 11

HarmonIT © 2005 Book 2 Exchanging data

2.2.3 Defining what the values represent

Within the world of modelling, a wide range of terms is used to indicate ‘what’ the values
represent. Typical terms applied are variable or parameter. As different views exist on the
meaning of those terms and when they can be applied, the OpenMI has chosen to use the
term quantity, as the values typically represent a quantity (whether this is a decision variable,
an input variable, an input parameter or an output variable). An extensive metadata structure
has been defined to enable a complete and explicit description of what the values represent
(Figure 2-5). The metadata structure has been made extensive as the OpenMI wants to allow
scientifically sound linkages of semantically similar quantities without forcing a ‘standard’ data
dictionary. Although the expertise of the person setting up the link will also be needed,
features such as a dimension check have been included.

«interface» «interface»
IQuantity 1Unit

«property» ID() : string

«property» Description() : string
«property» ValueType() : ValueType
«property» Dimension() : IDimension
«property» Unit() : lUnit

«property» ID() : string

«property» Description() : string

«property» ConversionFactorToSI() : double
«property» OffSetToSI() : double

+ + + + +
+ + + +

. «interface»
«enumeration»

. . IDimension
DimensionBase

+ Equals(otherDimension :IDimension) : bool
Length: int=0 + GetPower(baseQuantity :DimensionBase) : int
Mass: int=1
Time: int=2
ElectricCurrent: int =3 «enumeration»
Temperature: int=4 ValueType
AmountOfSubstance: int =5
Luminouslintensity: int = 6 + Scalar int=1
Currency: int=7 + Vector: int=2
NUM_BASE_DIMENSIONS: int

+ + + + + + + + o+

Figure 2-5 The OpenMIl interface definition of the Quantity and associated metadata

The string ID of the quantity and the unit are meant to contain the short name or an
understandable abbreviation of it. (A unit has a definite magnitude and can be used as a
basis for measuring other things. The millimetre is a unit. The metre is a different unit,
because it has a different magnitude.) A more extensive explanation of the quantity or unit
can be provided using the Description property.

Currently, the OpenMI supports two types of values: scalars (expressed as doubles) and
vectors (expressed in terms of X, Y and Z components).

Unit conversions are commonly needed when exchanging data between models. Within the
OpenMI a methodology has been chosen which enables unit conversion when needed, while
it does not force unit conversion at all times. The Unit object contains sufficient information to
facilitate unit conversions between quantities. For a given value v of a certain quantity, the
conversion to the Sl value s can be done using the following computation:

s = Unit.GetConversionFactorToSI() * v + Unit.GetOffsetToSI()

To enable (physical) dimension checks between quantities, an explicit definition of the
dimension is incorporated. (A dimension describes the type of thing being measured, without

Book 2 page 12 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

specifying the magnitude. The millimetre and the metre both have dimensions of length.) A
dimension is expressed as a combination of base quantities, derived from the S| system, with
a minor extension for currencies.

This interface provides a method to obtain the power of each base quantity, as well as a
method to check if two dimensions are equal. For example, a discharge expressed in unit
m%s has dimension Length*3Time~-1. Table 2-1 illustrates the base quantities and the
associated Sl units.

Note that some units are dimensionless, represent logarithmic scales or have other difficulties
when expressed in Sl. In that case you should pay extra attention to the descriptive part of a
unit, to ensure that the user defining the link has a proper understanding of the quantity.
Dimensionless units can be represented by power ‘0’ for all base dimensions.

Table 2-1 Base units and base quantities in the OpenMI (derived from SI)

Base quantity Sl base unit Symbol used
Length metre m

Mass kilogram kg

Time second s
ElectricCurrent ampere

Temperature Kelvin K
AmountOfSubstance mole mol
Luminouslintensity candela cd

Currency Euro E

Figure 2-6 provides an example of how to use the classes to describe various quantities of
the use case.

The OpenMI Document Series: Part B - Guidelines Book 2 page 13

HarmonIT © 2005

&=

A\

| Quantity

Book 2 Exchanging data

||Unit

+ID = "Rainfall*

+Description =
"Incoming rainfall
on a catchment”

+ValueType = Scalar

| | Dimension
+ID = "mm/h" -Length=1
+Description = -Mass =0
"millimeters per hour" -Time =-1

+ConversionFactorToSI =
"2.778e-7"
+OffSetToSI = "0"

-ElectricCurrent = 0
-Temperature = 0
-AmountOfSubstance = 0

(mm/h=0.001 m/3600 s)

-Luminouslintensity = 0

-Currency = 0
+ID = "Outflow" +ID = "m3/s" -Length=3
+Description = +Description = -Mass =0
"Outflow from "cubic meters per -Time =-1
catchment" second"” -ElectricCurrent = 0

+ValueType = Scalar

+ConversionFactorToSI = "1"
+OffSetToSI = "0"

-Temperature = 0
-AmountOfSubstance = 0

-Luminouslintensity = 0

-Currency = 0
+ID = "WaterLevel* +ID = "m+MSL" -Length=1
+Description = +Description = -Mass =0
"water level along "meters above Mean -Time =0
river” Sea Level" -ElectricCurrent = 0

+ValueType = Scalar

MSL

+ConversionFactorToSI = "1"
+OffSetToSI ="0"

-Temperature = 0
-AmountOfSubstance = 0

-Luminouslintensity = 0
-Currency = 0

Note: public properties are preceded by a '+' sign, private properties by "' sign

Figure 2-6 Description of quantities for the use case

Book 2 page 14

The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

2.2.4 Defining where the values apply

This section explains how to define ‘where’ the values apply and which direction conventions
apply for the understanding of positive and negative values. It introduces the concept of the
ElementSet.

2.2.4.1 OpenMI ElementSets

Understanding where the values apply is crucial for appropriate linkages. Typically, models
have their representation of space. Some models do not vary over space at all; others apply a
set of unrelated calculation units, while the majority incorporate some topology by
representing the spatial geometry as a network, a structured grid or an unstructured
grid/mesh. A structured grid can be represented as a 2D or 3D matrix, where an element in
the matrix can always determine the position of its neighbouring element using its own
position (i,j) in the matrix. An element in an unstructured grid does not have such an (i,))
position in a matrix. Typically, a lookup table, holding topological information (IDs or co-
ordinates) needs to be queried to find the neighbouring element.

Instead of fixing data structures for these kinds of common spatial representations in
computational modelling, a more flexible method has been applied, accounting for the fact
that most data is exchanged to a subset of the boundaries of the model or to the full
geometry.

The method takes the list of calculation units, called an ElementSet, as a starting point. Within
an ElementSet, all individual elements need to have the same type. The following element
types have been identified: ID-based, XYPoint, XYLine (i.e. line segments), XYPolyLine,
XYPolygon, XYZPoint, XYZLine, XYZPolyLine, XYZPolygon, XYZPolyhedron. ID-based
elements may be non-geo-referenced, while elements based on a GIS-primitive type are geo-
referenced, requiring co-ordinates in a spatial reference system. (GIS-primitive based
elements may have (internal) IDs as well but that is not their primary way of identification
within the element set.)

Table 2-2 describes in more detail the conventions that apply with regard to the ordering of
vertices (i.e. nodes) that contain the co-ordinates of an element.

The OpenMI Document Series: Part B - Guidelines Book 2 page 15

HarmonIT © 2005

Book 2 Exchanging data

Table 2-2 OpenMI enumeration of element types

ElementType

Convention

IDBased
XYPoint
XYLine

XYPolyLine

XYPolygon

XYZPoint
XYZLine

XYZPolyLine

XYZPolygon

XYZPolyhedron

ID-based (string comparison)
Geo-referenced point in the horizontal (XY)-plane

Geo-referenced line-segment connecting two vertices (nodes) in the
horizontal (XY)-plane (start and end vertices indicate the direction of
any fluxes)

Geo-referenced polyline connecting at least two vertices in the
horizontal (XY)-plane, open (start and end vertices are not identical
and indicate the direction of any fluxes)

Geo-referenced polygons in the horizontal (XY)-plane, vertices
defined anti-clockwise, closed (start and end vertices are identical)

Geo-referenced point in 3-dimensional space (XYZ)

Geo-referenced line-segment connecting two vertices (nodes) in 3-
dimensional space (XYZ) (start and end vertices indicate the direction
of any fluxes)

Geo-referenced polyline connecting at least two vertices in 3-
dimensional space (XYZ), open (start and end vertices are not
identical and indicate the direction of any fluxes)

Geo-referenced polygons in 3-dimensional space, vertices defined
anti-clockwise, closed (start and end vertices are identical)

Geo-referenced polyhedron (closed volume of any shape) in 3-
dimensional space, vertices for each face defined anti-clockwise

Note that the XY-ElementTypes are a simplified version of the XYZ-ElementTypes.

The exact OpenMI interface with associated interfaces is displayed in Figure 2-7. Note that
IElementSet can be used to query the geometric description of a model schematization but an
implementation does not necessarily provide all topological knowledge of inter-element
connections. Therefore you cannot assume by default that the IElementSet interface enables
complete inheritance of a model grid for all purposes.

Book 2 page 16

The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

«interface» «enumeration»

IElementSet ElementType

«property» ID() : string

«property» Description() : string

«property» SpatialReference() : ISpatialReference
«property» ElementType() : ElementType

«property» ElementCount() : int

«property» Version() : int

GetElementindex(elementID :string) : int
GetElementIiD(elementindex :int) : string
GetVertexCount(elementindex :int) : int
GetFaceCount(elementindex :int) : int
GetFaceVertexindices(elementindex :int, facelndex :int) : int[]
GetXCoordinate(elementindex :int, vertexindex :int) : double
GetYCoordinate(elementindex :int, vertexindex :int) : double «interface»
GetZCoordinate(elementindex :int, vertexindex :int) : double

IDBased: int=0
XYPoint: int=1
XYLine: int=2
XYPolyLine: int=3
XYPolygon: int=4
XYZPoint: int=5
XYZLine: int=6
XYZPolyLine: int=7
XYZPolygon: int=8
XYZPolyhedron: int=9

+ + + 4+ + +++ 4+

+ + + +

ISpatialReference

+ «property» ID() : string

Figure 2-7 The OpenMI interface definition of an Element Set

2.2.4.2 Using different types of elements

Elements of the same type can be combined in an ElementSet. A network can thus be
defined as a collection of elements of type XYLine or XYPolyLine, while grids and meshes
can be represented as a collection of XYPolygon elements. A hybrid-schematization, mixing
networks with grids, has to be exposed in at least two ElementSets (i.e. one for the network
and one for the grid). A non-geo-referenced model can be represented as a set of ID-based
elements.

Figure 2-8 illustrates how various types of elements can be applied to provide information on
the spatial representation of the catchment, its internal tributaries and the river.

The OpenMI Document Series: Part B - Guidelines Book 2 page 17

HarmonIT © 2005 Book 2 Exchanging data

C1

i

C2 13 &,

—— T2

C3

T4
02
R1
XYPolygon

Figure 2-8 lllustration of various types of element set

The subcatchments of the rainfall-runoff model are represented by an ElementSet of three
XYPolygon elements, namely C1, C2 and C3. The outlets of the subcatchments form an
ElementSet of two XYPoint elements, namely O1 and O2. Although not necessary for
linkages, the tributaries of the subcatchments (T1,T2,T3 and T4) have been displayed as an
ElementSet of type XYLine. The river model is composed of an ElementSet with only one
XYPolyLine element.

Figure 2-9 and Figure 2-10 illustrate how the properties of these ElementSets might look. In
Figure 2-9 the exact co-ordinates in (x,y) are replaced by references to the vertex co-
ordinates for illustrative purposes only. Figure 2-10 illustrates another way of internal
representation of an XYPolygon.

Book 2 page 18 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

ElementSet

+ID = "Sub-catchments"

+Description = "Sub-catchments of the rainfall-runoff model"

+SpatialReference ="MyReferenceSystem"

+Type="XYPolygon"

+ElementCount = 3

-C1=(x1,y1) (x2,y2) (x20,y21)

-C2 = (x19,y19) (x18,y18) ... (x15,y15) (x21,y21)... (x25,y25) (x26,y26) (x27,y27)

-C3 = (x1,y1) (x20,y20) (x19,y19) (x27,y27) (x26,y26) (x25,y25) (x28,y28) ... (x33,y33)

+ID = "River"

+Description = "Stretch presented by river model"
+SpatialReference ="MyReferenceSystem"
+Type="XYPolyLine"

+ElementCount = 1

-R1 = (x11,y11) (x10,y10) (x1,y1)

+ID ="Outlets"
+Description = "Outlets of rainfall-runoff model"
+SpatialReference ="MyReferenceSystem"
+Type="XYPoint"

+ElementCount = 2

-01 = (2600,5400)
-02 = (4600,2750)

Note: public properties are preceded by a '+ sign, private properties by '-' sign

Figure 2-9 lllustration of ElementSet properties (example 1)

ElementSet

+ID = "Sub-catchments"

+Description = "Sub-catchments of the rainfall-runoff model"
+SpatialReference ="MyReferenceSystem"
+Type="XYPolygon"

+ElementCount = 3

-Cl=vlv2..v20 % vertex IDs
-C2=v19v18 ... v15v21 ... v25 v26 v27 % vertex IDs
-C3=v1v20v19v27 v26 v25v28 ... v33 % vertex IDs

-v1=(4200,2800) % (x1,y1)
-v2=(4300,3500) % (x2,y2)
-v33=(4000,2900) % (x33,y33)

+ID ="Tributaries"

+Description = "Tributaries withing the rainfall-runoff model"
+SpatialReference ="MyReferenceSystem"
+Type="XYLine"

+ElementCount = 4

-T1 = (2200,6500) (3000,5700

-T2 = (2700,5200) (4000,3200)

-T3 = (1000,5020) (2300,5300)

-T4 = (1900,3300) (3700,2950)

Note: public properties are preceded by a '+' sign, private properties by ' sign
Figure 2-10 lllustration of ElementSet properties (example 2)

The OpenMI Document Series: Part B - Guidelines Book 2 page 19

HarmonIT © 2005 Book 2 Exchanging data

Regular grids will again use other internal representations (e.g. number of rows, number of
columns, cell size in x and y direction). By using an interface definition that should be
implemented, the OpenMI leaves developers their own choice of intelligent storage and
representation.

2.2.4.3 Choosing an ElementType

The question of which ElementType to choose is highly relevant to the way models are
connected. The code developer and/or model builder need to decide how its data can be
provided, and thus how its elements are exposed.

Straightforward decisions have to be made:

e Do you provide an ID-based ElementSet (non-geo-referenced information) or a geo-
referenced ElementSet (thus enabling spatial mapping methods)?

e Do the geo-referenced ElementSets include topological information (using
XYLine/XYPolyLine/XYPolygon) or not include topological information (using
XYPoint)?

An even more important issue in relation to the ElementType is the question of where the
quantity applies and how to interpret positive and negative values.

To explain this issue, a distinction will be made between quantities representing a flux (e.g.
discharge) and quantities that do not represent fluxes (e.g. water level).

In general, values are positive if the matter leaves the source component and enters the
target component:

e For fluxes through a plane or polygon, the 'right-hand rule' applies (Figure 2-11a).
(Curl your right hand in the vertex order of the plane or polygon. The thumb points in
the positive direction.)

e The direction of fluxes along a line or polyline is defined as positive from the start to
the end vertex (Figure 2-11b).

e The right-hand rule applies for fluxes perpendicular to a line or polyline (see Figure
2-11c for the vertical plane and Figure 2-11d for the horizontal plane). (Put your hand
flat (vertical) along the line in the positive direction and turn your wrist clockwise.
When passing the horizontal plane, the thumb will point in the positive direction
perpendicular to the line or polyline.)

e Forvolumes, the value is positive if the flux ‘leaves’ the source and ‘enters’ the target.
e Levels are positive in the direction that moves away from the earth centre (Figure

2-11e), depths are positive in the direction that moves towards the earth centre
(Figure 2-11f).

Book 2 page 20 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data

Fluxes in positive direction

32741‘1/,2%3\(

(a) perpendicular

to polygon (b) along (poly)line

perpendicular to (poly)line

HarmonIT © 2005

===

(c) vertical plane (d) horizontal plane

Levels and depths in positive direction

(e) levels

earth centre

Figure 2-11 Interpretting positive values of fluxes, levels and depths

2.2.4.4 Dynamic ElementSets

Typically, a model is based on a known grid which remains static throughout the lifetime of
the computation. However, advanced models might use adaptive grids. Examples may be
wave models having an adaptive vertical dimension or bank-erosion models where the grid of

the channel adapts to the shape of the bank.

To accommodate these advanced features, a version number has been introduced in the
IElementSet interface. SourceComponents, which have to deliver on this adaptive
ElementSet, can use this property to determine if their TargetElementSet has changed over
time. If so, the SourceComponent has to re-query the ElementSet to update its own data

mapping.

The OpenMI Document Series: Part B - Guidelines

Book 2 page 21

HarmonIT © 2005 Book 2 Exchanging data

2.2.5 Using data operations to describe how data can be mapped

This section introduces the methodology that the OpenMI provides to describe available data
operations.

In many situations, data transformations will be needed to map the available data of the
source component to the request format of the target component. Data transformations might
address spatial aspects, temporal aspects or other aspects. Data transformations are the
responsibility of the component that provides the data (i.e. the source component). Every
component developer may take this responsibility in a different way; for example, one
component may offer advanced interpolation algorithms, while another can only provide the
nearest available value and a third component may offer both methods (or even more).

One or more parameters can be introduced to specify exactly the settings of the data
operation. Figure 2-12 introduces the concept chosen. During configuration, a value is
assigned to the argument to specify the settings of the data operation.

«interface»
|DataOperation

«property» ID() : string

«property» ArgumentCount() : int

GetArgument(argumentindex :int) : IArgument

IsValid(inputExchangeltem:llnputExchangeltem, outputExchangeltem:lOutputExchangeltem, SelectedDataOperations :IDataOperation[]) : bool

+ o+ o+ o+

«interface»
IArgument

«property» Key() : string
«property» Value() : string
«property» ReadOnly() : bool
«property» Description() : string

+ o+ o+ o+

Figure 2-12 Definition of a Data Operation and associated arguments

For illustrative purposes, a number of potential data operations have been described in Table
2-3 (temporal aspects), Table 2-4 (spatial aspects) and Table 2-5 (miscellaneous aspects).
Note that this table reflects just one way of describing data operations; this is not necessarily
the only way to do it.

Book 2 page 22 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

Table 2-3 Temporal data operations

DataOperation Argument

ID Arg. Key Description | Value @ Read
Count Only

NoDataOperation 0 Null

ProvideException 0 Null

ProvideAllValues 0 Null

TimeSpanAggregationbyAveraging 0

TimeSpanAggregationbyAccumulation 0

TemporalMappingByTakeNearest 0
TemporalMappingByBeginValue 0
TemporalMappingByEndValue 0

TemporalMappingByLinearinterpolation = 0

TemporalCompletionByMissingValue 1 MissingValue | Define
missing value
TemporalCompletionByLinear 2 Multiplier Define
Extrapolation multiplier
Offset Define offset

TemporalCompletionByExtrapolateWith | 0
LastGradient

The OpenMI Document Series: Part B - Guidelines Book 2 page 23

HarmonIT © 2005 Book 2 Exchanging data

Table 2-4 Spatial data operations

DataOperation Argument
ID Arg. Key Description | Value @ Read
Count Only

NoDataOperation 0

ProvideException 0

ProvideAllValues 0

SpatialAggregationbyAccumulation 0

SpatialAggregationbyAveraging 0

SpatialMappingByKriging 0

SpatialMappingByInterpolation 0

SpatialMapppingBylnverseDistance 0

SpatialMappingByTakeNearest 0

SpatialCompletionByMissingValue 1 MissingValue | Define
numerical
missing value

SpatialCompletionByLinear 2 Multiplier

Extrapolation

Offset

UseDefinedSpatialMappingMatrix 1 File name Reference to
mapping
matrix

Table 2-5 Miscellaneous data operations

DataOperation Argument

ID Arg. Key Description | Value @ Read
Count Only

ApplyVertical Shift 1 VerticalShift Define
numerical
value
(negative is
towards earth
centre)

As can be seen from the names, data operations may be addressing the issues of data
aggregation, data transformation/mapping (when the surrounding values are known) or data
completion (in other cases). Not all data operations can be combined with each other, while

Book 2 page 24 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

some data operations may transform the unit and dimension of data: for example, temporal
aggregations may affect the time dimension.

User interfaces should be able to support end users in the selection of a valid combination of
data operations.

The IsValid(InputExchangeltem, OutputExchangeltem, SelectedDataOperations) method
enables an integrated check on the combination of data operations. Modification of the unit
and dimension due to temporal aggregations can be accommodated, as well as other
advanced checks.

The OpenMI Document Series: Part B - Guidelines Book 2 page 25

HarmonIT © 2005 Book 2 Exchanging data

2.2.6 Grouping into Exchangeltems

As you typically exchange a Quantity on an ElementSet, this combination is grouped into an
Exchangeltem. A model can have Exchangeltems as input (InputExchangeltem) or can
provide them as output (OutputExchangeltem). The list of all Exchangeltems of a model is
sometimes referred as an exchange model, although this is a not part of the OpenMl
standard.

2.2.6.1 Exchangeltems

The previous sections discussed the various individual pieces that are necessary to expose
the exchangeable data to the outer world. Quantities are typically exchanged for certain
locations (i.e. the ElementSet) and the combination forms an Exchangeltem. Such an
Exchangeltem can either act as an input for a specific model or as an output (Figure 2-13).

«interface»
IExchangeltem

+ «property» Quantity() : IQuantity
+ «property» ElementSet() : IElementSet

i i

«interface» «interface»

lInputExchangeltem I0utputExchangeltem

+ «property» DataOperationDescriptionCount() : int
+ GetDataOperationDescription(dataOperDescrindex :int) : IDataOperationDescriptor

Figure 2-13 Exchangeltems: combination of a Quantity on an ElementSet

As the providing component has to perform the data operations, its Exchangeltems will need
to describe the available data operations.

One model, related to a specific software component, will typically be able to exchange
several Exchangeltems. For organizational purposes, such a group of Exchangeltems may
sometimes be referred to as an exchange model.

Taking the use case of the river and rainfall-runoff models, Figure 2-14 illustrates the
Exchangeltems of the various components involved. MyRainGrid in the rainfall model is a
500x500 m grid (defined as a collection of XYPolygon elements). Laterallnlets is a collection
of XYPoint elements at the calculation nodes of the river model.

Book 2 page 26 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data

Rain module /Jf\-\
\ f

| OutputExchangeltem \\
N\Y

+Quantity = "Precipitation”

+ElementSet = "MyRainGrid"

+DataOperationDescriptor = "None"
"Average (temporal)"
"Accumulate (temporal)"
"Average (spatial)"

Rainfall-Runoff
model

| InputExchangeltem |

+Quantity = "Rainfall"
+ElementSet = "Sub-catchments”

| OutputExchangeltem

+Quantity = "Outflow"

+ElementSet = "Outlets"

+DataOperationDescription = "None"
"TimeAverage (temporal)"
"MaxValue (temporal)"

HarmonIT © 2005

River model

| InputExchangeltem |

+Quantity = "LateralFlow"
+ElementSet = "Laterallnlets"

| OutputExchangeltem |

+Quantity = "WaterLevel"
+ElementSet = "River"
+DataOperationDescriptor =

"None"

"Interpolate (spatial)"

Figure 2-14 Exchangeltems in the use case

2.2.6.2 Initially unknown Exchangeltems

While many linkable components are models that have a-priori knowledge of the complete
content of their Exchangeltems, this is not always the case. Six basic use cases are
presented where the InputExchangeltems and OutputExchangeltems range from a-priori
known to fully a-priori unknown (and thus completely dynamically dependent on the input

link). These are shown in Table 2-6.

The OpenMI Document Series: Part B - Guidelines

Book 2 page 27

HarmonIT © 2005

Book 2 Exchanging data

Table 2-6 Examples of Exchangeltems

Case 1: Data source — e.g. database

InputExchangeltem

Quantity ElementSet

OutputExchangeltem

Quantity ElementSet

Null Null

A-priori known

A-priori known

Case 2: Model (engine + schematization) — e.g. SOBEK for the Rhine

InputExchangeltem

Quantity ElementSet

OutputExchangeltem

Quantity ElementSet

A-priori known
(encapsulated in
engine)

A-priori known (via
input data)

A-priori known
(encapsulated in
engine)

A-priori known (via
input data)

Case 3: Model engine (no schematization loaded) — e.g. SOBEK-CF

InputExchangeltem

Quantity ElementSet

OutputExchangeltem

Quantity ElementSet

A-priori unknown
ElementType known

A-priori known
(encapsulated in
engine)

A-priori unknown
ElementType known

A-priori known
(encapsulated in
engine)

Case 4: Configurable model engine (schematization to be inherited) — e.g. SOBEK-WQ

InputExchangeltem

Quantity ElementSet

OutputExchangeltem

Quantity ElementSet

A-priori known (via
input configuration)

A-priori unknown,
depends on link

ElementType known

A-priori known (via
input configuration)

A-priori unknown,
depends on input
ElementSet

ElementType known

Book 2 page 28

The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

Case 5: Configurable data processing engine (schematization is irrelevant) — e.g.
frequency analysis package or mathematical script

InputExchangeltem OutputExchangeltem
Quantity ElementSet Quantity ElementSet
A-priori unknown, A-priori unknown, Known derivation, A-priori unknown,
depends on link depends on link depends on input depends on input
ElementType might quantity element set
be configurable ElementType might

be configurable

Case 6: Data sink — e.g. visualization or output file

InputExchangeltem OutputExchangeltem

Quantity ElementSet Quantity ElementSet
A-priori unknown A-priori unknown Null Null
depends on link depends on link

From Case 4 onwards, the components inherit their ElementSet from a connected source
component. Therefore, the model can only deliver fully populated Exchangeltems by
dynamically asking its SourceComponents for their ElementSets and, from Case 5, their
Quantities.

However, as long as no link is established, it is still useful for a component to be able to

specify whether it can accept input and provide output. Table 2-7 gives recommendations on
the Exchangeltems to be returned in the initial stage of configuration.

The OpenMI Document Series: Part B - Guidelines Book 2 page 29

HarmonIT © 2005 Book 2 Exchanging data

Table 2-7 Recommended Exchangeltems

Quanity ElementSet

Case 3 Model engine (List of quantities) Choose from:
(unpopulated) e Unknown element set
e Unknown element set of
type <specific ElementType>

Case 4 Configurable model (List of quantities) Choose from:
engine (unpopulated) e Unknown element set

e Unknown element set of
type <specific ElementType>

Case 5 Data processing engine = Any quantity (input), = Choose from:
derived quantity e Unknown element set /

output

(output) e Unknown element set of
type <specific ElementType>

Case 6 Data sink Any quantity Choose from:

¢ Any element set

¢ Any element set of type
<specific ElementType>

Recommended keywords are:
e For Quantities: any quantity.
o For ElementSets: any element set / any XYPoints / any XYZPoints / any XYLines /
any XYZLines / any XYPolyLines / any XYZPolyLines / any XYPolygons / any
XYZPolygons / any XYZPolyhedrons / unknown

Note that the keyword ‘nothing’ is not needed as a Null is returned if no Exchangeltem can be
accepted or provided.

Finally, returning an empty Exchangeltem may also be acceptable if ‘anything’ or ‘unknown’

can be accepted or provided but the use of keywords will make it easier for users to
understand.

Book 2 page 30 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

2.2.7 An advanced example

This section illustrates how an advanced link between a 1D hydrodynamic river model and a
3D hydrodynamic coastal model might be developed. Figure 2-15 shows the models to be
linked. The river model contains cross-sections, which are shown in red. The coastal model
contains a regular grid of cells. Both models will require boundary conditions from each other.
The 3D model requires (mass conservative) inflow conditions for the cell faces, which are
indicated by F1, F2, F3, F4 etc. The 1D river model requires a water level boundary condition
for the last cross-section, which in this case is the average water level between vertex 17 and
vertex 18. Both models expose their boundary face in the vertical plane. The reference level
of the two models differs by 12 centimetres.

reference level | | | 3
River Model

3D Coastal Model

10 s

15

reference level
Coastal Model

CS1

1D River Model

Figure 2-15 Example exposing a 1D river model to a 3D coastal model

The model components of this example are very powerful, as they can provide all kinds of
data on various types of ElementSet. Those ElementSets are illustrated in Figure 2-16 and
Figure 2-17.

The OpenMI Document Series: Part B - Guidelines Book 2 page 31

HarmonIT © 2005 Book 2 Exchanging data

1D River Model ElementSets

+ID = "RiverOutlet_Face"
18 +SpatialReference="myRef"
+ElementType = "XYZPolygon" *
+ElementCount="1"
-CS3=v16 v17 v18v19
Cs3 -v16 = (x16,y16,z16)
-v17 = (x17,y17,z17)
-v18 = (x18,y18,z18)
-v19 = (x19,y19,z19)

+ID = "RiverOutlet_Line"
+SpatialReference="myRef"
+ElementType = "XYLine" *
z Cs1 +ElementCount="2"
-L3=v17v18

y -v17 = (x17,y17,z17)

-v18 = (x18,y18,z18)

+ID = "RiverOutlet_Node"
+ElementType = "IDbased"
+ElementCount="1"

-elms = N3

+ID = "RiverNetwork"
+ElementType = "IDbased"
+ElementCount="3"

-elms = N1 N2 N3

Figure 2-16 Element sets of a 1D river model

z 3D Coastal Model
y
X myRef
1 2 3 4 5
+ID = "3DCoast_Cell_ID"
+ElementType = "IDbased" F1 F2 F3 F4
+ElementCount = "8"
-ElmSet =F1 F2 F3 F4 F5 F6 F7 F8 6 7 8 9 10
F5 F6 F7 F8

+ID = "3DCoast-Line"
+ElementType = "XYLine"
+ElementCount = "4" 11 12 13 14 15
-ElmSet = viv2 v2v3 v3v4 v4v5
B = 0,
V1= (dyL.z) % etc. +ID = "3DCoast-Face"

+ElementType = "XYZPolygon" *
+ID = "3DCoast-PolyLine" +ElementCount = "1"
+ElementType = "XYPolyLine" -EImSet = v1 v6 v11 v12 vi3 v14 v15 v10 v5 v4 v3 v2
+ElementCount = "1" -vl=(x1yl,z1) % etc.
-ElmSet = viv2v3v4v5
vl = (x1yl,z1) % etc. +ID = "3DCoast-CellFace"

+ElementType = "XYZPolygon" *

+ElementCount = "8"

-ElmSet =F1 F2 F3 F4 F5 F6 F7 F8

-vl = (x1,y1,z1) % etc.

Figure 2-17 Element sets of a 3D coastal model

In this example, the models share the same name for the same semantic quantity. Table 2-8
indicates the quantities that can be exchanged.

Book 2 page 32 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data

HarmonIT © 2005

Table 2-8 Quantities for the 1D river/3D coast model

ID Description Value type Dimension | Unit

WaterLevel Height of the open water surface Scalar Length=1 m to ref.
above a certain reference level

Tidallnflow = Tidal flow in the upstream direction | Scalar Length = 3 m¥/s
of the river outlet Time = -1

Outflow Outflow (i.e. combination of river Scalar Length =3 m¥/s
discharge and tidal outflow) of the Time = -1
river into the estuary/sea

Velocity Velocity (vertically averaged) Vector Length=1 m/s
through a vertical plane Time = -1

Many quantities are available on all types of ElementSets, as is shown in the tables indicating
the InputExchangeltems and OutputExchangeltems (Table 2-9 and Table 2-10 for the 1D
river and Table 2-11 and Table 2-12 for the 3D coastal model).

Table 2-9 InputExchangeltems for the 1D river model

Quantity ElementSet
WaterLevel RiverOutlet Node
WaterLevel RiverOutlet_Line
WaterLevel RiverOutlet_Face
Table 2-10 OutputExchangeltems for the 1D river model
Quantity ElementSet DataOperation (available)
Outflow RiverOutlet_Node None
Tidallnflow RiverOutlet_Node None
Velocity RiverOutlet_Node None
Outflow RiverOutlet_Face Spatiallnterpolation (mass conservative)
Tidallnflow RiverOutlet_Face Spatiallnterpolation (mass conservative)
Velocity RiverOutlet_Face Spatiallnterpolation (mass conservative)

The OpenMI Document Series: Part B - Guidelines

Book 2 page 33

HarmonIT © 2005

Book 2 Exchanging data

Table 2-11 InputExchangeltems for the 3D coastal model

Quantity ElementSet

Outflow 3DCoast_CellFaces

Tidallnflow 3DCoast_CellFaces

Velocity 3DCoast_CellFaces

Outflow 3DCoast_Cell_ID

Tidallnflow 3DCoast_Cell_ID

Velocity 3DCoast_Cell_ID

Table 2-12 OutputExchangeltems for the 3D coastal model

Quantity ElementSet DataOperation (available)

WaterLevel 3DCoast_Cell_ID VerticalShift
MissingValue

WaterLevel 3DCoast_Line VerticalShift
MissingValue
SpatialAveraging

WaterLevel 3DCoast_PolyLine VerticalShift
MissingValue
SpatialAveraging

Book 2 page 34

The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

Chapter 2.3 Configuring links and compositions

A link is the way in which two models are coupled. When two or more OpenMI-compliant
models are linked together, they form a composition. The various links within the composition
must be configured for the models that are included in the system.

This chapter describes the OpenMI link definition and the properties that have to be
configured.

The OpenMI Document Series: Part B - Guidelines Book 2 page 35

HarmonIT © 2005 Book 2 Exchanging data

2.3.1 Configuring a single link

A link is the data path connecting two linkable components. It is uniquely identified by an 1D
and can also be given a textual description. It connects one (and only one) source component
with one (and only one) target component. Furthermore, using this link, one (and only one)
guantity is exchanged in one direction. As this quantity may be named differently by each
linkable component, the link specifies both the source quantity and the target quantity (Figure
2-18).

«interface»
ILink

«property» ID() : string

«property» Description() : string

«property» TargetComponent() : ILinkableComponent
«property» TargetQuantity() : IQuantity

«property» TargetElementSet() : IElementSet

«property» SourceComponent() : ILinkableComponent
«property» SourceQuantity() : IQuantity

«property» SourceElementSet() : [ElementSet

«property» DataOperationsCount() : int
GetDataOperation(dataOperationindex :int) : IDataOperation

+ o+ + o+ o+ o+ o+ +

Figure 2-18 The OpenMIl interface definition of the Link

To enable communication between models using different units, spatial references or
timesteps, the link can also specify the data transformation operations that have to be
performed by the providing component before delivering the values to the accepting
component.

Finally, you have to specify the locations where data will be exchanged: i.e. the
SourceElementSet and the TargetElementSet. Between these two sets exists a mapping
relation, which varies according to the nature of the elements sets (e.g. it can be a one-to-one
mapping of nodes or a function mapping a line to a polygon).

The link configuration can be a complex procedure and usually requires human intervention.
The OpenMI specification does not imply any compatibility and logical checks on the linked
guantities, relying on the modeller to identify the appropriate quantities and locations. This
means that you have to know beforehand both the available locations and the available
guantities.
To make the link configuration easier, the OpenMI provides some support tools that can
speed up the linking process, for example by automatically specifying the source and target
elements in the case of geo-referenced data. Furthermore, using a graphical configuration
editor, you can visualize the links and specify their properties using intuitive dialog boxes.
To summarize, link configuration requires the following steps:

e Select source and target linkable component.

e Select source and target quantity.

e Select source and target element set.

e Select data operations.

Book 2 page 36 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

Taking the use case of the river and rainfall-runoff models, Figure 2-19 illustrates the links to
be made for the connection between the rain module, the rainfall-runoff model and the river
model. Figure 2-20 provides the exact definition of the associated link properties.

Rain module ,’.r{\-\
\ f

| OutputExchangeltem \\
NN

+Quantity = "Precipitation” N River model
+ElementSet = "Sub-catchments”
+DataOperation = "None"
"Average (temporal)" | InputExchangeltem |
"Accumulate (temporal)"
"Average (spatial)” +Quantity = "LateralFlow"
€ +ElementSet = "Laterallnlets"
<
g
. 154
Rainfall-Runoff Q . OutputExchangeltem |
|_
model 2 +Quantity = "WaterLevel"
x +ElementSet = "River"
= +DataOperation = "None"
| InputExchangeltem 5 "Interpolate (spatial)”

+Quantity = "Rainfall"
+ElementSet = "Sub-catchments"

| OutputExchangeltem

+Quantity = "Outflow"

+ElementSet = "Outlets"

+DataOperation = "None"
"TimeAverage (temporal)"
"MaxValue (temporal)"

Figure 2-19 Links to be made in the river/rainfall-runoff use case

,_75\\
; *\X% LinkRainToCatchm
Link | \\\\\

+ID = "LinkRainToCatchm"
+Description = "Link between rain module and catchments of RR model"
+SourceComponent = "Rain module"
+SourceQuantity = "Rain"
+SourceElementSet = "MyRainGrid"
+DataOperation = "Accumulate (temporal)"
"Average (spatial)"
+TargetComponent = "Rainfall-Runoff model"
+TargetQuantity = "Rainfall"
+TargetElementSet = "Sub-catchments” /')

LinkRunoffTolnflow

Link |

+ID = "LinkRainToCatchm"

+Description = "Link between rainfall-runoff model and river model"
+SourceComponent = "Rainfall-Runoff model"

+SourceQuantity = "Outflow"

+SourceElementSet = "Outlets"”

+DataOperation = "None"

+TargetComponent = "River model"

+TargetQuantity = "Inflow"

+TargetElementSet = "Laterallnlets”

Figure 2-20 Full link definition of the river/rainfall-runoff use case

The OpenMI Document Series: Part B - Guidelines Book 2 page 37

HarmonIT © 2005 Book 2 Exchanging data

2.3.2 Building a composition

This section investigates the steps in building a complete integrated simulation from linkable
components and links and representing it as a composition.

In the OpenMI terminology, a composition is a set of linkable components, possibly populated
with model data and interconnected with links. Conceptually it represents the final stage
before running the integrated simulation. Physically, it is the input to a utility, usually referred
to as the Deployer, which instantiates all involved models and links, sets all necessary
parameters and finally initiates the simulation.

There are four steps in building a composition:
e Select all involved linkable components or schematizations.
e Create the links between the interacting components.
e Configure the links.
e Set any other simulation parameters.

The easiest way to build a composition is via a graphical utility, the OmiEd configuration
editor, described in Chapter 2.4.

First the linkable components involved in the simulation have to be selected and be
positioned on the working area of the configuration editor. The selection procedure is
facilitated by built-in repositories that store all descriptive information about available
components and their properties.

The second step is linking the components. This is done simply by using the mouse to draw a
connecting line between the two models. If two components exchange more than one quantity
or exchange data in both directions, separate links have to be set up.

After defining each link, its properties have to be set. Double-clicking on the link will bring up
the link properties dialog box where available quantities, element sets and data operations
are listed.

Finally, any other model-specific or simulation-related parameters have to be set up.
The composition should be saved for the following reasons:
e Setting up a complex composition usually takes up a lot of effort.

e A simulation is frequently run repetitively, each time with different parameters, until
the desired results are achieved.

¢ An integrated model simulation may use model engines running remotely or use data
that do not exist on the local system.

All linkable components are represented by an XML file which refers to the software unit and
the data to populate it. By calling and initializing this component, it can supply metadata on
the quantities it can provide or accept and the locations where it can provide or accept data.
Based on these metadata, the modeller can establish the links between the components and
build a composition, which can be then saved into an XML file. Of course, this file can then be
opened and edited each time the simulation has to be run or modified.

Book 2 page 38 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data

HarmonIT © 2005

Chapter 2.4 Using the OpenMI configuration editor

The OpenMI Software Development Kit includes OmiEd, a visual tool for building and running

OpenMI systems. The details of the system are stored as a composition.

The stages in building an OpenMI system include:

This chapter gives a brief introduction to the editor and its use.

Start the configuration editor.

Add models to the composition.

Establish connections between the models.
Configure the connections.

Add a trigger.

Run the composition.

The OpenMI Document Series: Part B - Guidelines

Book 2 page 39

HarmonIT © 2005 Book 2 Exchanging data

2.4.1 Starting the configuration editor

The OmiEd application is installed in the Program Files directory, using the standard Windows
installation program.

To run the application, from the Windows Start menu select Program Files / OpenMlI /
OpenMI Configuration Editor. The OmiEd window is displayed (Figure 2-21).

OmiEd N 10| =l
File Composition Help
=]
<] G
4] | v

Figure 2-21 The OmiEd display

The editor has three menus:

e The File menu has options to create a new composition; reload a composition (losing
any changes made since the last save); open an existing composition; save the
current composition (with its existing name or a new name); and exit the program.
Compositions are saved with an OPR extension.

e The Composition menu lets you add models, connections and triggers; edit
connection and model properties; and run the composition.

e The Help menu provides instructions for using OmiEd and displays information about
the program.

As you add models, these are displayed in the top part of the window.

Book 2 page 40 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data

2.4.2 Adding models to the composition

HarmonIT © 2005

The composition must consist of two or more OpenMI-compliant models, each of which will
have a corresponding OMI file. To add a model to the composition:

1. From the Composition menu, select Add Model.

2. Locate the OMI file for the model and click on Open.

3. A box containing the model name is added to the editor window. Drag the box to a

suitable position in the window.

4. Add any other models required in the composition (Figure 2-22).

1=k
File Composition Help
|
TestRiverhod GyhodelEng
el Model ID inefodellD
hd|
A i
4] | ,

Figure 2-22 Adding models to the configuration

You can inspect a model’'s properties by right-clicking on the model and selecting Model
Properties. The properties dialog provides details of the model’s exchange items. The top
box on the left-hand side lists the output quantities; the bottom box lists the input quantities.
The lists can be expanded to show the element sets that are available for each item; the
element sets can be expanded to show the data operations that are available. Clicking on any

item displays the corresponding properties on the right (Figure 2-23).

The OpenMI Document Series: Part B - Guidelines

Book 2 page 41

HarmonIT © 2005 Book 2 Exchanging data

/8 Model properties _1O] =l
Model TestRiverModel Model ID
— Exchange Ikems — Quantity properties
Qukput Exchange Ikems: E: %‘ |
E“"’ '?l':'W B pimensions =
id Branch:0 AmaunkOFSubskar 0

- Linear Conversion Currency]
Uﬂ Buffering and termpoaral extrapolati ElackricCurrent |0
jd Branch:1 Length 3

jed Branch:2 LurninousIntensity 0

Mass 1]
Temperature ul
Tirne -1
1| L B General
Descripkion Leakage
Input Exchange Ikems: (s} Leakage
By Fom '\-'al%leType Scalar
: jd Mode:0 =l Lok : o
id Mode:1 CorersionFackar 0,001
id Node:z DffFSetTosI 1] =
.) LmikMs scrinkinn Litare oy Secmnd
id Mods:3 Amount0fSubstance

| i
i RIS The amount of substance in mole,

| Wiew ElementSet

Model: ITestRiverModeI Model ID ﬂ Close

Figure 2-23 Model properties dialog

You can view the properties for any other model by selecting it from the drop-down list at the
bottom of the dialog. Save the composition after adding the models.

Book 2 page 42 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

2.4.3 Establishing connections between the models

The models are linked together by adding connections between them:
1. From the Composition menu, select Add Connection.

2. Drag the pointer from one model to another. A link is added between the models
(Figure 2-24)

3. Repeat for any further connections.

1=k
File Composition Help
<]
TestRiverhod GWhodelEng
el Model ID } ineMadellD
hd
K3 [i
4| | »

Figure 2-24 Adding connections between models.

The OpenMI Document Series: Part B - Guidelines Book 2 page 43

HarmonIT © 2005 Book 2 Exchanging data

2.4.4 Configuring the connections

The connection properties must be set for each link:

1. Right-click on the arrow in the middle of the connection and select Connection
Properties. The properties dialog is displayed.

2. In the Output Exchange Items box, expand the required output quantity and element
set. Click on the required data operation. (This determines what data are output,
where they are located and how they are presented.)

3. In the Input Exchange Items box, expand the required input quantity and click on the
element set that is to receive the data.

4. Click on the Apply button. The new link is added to the list at the bottom of the
dialog. Click on the link to redisplay its exchange items (Figure 2-25).

5. Click on Close.

[I® Connection properties o [4]
Connection TestRiverModel Model ID => GWModelEngineModellD
— Exchange Ikems — Properties
Output Exchange Items: Input Exchange Items: - :
B2 &
E-[] v Flow E-[v] ¥ Storage
E-[v] v Leakage Lo v] RegularGrid

B[] id Branch:o

1% ElementMapper400
1% ElementMapper401
1% ElementMappersoo
1% ElementMappersol
[w]% Linear Carwersion

4| | »

["] Use Dimension Filker
[Use ElementType Filker

—Tools

‘Wiew ElementSet(s)

| Apply

Close

Figure 2-25 Connection properties

In the model properties dialog, you can view the properties for any quantity, element set or
data operation by clicking on it. The properties are shown in the box on the right.

You can remove any connection by clicking on it in the Links box and clicking on Remove.

Remember to save the composition after adding links.

Book 2 page 44 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data

2.4.5 Adding a trigger

HarmonIT © 2005

Each composition needs a trigger to start the process running. This is added as follows:

1. From the Composition menu, select Add Trigger. A blue trigger box is added to the
composition; this can be moved to a suitable position.

2. Add a connection from the model that is to be run first to the trigger (Figure 2-26).

3. Set the trigger connection’s properties.

=
File Composition Help
2]
org.Cpentdl T TestRiverMod GWiWodelEng
ools.GUILTrig —‘—el odel ID N inetodellD
ger
Ad|
Kl 2
4| | »

Figure 2-26 Adding a trigger

The composition is now complete and ready to be run.

The OpenMI Document Series: Part B - Guidelines

Book 2 page 45

HarmonIT © 2005 Book 2 Exchanging data

2.4.6 Running the composition

To run the composition:
1. From the Composition menu, select Run.
2. Inthe Run Properties dialog, select the events that you want to monitor during the run.
You can also specify the time at which the trigger is to be invoked and the name of the

log file (Figure 2-27).

RunProperties |

— Events liskened during caloulation

Informative [7] Source after Getvalues() cal

WWarning [7] Source before Getvalues) return

Time skep progress Target after GetWalues() return

[] Global progress [7] Target before Getvalues() cal

‘talue out of range] Okher

[] Data changed | Set al | | Cleat all |

—Run properties

Trwoke trigger at [01/01/1900 00:00:00 | | < Latest overlapping |

[w] Log to file: |CDmstitinnRun.|og | | Browese.. |

[] Don't use separate thread (not recommended)

RUM 111 | | Close ‘

Figure 2-27 Run properties

3. Click on Run. A dialog is displayed, showing the progress of the run (Figure 2-28).

Simulation progress x|

Finished. ..
AEREEENEENENEEREENEENENEENEREEENENNEEEEREENE

| Stop 111 ||

Figure 2-28 Simulation progress

4. When the simulation is complete, click on the Close button and confirm when asked
that you wish to reload the project. The bottom pane in the OmiEd window shows the
run log (Figure 2-29). This log is also available as a text file.

Book 2 page 46 The OpenMI Document Series: Part B - Guidelines

Book 2 Exchanging data HarmonIT © 2005

OmiEd = Ll 10| =l
File Composition Help
|
org.Opentdl T TestRiverMod GWiWodelEng
ools.GUILTrig —‘—el odel ID N inetodellD
0er
hd
Kl | 2
[Tvpe=Infarmative][Message=Starting simulation at 25072005 16:23:35, composition consisks Frarm Following noa
[Tvpe=Informative][Message=Preparing for computation. ...]
[Tvpe=Infarmative][Message=Calling Prepare() method of model TestRiverModel Madel 10]
[Tvpe=Informative][Message=Calling Prepared) method of model GyiModelEngineModelID]
[Tvpe=Infarmative][Message=Calling Prepare() method of model org. OpenMI. Tools. GUL Trigger]
[Tvpe=Informative][Message=Subscribing procey event listener.,,.]
flTnF:TnFnrmari\[ﬁ'll'Mﬁ::anﬁ:('allinn Suhscribe’ mekhnd with FyentTyne. \Warninn oF rmndel TestRiverfndel T'LI
Ll »

Figure 2-29 The OmiEd display after a run

Note that you can increase the size of the OmiEd window when viewing the run log.

Following a run, you can make further changes to the composition and then run it again.

The OpenMI Document Series: Part B - Guidelines Book 2 page 47

Book 3 Developing OpenMI systems

Book 3

BOOK 3

Chapter 3.1

3.1.1
3.1.2

Chapter 3.2

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7

Chapter 3.3
3.3.1

Chapter 3.4

34.1
3.4.2
3.4.3

Chapter 3.5

3.5.1
3.5.2

The OpenMI Document Series: Part B - Guidelines

HarmonIT © 2005

Developing OpenMI systems

DEVELOPING OPENMI SYSTEMSccoiiiiiiiiiiiiie et 3-1
OpenMI-compliant SYStEMS....uuuuuuuiiiiiiiiiiiiiiiiiiiirrrirerrrr 3-3
What is an OpenMI SYStEM?ccooiiiiiiiiiii 3-4
Locating the COMPONENTS..........ccoviiiiiiiiiiiii 3-5
Establishing OpenMI SyStemMS........cccvvviiiiiiiii 3-7
Phases in using the linkable component interfacecccccccce. 3-8
Phase I: Instantiation and initialization...............cccoiiiiniiiie e, 3-9
Phase Il: Inspection and configuration..............cccccccviiiiiiiiiiieee 3-10
Phase 11l Preparationcuuviiiiiiiiiiiiieeeee e 3-12
Phase 1V: Computation/eXEeCULIONcccvvviiiiiiiiiiiiiiie e 3-13
Phase V: ComPpletionccovvviiiiiiiii 3-14
Phase VI: DISPOSAlccvvviiiiiiiiiiiiie e 3-15
Hard-coded SYStEMS......cocviiiiiiiiiiiiiie 3-17
An example of a hard-coded SyStem ..., 3-18
Support for configurable SYSteMSuuviiiiiiiiiiiiiiiiiii 3-23
Main aspects of a configurable system............ccccccciiiiiiiiiiiii 3-24
Configuring and sustaining a component combination....................veeeeeenn. 3-25
Deploying and running the SYSEM ... 3-31
Graphical USEr INtErfaCesuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiierrerr . 3-37
Building VISUAI tOOIScoovviiiiiiiiiiii 3-38
OmiEd, a simple front end of the OpenMI SDK.............uuvvviiviiiiiiiiiiiiniininn. 3-39

Book 3 page 1

Book 3 Developing OpenMI systems HarmonIT © 2005

Chapter 3.1 OpenMI-compliant systems

OpenMI systems are software systems that combine two or more OpenMI-compliant
components. This chapter provides an introduction to OpenMI systems and describes the
OMI files, through which individual OpenMI components are identified.

The OpenMI Document Series: Part B - Guidelines Book 3 page 3

HarmonIT © 2005 Book 3 Developing OpenMI systems

3.1.1 What is an OpenMI system?

OpenMI systems can be considered software systems that combine a set of OpenMlI-
compliant components, possibly in addition to non-OpenMI-compliant components. Such a
system can deploy and run OpenMI components by accessing them through their standard
interface.

In order to do this, the following functionality should be incorporated:

e The OpenMI system needs to know where (i.e. at what resource location) it can find
linkable components.

e The OpenMI system needs to know which linkable components are joined together
and how; i.e. it needs to know the links.

e The OpenMI system needs to be able to instantiate, deploy and run a combination of
linkable components.

OpenMI systems can come in two types:

¢ Hard-coded systems

e Configurable systems
While the hard-coded system addresses only the functionality above, the configurable system
also addresses the inspection of OpenMlI linkable components for their exchange items.
However, before going into depth on hard-coded and configurable systems, a complete

overview is given on all dynamic aspects related to establishing links and running OpenMI
components.

Book 3 page 4 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

3.1.2 Locating the components

An OpenMI component can be identified through its OMI file. This is an XML file which
contains sufficient information to identify a component, instantiate the binary unit on your
machine (i.e. find the assembly and the class to instantiate) and populate it with input data.
An XML schema definition has been created to enable default tools to parse the information.

In principle, OMI files can reside anywhere on your system. Users are therefore free to
organize their own repository, as long as they can find the relevant OMI files themselves
when configuring their model combination.

An example OMI file is given in Figure 3-1. The underlying schema definition (XSD) is
provided in Figure 3-2.

<?XML version="1.0"7?>
<LinkableComponent Type="wlDelft.OpenMl_WLLinkableComponent" Assembly="wlDelft.OpenMI,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=8384b9b46466c568"
XMLns="http://openmi .org/LinkableComponent.xsd">
<Arguments>
<Argument Key="Model" ReadOnly="true"™ Value="RR" />
<Argument Key="'Schematization" ReadOnly="true"
Value="D:\Rain-RR-CF\Mode IN\Cmtwork\sobek_3b.fnm" />

</Arguments>

</LinkableComponent>

Figure 3-1 OMI file example

The OpenMI Document Series: Part B - Guidelines Book 3 page 5

HarmonIT © 2005 Book 3 Developing OpenMI systems

<?XML version="1.0" ?>
<xs:schema id="LinkableComponent"
targetNamespace=""http://www.openmi .org/LinkableComponent.xsd"
XMLns:mstns="http://www.openmi .org/LinkableComponent.xsd"
XMLns=""http://www.openmi .org/LinkableComponent.xsd"
XMLns:xs="http://www.w3.0rg/2001/XMLSchema" XMLns:msdata="urn:schemas-microsoft
com:XML-msdata" attributeFormDefault="qualified" elementFormDefault=""qualified">
<xs:element name="LinkableComponent">
<xs:complexType>
<xs:sequence>
<xs:element name=""Arguments' minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="Argument" minOccurs="0"
maxOccurs=""unbounded">
<xs:complexType>
<xs:attribute name="Key" form="unqualified”
type="'xs:string" />
<xs:attribute name="ReadOnly"
form="unqualified" type="xs:boolean"
use="‘optional" />
<xs:attribute name="Value" form="unqualified"
type="'xs:string" />
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
<xs:attribute name="Type" form="unqualified" type="xs:string" />
<xs:attribute name="Assembly'" form="unqualified" type=''xs:string"
use="‘optional" />
</xs:complexType>
</xs:element>
</xs:schema>

Figure 3-2 XML schema definition of the OMI file

Book 3 page 6 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

Chapter 3.2 Establishing OpenMI systems

The OpenMI Standard identifies six phases that are required when establishing and running a
combination of OpenMl linkable components.

This chapter addresses each of these phases in turn.

The OpenMI Document Series: Part B - Guidelines Book 3 page 7

HarmonIT © 2005

Book 3 Developing OpenMI systems

3.2.1 Phases in using the linkable component interface

OpenMI systems are composed of OpenMI components that can be used in specific ways.
The OpenMI standard identifies a number of phases in the use of OpenMI linkable
component. Figure 3-3 provides an overview of the phases that can be identified and the
methods that might be invoked at each phase. While the sequence of phases is prescribed,
the sequence of calls within each phase is not fixed.

Deployment phases and call sequence of an OpenMI LinkableComponent

initialization phase

inspection &

configuration phase

preparation phase

computation/
execution phase

completion phase

disposure phase

[nitialize()

l—

ComponentID
ComponentDescription
ModellD

ModelDescription
InputExchangeltemsCount
OutputExchangeltemsCount
GetlnputExchangeltem()
GetOutputExchangeltem()
TimeHorizon

GetPublishedEventTypeCount #
GetPublishedEventType() *

EarliestinputTime

SaveState() **
RestoreState() **
ClearState() **

AddLink() »
RemoveLink() »

AddLink() SubScribe() #
RemoveLink() UnSubscribe() #
Validate() SendEvent() #
l HasDiscreteTimes() *
Prepare() GetDiscreteTimesCount() *
l GetDiscreteTime() *
GetValues()

Methods from IPublisher interface

Implementation is optional
* if component implements
IDiscreteTimes interface

** if component implements

1

IManageState interface

[Finisho

| A if component supports dynamic

v

| Dispose()

adding/removing links

Figure 3-3 Deployment phases of OpenMl linkable components

The dynamic behaviour of the various phases is discussed in more detail below.

Book 3 page 8

The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

3.2.2 Phase I: Instantiation and initialization

This phase is the entry point of the process to establish an OpenMI system. At the end of the
phase, a linkable component has sufficient knowledge to populate itself with model data and
expose its exchange items. Whether the linkable component has been populated with model
data depends on the solution chosen by the code developer.

To instantiate and prepare the river and groundwater model combination the following steps
are needed (Figure 3-4):

¢ Instantiation: In this phase the application reads the OMI file, which refers to the
software unit (i.e. assembly) that implements the LinkableComponent. Using this
reference the LinkableComponent will be constructed.

¢ Initialization: The LinkableComponent can be populated with input data by calling the
Initialize() method with the arguments as listed in the OMI file. The arguments
typically contain references to data files.

B [lj‘ «interface»
» RiverModel :
ILinkableComponent

Initialize(filename="c:\RiverRhine.mdl|", scenario="2050") i

ReadOMIFile(filename="RR_Rhine.omi") >'<

l: «interface»

> RRmodel :
ILinkableComponent
Initialize(filename="c:\RR_Rhine-data.mdf", scenario="2050") T

i g

v

Figure 3-4 Object instantiation and initialization

The OpenMI Document Series: Part B - Guidelines Book 3 page 9

HarmonIT © 2005 Book 3 Developing OpenMI systems

3.2.3 Phase Il: Inspection and configuration

At the end of this phase, the links will have been defined and added and each component will
have validated its status.

In some cases, this phase might be very straightforward; this is the case for a hard-coded
system, for example. In an ‘open’ system, however, the examination of available exchange
items plays a crucial role. The simplest way to retrieve exchange items is to ask for the
number of exchange items and loop through the list. The providing component can only
implement this directly if the exchange items are static and known a-priori. In those cases
where exchange items are a-priori unknown (i.e. they depend on the connected components)
a dynamic query process will take place. Figure 3-5 shows how requests for exchange items
are resolved (for example, by examining other components for their exchange items).

Initial State- Iterate over all Initial State-
Query OutputExchangeltems Query
component 1 componentl

for
OutputExchangeltem

for
InputExchangeltems

Query for
OutputExchangeltems

OutputExchangeltem

Query for

Iterate ove all
InputExchangeltems

is a-priori known
InputExchangeltems

I

[yes]

InputExchangeltem
is a-priori known

Termination

Query each connected
component for
OutputExchangeltems
[yes]

vV

Return
OutputExchangeltems for
each connected component
T
V

Derive
InputExchangeltem
properties

Create and populate
InputExchangeltems

v

Return
InputExchangeltems

v

Derive
OutputExchangeltem
properties

Populate
OutputExchangeltem

Return
OutputExchangeltem

Figure 3-5 Obtaining derived exchange items (activity diagram)

Once the Exchangeltems have been examined the links can be prepared and added to the
component. Figure 3-6 illustrates this process for the rainfall-runoff/river model example.

Book 3 page 10 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

@ RainModule : «interface» «interface»
ILinkableComponent RRmodel : RiverModel :
Main ILinkableComponent ILinkableComponent

program 1
1 1
1
i CreateAndPopulateLink-objects
1

AddLink(LinkRainToCatchm)

[2]a [:I

AddLink(LinkRainT oCatchm)

J =

1
AddLink(LinkRunoffT olnflow)

:

5,

[2re AddLink(LinkRunoffTolnflow)

1
AddLink(TriggerLink) i

[2]c
Validate()

Figure 3-6 Adding links in the rainfall-runoff/river use case (sequence diagram)

1. Create the relevant objects (links, quantities, element sets, data operations). Check
the validity of selected data operations and populate the objects.

2. Add the links between the components:

e LinkRainToCatchm (links rainfall to the catchment): The target component
(RRmodel) needs to know from which component to obtain the rainfall. The
source component (RainModule) needs to know the target element set where it
has to deliver the rainfall.

e LinkRunoffTolnflow: The target component (RiverModel) needs to know from
which component to obtain the lateral inflow. The source component
(RRmodel) needs to know the target element set where it has to deliver lateral
inflows. Note that a flux towards the target destination (RiverModel) is positive.

e TriggerLink: A trigger link to the river model — the downstream component in
the data chain — is created and populated. The purpose of this link is to enable
the first GetValues() call to the RiverModel. This call triggers the calculation
chain.

3. Validate the status of the components and their links using the Validate() method.

The OpenMI Document Series: Part B - Guidelines Book 3 page 11

HarmonIT © 2005 Book 3 Developing OpenMI systems

3.2.4 Phase lll: Preparation

This phase is entered just before the computation/data retrieval process starts. Its main
purpose is to define a clear take-off position before the bulky workload starts. This phase
contains only one method: Prepare().

During this phase database or network connections (or both) might be established, monitoring
stations might be called or model engines might prepare themselves by populating
themselves with schematization input data (if this has not been done before), opening their
output files, organizing their buffers, creating their data mapping matrices for (spatial)
interpolation purposes, etc.

Note that this phase must include a final validation of the status of the linkable component.

Book 3 page 12 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

3.2.5 Phase IV: Computation/execution

During this phase, the heavy workload will be executed and associated data transfer will get
bulky. The data transfer mechanism of OpenMI is defined as a request-reply service
mechanism, having direct interaction between two linkable components without any
involvement of external facilities. Section 3.3 of the standard explains how data exchange
takes place for unidirectional data exchange, bidirectional data exchange and iteration.

The computation starts by invoking the GetValues method via a link. This link can be
connected to a trigger object (an ‘empty’ implementation of a LinkableComponent) or it might
be connected to ‘real’ components such as a visualization tool or an output file.

While OpenMI linkable components sort out their own data communication and time
synchronization, system developers should still pay attention to the question of process
control.

System developers can easily develop an application that invokes the component chain with
the end time as an argument in its GetValues call. The consequence is, however, that the
model components do not return control to the main application until they are finished, thus
making any smooth interruption of the process difficult. In addition, the ‘overall’ step size of
the computation remains ‘out-of-sight’ as it is decided by an unknown component.

Given those disadvantages it is therefore recommended that you implement some execution
facility that turns the entire simulation period into a loop of timesteps. (Within the
org.OpenMlI.Configuration package this execution facility is called the deployer.) While
progressing through its simulation period, the GetValues call will be invoked for each step.
Between each call, the application may react to external events, while the execution facility
keeps control over the process. Figure 3-7 illustrates the function of such a loop.

//--- Run ---

try

{
MyRainModule.Prepare();
MyRRModel .Prepare();
MyRiverModel .Prepare();
int nrsteps=100;
DateTimestep = (end — start)/nrsteps;
DateTime stop = end + 0.000001;
DateTime _time = start;
while (_time <= stop)

{
Application.DoEvents();
IValueSet Values = _trigger.GetValues(new TimeStamp(_time),
_triggerLink.1D);
_time = _time.AddSeconds(step);
}

GermanRhineModel _.Finish();
NethRhineModel .Finish();
} // end try

Figure 3-7 Atime loop

The OpenMI Document Series: Part B - Guidelines Book 3 page 13

HarmonIT © 2005 Book 3 Developing OpenMI systems

3.2.6 Phase V: Completion

This phase comes directly after the computation/data retrieval process is completed. Code
developers can use this phase to close their files and network connections, clean up memory
etc. This phase contains only one step with one method-call: Finish.

Book 3 page 14 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

3.2.7 Phase VI. Disposal

This phase is entered at the moment an application is closed. All remaining objects are
cleaned and all memory (of unmanaged code) is de-allocated. Code developers are not
forced to accommodate re-initialization of a linkable component after Dispose has been
called.

The OpenMI Document Series: Part B - Guidelines Book 3 page 15

Book 3 Developing OpenMI systems HarmonIT © 2005

Chapter 3.3 Hard-coded systems

Hard-coded systems are those systems where the establishment of links and the deployment
and execution of a combination of components is completely encapsulated in the source
code.

This chapter covers all phases: instantiating the components, establishment of links and run-
time deployment and execution.

The OpenMI Document Series: Part B - Guidelines Book 3 page 17

HarmonIT © 2005 Book 3 Developing OpenMI systems

3.3.1 An example of a hard-coded system

When developing a hard-coded system, you usually know the underlying OpenMI
components and their capabilities in terms of input and output. Hard-coding the system then
comes down to the following steps:

1.

2.

7.

8.

Read the OMI files.

Instantiate the LinkableComponents and initialize them with the proper input data
sets.

Create the Quantity and ElementSet objects by querying Exchangeltems.

Create the Link objects and populate them with the Quantity and ElementSet objects.
Add the Link objects to the components and validate them.

Prepare the event listener to catch events.

Run the simulation (including preparation and finish).

Dispose of the components.

You must also continuously catch exceptions on all steps.

Figure 3-8 provides a (pseudo) C#-code example that includes all phases in the utilization of
OpenMI components. Note that this example does not include data operations and associated
validations, while the calendar conversion between the DateTime data type of C# and the
OpenMI Time object is omitted.

Book 3 page 18 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

// --- Read the OMI files ----
// Note for namespaces: the abbreviation MC refers to Model Components

// --- MyRain-module hard-coded OMI file information ----
string myRainModuleAssemblyFile =
""C:\\OpenMI\\Examples\\MC\\SimpleRain\\org.OpenMI .Examples_MC.DLL";

string myRainModuleClass = "org.OpenMIl _.Examples.MC.SimpleRain";
string myRainArguments = new Argument[1];
myRainArguments[0] = new Argument(‘'FilePath",

"C:\\OpenMI\\Examples\\MC\\SimpleRain\\Data",true,"");
// --- MyRainfallRunoff-model hard-coded OMI file information ----
string myRRModelAssemblyFile =

""C:\\OpenMI\\Examples\\MC\\SimpleRR\\org.OpenMIl .Examples_MC_.DLL";

string myRRModelClass = "org.OpenMl _EXamples.MC.SimpleRainfal IRunoff";
string myRRArguments = new Argument[1];
myRRArguments[0] = new Argument(‘'FilePath",

"C:\\OpenMI\\Examples\\MC\\SimpleRainfal IRunoff\\Data", true,'"");

// --- MyRiverModel hard-coded OMI file information ----

string myRiverModelAssemblyFile =
""C:\\OpenMI\\Examples\\MC\\SimpleRiver\\org.OpenMI _.Examples_MC.DLL";

string myRiverModelClass = "org.OpenMl _Examples.MC.SimpleRiver";

string myRiverArguments new Argument[1];

myRiverArguments[0] new Argument(*'FilePath",

"C:\\OpenMI\\Examples\\MC\\SimpleRiver\\Data",true,"");

// -- Create LinkableComponents ---

ILinkableComponent MyRainModule = new SimpleRainModuleWrapper();
ILinkableComponent MyRRModel = new SimpleRREngineWrapper();
ILinkableComponent MyRiverModel = new SimpleRiverEngineWrapper();
ILinkableComponent trigger = new Trigger(Q);

MyRainModule. Initialize(myRainArguments);
MyRRModel . Initialize(myRRArguments);
MyRiverModel . Initialize(myRiverArguments);

// --- Query Quantities and ElementSets

// Outputs

IQuantity Rain_Precipitation = (MyRainModule).GetOutputExchangeltem(0).Quantity;
IQuantity RR_Outflows = (MyRRModel) .GetOutputExchangeltem(0) .Quantity;
IQuantity Riv_WaterLevels = (MyRiverModel) .GetOutputExchangeltem(0) .Quantity;

IElementSet Rain_MyRainGrid = (MyRainModule).GetOutputExchangeltem(0).ElementSet;
IElementSet RR_Outlets (MyRRModel) .GetOutputExchangeltem(0) .ElementSet;
IElementSet Riv_RiverNetwork = (MyRiverModel) .GetOutputExchangeltem(0).ElementSet;
IDataOperation Rain_TmAvg = (MyRainModule).GetOutputExchangeltem(0).DataOperation(0);
IDataOperation Rain_TmAccu = (MyRainModule).GetOutputExchangeltem(0).DataOperation(l);
IDataOperation Rain_SptAvg = (MyRainModule).GetOutputExchangeltem(0).DataOperation(2);
IDataOperation RR_TmAvg = (MyRRModel) .GetOutputExchangeltem(0) .DataOperation(0);
IDataOperation RR_TmMaxVal = (MyRRModel) .GetOutputExchangeltem(0) .DataOperation(l);
IDataOperation Riv_Spatintp =

(MyRiverModel) .GetOutputExchangel tem(0) .DataOperation(0);

//1nputs

IQuantity RR_Rainfall (MyRRModel) .GetlInputExchangeltem(0) .Quantity;
IQuantity Riv_Laterallnflows = (MyRiverModel).GetlnputExchangeltem(0).Quantity;
IElementSet RR_SubCatchments (MyRRModel) .GetlInputExchangeltem(0) .ElementSet;
IElementSet Riv_Laterallnlets = (MyRiverModel) .GetlnputExchangeltem(0).ElementSet;

The OpenMI Document Series: Part B - Guidelines Book 3 page 19

HarmonIT © 2005 Book 3 Developing OpenMI systems

// TimeHorizon
DateTime start = MyRainModule.TimeHorizon.Start;
if (start < MyRRModel .TimeHorizon.Start)

{
start = (DateTime)MyRRModel .TimeHorizon.Start;
}
if (start < MyRiverModel .TimeHorizon.Start)
{
start= (DateTime)MyRiverModel .TimeHorizon.Start;
}

DateTime end = MyRainModule.TimeHorizon.End;
if (end < MyRRModel .TimeHorizon.End)

{
end = (DateTime)MyRRModel .TimeHorizon.End;
}
if (end < MyRiverModel .TimeHorizon.End)
{
end= (DateTime)MyRiverModel .TimeHorizon.End;
}

DateTime stop = end + 0.000001;

// —-—- Create Links ---

// create data operations here

IDataOperation Rain_DataOperations[] = new Rain_DataOperation[1];
Rain_DataOperation(0) new Rain_TmAccu;
Rain_DataOperation(1) new Rain_SpatAvg;

// check validity: to be done raise exception

// Rain_DataOperation(1). IsValid((MyRainModule) .GetOutputExchangeltem(0),
(MyRRModel) .GetlInputExchangeltem(0), Rain_DataOperation[0])

ILink triggerLink = new Link(MyRiverModel, Riv_RiverNetwork, Riv_WaterLevels, trigger,
L, ", "RiverModel to Trigger Link"™, "RiverModelToTrigger', new ArrayList());

ILink LinkRunoffTolnflow = new Link(MyRRModel, RR_Outlets, RR_Outflow, MyRiverModel,
Riv_Laterallnlets, Riv_Laterallnflows, "Link Runoff to River Inflow",
"LinkRunoffTolnflow", new ArrayList());

ILink LinkRainToCatchm = new Link(MyRainModule, MyRainGrid, Rain_Precipitation,
MyRRModel, RR_SubCatchments, RR_Rainfall, "Link rainfall to catchment”,
"LinkRainToCatchm"™, Rain_DataOperations[]);

// --- Add Links ---

MyRiverModel .AddLink(triggerLink);
trigger.AddLink(triggerLink);
MyRainModule.AddLink(LinkRainToCatchm);
MyRRModel . AddLink(LinkRainToCatchm);
MyRRModel . AddLink(LinkRunoffToInflow);
MyRiverModel .AddLink(LinkRunoffTolnflow);

// --- Validate Components ---
trigger.Validate;
MyRainModule.Validate;
MyRRModel .Val idate;
MyRiverModel .Val idate;

//--- Prepare Event listener ---

org.-OpenMl _Standard. IListener myListener = new EventListener();

for (int i = 0; i < myListener.GetAcceptedEventTypeCount(); i++)

{
for (int n = 0; n < MyRainModule.GetPublishedEventTypeCount(); n++)
{

Book 3 page 20 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

if (myListener.GetAcceptedEventType(i) ==
MyRainModule.GetPublishedEventType(n))

{
MyRainModule.Subscribe(myListener,
myListener.GetAcceptedEventType(i));
}
}
for (int n = 0; n < MyRRModel .GetPublishedEventTypeCount(); n++)
{
if (myListener.GetAcceptedEventType(i) ==
MyRRModel .GetPubl ishedEventType(n))
{
MyRRModel .Subscribe(myListener, myListener.GetAcceptedEventType(i));
}
}
for (int n = 0; n < MyRiverModel .GetPublishedEventTypeCount(); n++)
{
if (myListener.GetAcceptedEventType(i) ==
MyRiverModel .GetPubl ishedEventType(n))
{
MyRiverModel .Subscribe(myListener,
myListener.GetAcceptedEventType(i));
}
}
}
//--- Run ---
try
{

MyRainModule.Prepare();

MyRRModel .Prepare();

MyRiverModel .Prepare();

int nrsteps=100;

DateTimestep = (end — start)/nrsteps;
DateTime stop = end + 0.000001;
DateTime _time = start;

while (_time <= stop)

{
Application.DoEvents();
IValueSet Values = _trigger.GetValues(new TimeStamp(_time),
_triggerLink.1D);
_time = _time.AddSeconds(step);
}

GermanRhineModel .Finish();
NethRhineModel .Finish();
} 7/ end try
//--- Clean up ---
MyRainModule._Dispose();
MyRRModel .Dispose();
MyRiverModel .Dispose();
}
//--- Exception Handling ---
catch (Exception e)
{
// write exception to screen;
Console.WriteLine(e);

Figure 3-8 Hard-coded system using OpenMIl linkable components

The OpenMI Document Series: Part B - Guidelines Book 3 page 21

Book 3 Developing OpenMI systems HarmonIT © 2005

Chapter 3.4 Support for configurable systems

In situations where modelling is a ‘production’ facility, model combination requires as minimal
resources as possible. Standardized interfaces are an important step forward but to minimize
operational costs it is desirable to prevent the need for hard-coding each time a new model
combination is made. The OpenMI becomes powerful if tools are provided that make full use
of the metadata exposure when developing model combinations.

This chapter discusses the main aspects of a configurable system, with some details of the
tools provided in the OpenMI Software Development Kit.

The OpenMI Document Series: Part B - Guidelines Book 3 page 23

HarmonIT © 2005 Book 3 Developing OpenMI systems

3.4.1 Main aspects of a configurable system

If you are developing tools that use metadata exposure when developing model
combinations, you should keep in mind that organizations might have organized their working
procedures in such way that different people are responsible for different jobs (or different
computer systems are used). Jobs that might be distinguished are the development of model
schematizations, composing and configuring model combinations, and deploying and running
models. Each of these jobs might put different requirements on the tools. The ability to run
jobs in a batch process, or run different jobs on different machines, requires that the
associated administrative part (i.e. the model configurations) is not tied to a specific user
interface.

Therefore it is recommended that you take this separation of concerns into account when
developing any supportive tools. The following functional distinction is desired:

¢ Component definition: ability to identify and locate components
e Configuration (administration/composition of linked components): ability to create,
configure and validate model combinations; ability to save and load those

configurations to a persistent store

o Deployment: ability to instantiate the components in a generic way and start running
them

e User interface components that implement the above functions
All these items play an important role in improving the usability of the OpenMI.
In essence, the component definition is determined by the OMI file (see Section 3.1.2). All
other items are discussed in the remainder of this chapter. Note however that the open
source OpenMI configuration editior (OmiEd) described in Chapter 2.4 combines all

functionality in one package. Sections 3.4.2 and 3.4.3 address the separation of business
logic and GUI underlying the org.OpenMlI.Utilities.Configuration package.

Book 3 page 24 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

3.4.2 Configuring and sustaining a component combination

Configuration is the task in which links are defined between the components involved. To
enable re-use of such configurations, a persistent storage facility is required. This section
describes the facilities provided in the OpenMI Software Development Kit by the
org.OpenMlI.Utilities.Configuration package.
To enable persistent storage and exchange of a model configuration between modellers, the
details of the configuration of the components involved (i.e. OMI files) and the links between
the components are saved. The saved configuration is called a composition. To deploy (i.e.
run) such a composition, the linkable components need to be created and the links should be
added.
The composition process consists of the following steps:

1. Create a new composition object or load an existing composition.

2. Select the linkable components involved (e.g. by loading the OMI files). If required,
modify their properties (and save).

3. Create the links and add them to the components; define the links’ properties.

4. Populate the link properties, while paying specific attention to the validation of the
selected data operations.

5. Validate the components and the links.

6. Specify the time frame (begin, end, step size).
7. Save the composition.

8. If required, deploy the composition.

Validation is an important step in the configuration phase. Typically, the validation will
generate a string message, informing the user of the validity of the component and its links.

Within the OpenMI Software Development Kit, the Composition class is responsible for the
composition details (Figure 3-9).

The OpenMI Document Series: Part B - Guidelines Book 3 page 25

HarmonIT © 2005 Book 3 Developing OpenMI systems

cd org.OpenMI.Configuration /

Composition

Composition()

«property» ID() : string

«property» DetailedDescription() : string
«property» Description() : string

«property» LinkableComponents() : IList
«property» Links() : IList

«property» Trigger() : ILinkableComponent
«property» TimeStepping() : TimeStepping
AddModel(model :ILinkableComponent) : void
RemoveModel(model :ILinkableComponent) : void
AddLink(link:ILink) : void

RemovelLink(id :string) : void

RemovelLink(link :ILink) : void

Validate() : string

Dispose() : void

ToString() : string

+ 4+ o+ o+ o+

Figure 3-9 Composition class (org.OpenMl.Utilities.Configuration package)

This composition can have a persistent representation in an XML file (Figure 3-10 and Figure
3-11). The XML file contains two pieces of information:

¢ Involved components (references to OMI files)
e Link definitions

This file can be generated automatically from the class or it can be created manually and
manipulated.

The OpenMI Software Development Kit contains a generic, customizable XML parser to parse
(load) and serialize (store) this file. This XML parser allows XML elements of the file (e.g.
components, links, quantities, element sets) to be defined ‘in-line’ or ‘by reference’. The
reference can be to an XML element which has been defined earlier in the file, or it can refer
to an object that can be generated by instantiating an associated class. This reference feature
allows various components to share the same element sets or quantities and, if needed,
provide the information on-the-fly.

Book 3 page 26 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

Bl sttributes

Type

Assembly

e

[+]
_____ T
—(F- o
—| TimeStepping

Figure 3-10 Visual representation of the composition

The OpenMI Document Series: Part B - Guidelines Book 3 page 27

HarmonIT © 2005 Book 3 Developing OpenMI systems

<?XML version="1.0"?>

<Composition XMLns="http://www.openmi.org/Composition.xsd"
Type="org.OpenMI _Utilities.Configuration.Composition"
Assembly="org.OpenMI _Utilities.Configuration, Version=1.4.0.0, Culture=neutral,
PublicKeyToken=8384b9b46466c568" Description="Example Composition"
DetailedDescription="" ID="65adab37-ac7d-423a-8c41-c42dc216c0a3">
<LinkableComponents>
<LinkableComponent Type="org.OpenMI.Examples_MC.SimpleRain"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_.MC_DLL"
File="__\data\SimpleRain.omi" />
<LinkableComponent Type="'org.OpenMI .Examples._MC.SimpleRR"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_.MC_DLL"
File="__\data\SimpleRR.omi" />
<LinkableComponent Type="org.OpenMI .Examples._MC.SimpleRiver"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_.MC_DLL"
File="__\data\SimpleRiver.omi" />
</LinkableComponents>
<Links>
<Link Description="Link Rainfall to Catchment">
<DataOperations>
<DataOperation Type="org.OpenMIl_Examples.MC. Interpolator"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_.MC_DLL"
ID=""Rain_TmAccu">
<Arguments />
</DataOperation>
<DataOperation Type="org.OpenMIl_Examples.MC. Interpolator"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_.MC_.DLL"
ID=""Rain_SpatAvg">
<Arguments />
</DataOperation>
</DataOperations>
<SourceComponent Type="org.OpenMIl _Examples.MC.SimpleRain"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_.MC_DLL"
File="__\data\SimpleRain.omi" />
<SourceElementSet Type="org.OpenMI .Backbone_ElementSet"
Assembly="org.OpenMI .Backbone, Version=1.4.0.0, Culture=neutral,
PublicKeyToken=8384b9b46466c568" File=""__\data\SimpleRain.omi"
RefID="Rain_MyRainGrid" />
<SourceQuantity Type="org.OpenMI._Backbone.Quantity"
Assembly="org.OpenMI .Backbone, Version=1.4.0.0, Culture=neutral,
PublicKeyToken=8384b9b46466c568" Description="Rainfall /
Precipitation"
ID="Rain_Precipitation" ValueType="Scalar">
<Dimension AmountOfSubstance="0" Currency="0"
ElectricCurrent="0" Length="1" Luminouslntensity="0" Mass="0"
Temperature="0" Time="-1" />
<Unit ConversionFactorToSI="2.778e-7" Description="mm per hour"
ID="mm/h" OFfSetToSI="0" />
</SourceQuantity>
<TargetComponent Type='"org.OpenMIl _Examples.MC.SimpleRR"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_.MC_DLL"
File="__\data\SimpleRR.omi" />
<TargetElementSet Type="org.OpenMI .Backbone_ElementSet"
Assembly="org.OpenMI .Backbone, Version=1.4.0.0, Culture=neutral,
PublicKeyToken=8384b9b46466c568" File=""__\data\SimpleRR.omi""
RefID="RR_SubCatchments" />
<TargetQuantity Type="org.OpenMI._Backbone.Quantity"
Assembly="org.OpenMI .Backbone, Version=1.4.0.0, Culture=neutral,

Book 3 page 28 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

PublicKeyToken=8384b9b46466c568"
Description="Rainfall on catchment"
ID="RR_Rainfall" ValueType="Scalar">
<Dimension AmountOfSubstance="0" Currency="0"
ElectricCurrent="0" Length="1" Luminouslntensity="0" Mass="0"
Temperature="0" Time="-1" />

<Unit ConversionFactorToSI1="2.778e-7" Description=""" 1D="m3/s"
OffSetToSI1="0" />
</TargetQuantity>
</Link>
<Link Description="Link Runoff To River Inflow" ID="LinkRunoffTolnflow">
</DataOperations>
<SourceComponent Type="org.OpenMIl _Examples.MC.SimpleRR"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_.MC_DLL"
File="__\data\SimpleRR.omi" />
<SourceElementSet Type="org.OpenMI .Backbone_ElementSet"
Assembly="org.OpenMI .Backbone, Version=1.4.0.0, Culture=neutral,
PublicKeyToken=8384b9b46466c568" File=""__\data\SimpleRR.omi""
RefID="RR_Outlets" />
<SourceQuantity Type="org.OpenMI._Backbone.Quantity"
Assembly="org.OpenMI .Backbone, Version=1.4.0.0, Culture=neutral,
PublicKeyToken=8384b9b46466c568" Description="Runoff Outflows"
ID="RR_Outflows " ValueType="Scalar">
<Dimension AmountOfSubstance="0" Currency="0"
ElectricCurrent="0" Length="3" Luminouslntensity="0" Mass="0"
Temperature="0" Time="-1" />
<Unit ConversionFactorToSI="1" Description="m3/s" ID="m3/s"
OffSetToSI1="0"/>
</SourceQuantity>
<TargetComponent Type="org.OpenMIl .Examples_MC.SimpleRiver"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_.MC_DLL"
File="__\data\SimpleRiver.omi" />
<TargetElementSet Type="org.OpenMI .Backbone_ElementSet"
Assembly="org.OpenMI .Backbone, Version=1.4.0.0, Culture=neutral,
PublicKeyToken=8384b9b46466c568" File="__.\data\SimpleRiver.omi"
RefID="Riv_Laterallnlets" />
<TargetQuantity Type="org.OpenMI._Backbone.Quantity"
Assembly="org.OpenMI .Backbone, Version=1.4.0.0, Culture=neutral,
PublicKeyToken=8384b9b46466c568"
Description="Lateral Inflows into River"
ID="Riv_LateralInflows" ValueType="Scalar">
<Dimension AmountOfSubstance="0" Currency="0"
ElectricCurrent="0" Length="3" Luminouslntensity="0" Mass="0"
Temperature="0" Time="-1" />
<Unit ConversionFactorToSI="1" Description=""" 1D="m3/s"
OffSetToSI1="0" />
</TargetQuantity>
</Link>
</Links>

<TimeStepping End="46097" Start="46066" Step='10800" />
<Trigger Type="org.OpenMIl_Examples.MC.SimpleRiver"
Assembly=""C:\OpenMI\Examples\MC\org.OpenMIl .Examples_MC_DLL"
File="__\data\SimpleRiver.omi" />
</Composition>

Figure 3-11 Example XML file for a composition (org.OpenMI.Utilities.Configuration)

The OpenMI Document Series: Part B - Guidelines Book 3 page 29

HarmonIT © 2005 Book 3 Developing OpenMI systems

To ensure the validity of the file and its contents, an XML schema definition has been created
(details are given in the technical documentation of the Configuration package). Using this
schema, the file is validated during parsing to ensure that a proper Composition object can be
instantiated and populated.

Figure 3-12 provides a code example to illustrate how a composition can be loaded,
manipulated and saved.

// -- Create LinkableComponents ---
// ... see hard-coded example ...

// Reads composition from file
Composition MyComposition = (Composition) XMLFile.GetRead (new
Filelnfo(""mycomposition.XML™));

// -- alternative: Create Composition ---
// Composition MyComposition = new Composition();

// -- Add LinkableComponents to Composition ---
MyComposition.AddModel (MyRiverModel);
MyComposition.AddModel (MyRRModel) ;
MyCompositon.AddModel (MyRainModule);

// —- Create Links ---
/o see hard-coded example ...

// -- Add Links to Composition ---
MyComposition.AddLink(triggerLink);

// Composition updates internal administration,

// calls MyRiverModel .AddLink(triggerLink)

// and calls trigger._AddLink(triggerLink);
MyComposition.AddLink(LinkRainToCatchm);

// Composition updates internal administration,

// calls MyRainModule._AddLink(LinkRainToCatchm)

// and calls MyRRModel .AddLink(LinkRainToCatchm)
MyComposition.AddLink(LinkRunoffTolnflow);

// Composition updates internal administration,

// calls MyRRModel .AddLink(LinkRunoffTolnflow)

// and calls MyRiverModel .AddLink(LinkRunoffTolnflow)
// —- Create and add Time information —
TimeStepping MyTimelnfo = new TimeStepping();
MyTimelnfo.Start = 46066.0; //01-01-1985
MyTimelnfo.End = 46097.0; //01-02-1985
myTimelnfo.Step = 60; // 60 seconds
MyComposition.timeStepping = Mytimelnfo;

// -- Assigning the trigger --
MyComposition.Trigger = MyRiverModel;

// -- Write Composition to file ---
XMLFile.Write (MyComposition, new Filelnfo("'mycomposition.XML");

Figure 3-12 Manipulating the composition

Book 3 page 30 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

3.4.3 Deploying and running the system

In order to run a set of integrated models, a deployer component can be used. The task of the
deployer is to instantiate the linkable components, to call the Initialize methods on the linkable
components, to call the AddLink method on all the linkable components, to prepare the
components and finally start the computation/data transfer by calling one or more GetValues
methods on the linkable components. The deployer is also responsible for connecting event
publishers and event listeners to each other. Event listeners can include a graphical display of
values or an event logger. After the simulation has finished, the deployer calls the Finalize
methods on all linkable components.

Preferably, the deployer component is designed in such way that it can operate either with or
without a user interface. Taking a Composition object as input, the essential functions actually
are:

e ‘Create’ to establish an in-memory representation of the populated components:
methods to be invoked after instantiation are Initialize and AddLinks.

e ‘Start’ and ‘Stop’ to run the computation process: methods to be invoked are Prepare,
GetValues and Finish.

e ‘Pause’ and ‘Resume’ to enable interruptions from the outside world on the
computation process: catch events and hold/return control when needed.

e Catch exceptions, if they cannot be resolved, and pass them to the user.

When implementing such functionality, you should keep in mind that the OpenMI has been
designed so that the data transfer process (i.e. the GetValues call stack) is in the same
thread. This does not mean that a linkable component should execute its computation in the
same thread, however.

Within the documentation of the Standard various ways are described to stop a computation
or pause and resume. As indicated in Section 3.2.5, it is recommended that a timestep loop is
applied to manage the process. Irresolvable exceptions will eventually pop up at the
deployment level, where the user interface can be activated for manual assistance.

The Deployer component of the OpenMI Software Development Kit has been designed with
the functionality described above (Figure 3-13).

The OpenMI Document Series: Part B - Guidelines Book 3 page 31

HarmonIT © 2005

Book 3 Developing OpenMI systems

cd org.OpenMI.Configuration/

SystemDeployer

+ 4+ + o+ o+ o+ o+ +

SystemDeployer()

«property» Composition() : Composition
«property» Blocking() : bool

«property» Paused() : bool

«property» Running() : bool
Create(composition :Composition) : void
Start() : void

Stop() : void

Pause() : void

Resume() : void

Dispose() : void

Figure 3-13 Deployer class of the org.OpenMI.Utilities.Configuration package

Figure 3-14 provides a code example of how to deploy a composition. Since the Deployer
catches events during the time loop, the computation can be paused (or stopped) by simply

calling the Pause method.

Book 3 page 32

The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

// pre-condition: the MyComposition-object is available
// this example communicates with the user via a console-object

// -- Validate composition --
it (IMyComposition.Validate().Equals(''"))
{

Console.Write (“"Composition cannot be run: ");
Console.WriteLine (MyComposition.Validate());
WaitQ);
return;

}

// -- Create system deployer --
SystemDeployer MyDeployer = new SystemDeployer();
MyDeployer.Blocking = true;

// -- Assign Composition --
MyDeployer .Create (MyComposition);

// -- Start Computation --
// Composition will run for period as indicated in timestepping object
try

{
MyDeployer .Start();

3

catch (Exception e)

{
// raise exception
Console.WriteLine (e.Message);
waitQ;
return;

3

Figure 3-14 Example using the deployer

Figure 3-15 provides a code example of a fully functioning executable that runs a composition
from the command line.

The OpenMI Document Series: Part B - Guidelines Book 3 page 33

HarmonIT © 2005

Book 3 Developing OpenMI systems

using System;

using System._10;
using org.OpenMI
using org.OpenMI
using org.OpenMI
using org.OpenMI

_Utilities.Configuration;
_Utilities.Configuration._XML;
.Standard;
-DevelopmentSupport;

namespace org.OpenMI_Configuration.RunOpenMI

{

/// <summary>
/// Console application to run an OpenMl composition from the command line

/// </summary>

class RunOpenMI

{

private static bool _wait = false;

/// <summary>

/// Console application for running an OpenMl composition
/// </summary>

[STAThread]

static void Main(string[] args)

{

if (args.Length == 0)

{
Console.WriteLine (“"Usage : RunOpenMl <file> [-wait]");
Console.WriteLine (''");
Console.WriteLine (“<file> = full path to XML file containing
composition');
Console.WriteLine (“-wait = After run application waits to
terminate until user presses <Enter>");
Console.WriteLine (''");
_wait = true;
waitQ;
return;
}
for (int i = 1; i1 < args.Length; i++)
{
if (args[i]-Equals ("-wait™))
{
_wait = true;
}
}

// -- Check file availability --
Filelnfo file = new Filelnfo (args[0]);
if (1file.Exists)

{
Console.WriteLine (“File {0} not found", file.FullName);
waitQ;
return;

}

// -- Initialize XML-parser --

XMLConfiguration.Initialize();

// -- Parse XML file --
object fileObject;

Book 3 page 34

The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

try
{
fileObject = XMLFile.GetRead (file);
}
catch (Exception e)
{
Console.WriteLine (e.Message);
waitQ;
return;
}
if (I(fileObject is Composition))
{
Console.WriteLine (“File {0} does not contain a composition",
file_FullName);
waitQ;
return;
}
// -- Create Composition-object from file and validate composition --

Composition composition = (Composition) fileObject;
if (Jcomposition.Validate().-Equals('"))

{
Console.Write (“"Composition cannot be run: ");
Console.WriteLine (composition.Validate());
waitQ;
return;
}
// -- Create Deployer-object and assign composition to be deployed --

SystemDeployer deployer = new SystemDeployer();
deployer._Blocking = true;

try
{
deployer.Create (composition);
}
catch (Exception e)
{
Console.WriteLine (e.Message);
waitQ;
return;
}

// -- Start Computation --
Console.WriteLine (‘'Starting composition {0}", file.FullName);
try

{
deployer.Start();
}
catch (Exception e)
{
Console.WriteLine (e.Message);
waitQ;
return;
}

Console.WriteLine (“Finished composition {0}", file.FullName);
waitQ;

The OpenMI Document Series: Part B - Guidelines Book 3 page 35

HarmonIT © 2005 Book 3 Developing OpenMI systems

private static void Wait()

{
if (wait)
{
Console.WriteLine (“'Press <Enter> to continue');
int key = Console.Read();
}
}

Figure 3-15 Example of an executable to run a composition from the command line

Book 3 page 36 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

Chapter 3.5 Graphical user interfaces

Visual tools help in the configuration phase. Visual tools can be standalone, very basic, very
sophisticated or fully embedded in the default environment of a software product. Preferably
they should support all the configuration steps discussed in the previous chapter.

The OpenMI has been designed in such way that its functionality can be completely
separated from any visual tool. The org.OpenMl.Tools namespace is the only namespace
containing visual forms; none of the other namespaces include any visual forms. This is also
true for the code examples in this book.

However, visual tools are convenient to assist in configuration, deployment and visualization.

This chapter briefly discusses how to connect a user interface to the composition. In addition,
it discusses the user interface being shipped with the OpenMI Software Development Kit.

The OpenMI Document Series: Part B - Guidelines Book 3 page 37

HarmonIT © 2005 Book 3 Developing OpenMI systems

3.5.1 Building visual tools

The org.OpenMl.Utilities.Configuration package has been developed in such way that it can
be re-used in many ways, without being forced to use the visual tools of the OpenMI Software
Development Kit.

First of all, a default composition, persistently stored in an XML file, can be used as a
template for actual model runs. Such a default composition could contain a list of software
units, with references to OMI files and possibly a default list of links that are described with
default names for quantities and element sets (e.g. inflow at lateral inlets). For instance, the
composition file in Figure 3-11 could act as a template. Typically the attributes in the OMI file
will be used during initialization and hence determine which schematization and which
calculation points are associated with this element set.

A default composition can provide a good starting point for your code. Via code you can add
(or delete) components, modify input data references and modify links and the timestep
information. For example, your code might manage scenarios that directly adapt the
composition based on the user selection. The actual code will be a variation of the code
example that manipulates a composition (see Figure 3-12 in Section 3.4.2).

Book 3 page 38 The OpenMI Document Series: Part B - Guidelines

Book 3 Developing OpenMI systems HarmonIT © 2005

3.5.2 OmiEd, a simple front end of the OpenMI SDK

The first OpenMI configuration editor utilized the org.OpenMl.Utilities.Configuration package,
which is based on persistent storage of all descriptive infromation.

The second editor — OmiEd, being released in open source — was developed as a
straightforward tool built from scratch. Figure 3-16 shows a sample OmiEd display. This
lightweight tool depends much more on the run-time inspection capabilities of linkable
components. The associated configuration file (Figure 3-17) has therefore become much
more readable.

OmiEd = 10| =l
File Composition Help
|
org.Opentdl T TestRiverMod GWiWodelEng
ools.GUILTrig —‘—el odel ID N inetodellD
0er
hd
Kl | 2
[Tvpe=Infarmative][Message=Starting simulation at 25072005 16:23:35, composition consisks Frarm Following noa
[Tvpe=Informative][Message=Preparing for computation. ...]
[Tvpe=Infarmative][Message=Calling Prepare() method of model TestRiverModel Madel 10]
[Tvpe=Informative][Message=Calling Prepared) method of model GyiModelEngineModelID]
[Tvpe=Infarmative][Message=Calling Prepare() method of model org. OpenMI. Tools. GUL Trigger]
[Tvpe=Informative][Message=Subscribing procey event listener.,,.]
flTnF:TnFnrmarirﬁ'll'Mﬁ::anﬁ:('allinn Suhscribe’ mekhnd with FyentTyne. \Warninn oF rmndel TestRiverfndel T‘;‘
Ll

Figure 3-16 OmiEd - front-end application of the OpenMI SDK

<guiComposition version="1.4">
<models>
<model omi="D:\openmi-demo\omi\SobekRR-hills._omi" rect x="30" rect_y="30"
rect_width="100" rect_height="51" />
<model omi="D:\openmi-demo\omi\SobekCF-river_remote.omi" rect_x="231"
rect_y="33" rect_width="100" rect_height="51" />
<model omi="org.OpenMI.Tools.GUI._Trigger"™ rect_x="436" rect_y="59"
rect_width="100" rect_height="51" />
</models>
<links>
<uilink model_providing="RR-D:\openmi-demo\data\sobek-rr-hills\sobek_3b.fnm"
model_accepting="CF-D:\openmi-demo\data\sobek-cf-river\sobeksim.fnm">
<link id="1" source_elementset="RR-Boundaries" source_quantity="Flow"
target_elementset="Laterals" target_quantity='"Discharge" />
</uilink>
<uilink model_providing="CF-D:\openmi-demo\data\sobek-cf-river\sobeksim.fnm"
model_accepting="org.OpenMl .Tools.GUI .Trigger">

The OpenMI Document Series: Part B - Guidelines Book 3 page 39

HarmonIT © 2005 Book 3 Developing OpenMI systems

<link 1d="2" source_elementset="HBoundaries" source_quantity="Discharge"
target_elementset="TriggerElementID" target_quantity="TriggerQuantityID" />
</uilink>
</links>
<runproperties listenedeventtypes="11111111111" triggerinvoke="1/2/2000 12:00:00
AM" runinsamethread="0" showeventsinlistbox="1" logfilename="CompositionRun.log" />
</guiComposition>

Figure 3-17 Sample configuration file for OmiEd

Book 3 page 40 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models

Book 4

BOOK 4

Chapter 4.1
4.11
4.1.2

Chapter 4.2

421
4211
42.1.2

4.2.2

Chapter 4.3
4.3.1
4.3.2

Chapter 4.4

441
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

Chapter 4.5

451
45.2
453
454
455
Chapter 4.6

4.6.1

Chapter 4.7
4.7.1

Chapter 4.8
4.8.1

Chapter 4.9

49.1
4.9.2
4.9.3

The OpenMI Document Series: Part B - Guidelines

HarmonIT © 2005

Migrating OpenMI models

MIGRATING OPENMI MODELS ...ttt 4-1
INEFOAUCTION L.ttt 4-3
OPENMI COMPIIANCE.....ciiieeiiiiiiiie et a e e 4-4
The SImple RIVEr @XamPlecooooiiiieieeeeecee e 4-6
Planning the migrationccccccviiiiiiii 4-7
USE CASES. ..uuuuiiieiiiietiiti e e ettt et e et et e e e et et e e e e e e e e e eane 4-8
Use case 1: Connecting to other fvers...........ccccccccciiiciciccic 4-8
Use case 2: Inflow from geo-referenced catchment database.................... 4-10
Defining eXchange iteMS.........ccvvvviiiiiiiiiiiiie e 4-12
ATV =T o] o 1o Yo [P PPTPP 4-13
A general Wrapping PatterN.........cccoviiiiiiiiii 4-14
The LINKabIEENGINE ..o 4-15
Migration — Step BY SteP ..ovvvvviiiiiiii 4-17
Step 1: Changing YOUr €NgINE COME......uuuuuuuiirrrriririrerrerrrrrrerernrrrrenenerrn. 4-18
Step 2: Creating the .NET assembli€S...........uuuuviiviiiiiiiiiiiiiiiiiiiiiiiiiiiniin, 4-20
Step 3: Accessing the functions in the engine Core..........ccovvvviviiviiiiiiiinnnn. 4-22
Step 4: Implementing MyENgGINEDOtNEtACCESS........uvvvvrriiiiriiieiiiiiiiiiriiinnnns 4-24
Step 5: Implementing the MyEngineWrapper Class...........cccvvviviiiiiiiiiininn. 4-26
Step 6: Implementing MyModelLinkableComponent................euvvvvvveviinnnnn. 4-28
Step 7: Implementation of the remaining IEngine methodsuvuee. 4-29
Migration of the Simple RiVer.......cccccciii, 4-31
The SIMPIE RIVEN WEaPPET ... 4-32
Implementation of the Initialize methodccc 4-33
Implementation of the SetValues method...............ccccei, 4-36
Implementing the GetValues method ..., 4-37
Implementation of the remaining methods.................ccccc, 4-38
Testing the COmMPONENt......cooooiii i, 4-41
UNIEEESHING coeiiiiiiiiiieeeeeeeeeee 4-42
Implementing IManageState..........cccccvviiiiiii 4-45
The IManageState iNterface.........oooveevioeii i, 4-46
THE OMI Il e 4-49
Structure of the OMI ilceeiiiiiiie e 4-50
Design patterns for model migration.........ccccccccviiiiiiicc, 4-51
Design patterns for ISIS..........oovvi 4-52
Design patterns for INFOWOrkS RS........ccooviiiiiiiiii, 4-53
Design patterns for MIKELLccovvvviiiiiiiiiiii 4-54

Book 4 page 1

HarmonIT © 2005 Book 4 Migrating OpenMI models

49.4 Design patterns for SOBEKoiiiiiiiiiiiii e 4-57
Chapter 4.10 PerfOrmManCe iSSUEBS.......uu ittt e e eeaaa s 4-59
4.10.1 MeEMOrY CONSUMPLION. ... ittt e ettt e e et e e e e e eeeba e e e e aeeees 4-60
4.10.2 SYSLEIM PIOCESSESieetieeeeit e et e et e et e e ettt e e e et e e e eata e e e eaa e aeerannns 4-61

Book 4 page 2 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.1 Introduction

Although it may appear a huge challenge to turn a model engine into an OpenMI-compliant
linkable component, it may not be as difficult as it seems. The OpenMI Software Development
Kit provides a large number of software utilities that make migration easier. These tools and
utilities can be used by anyone migrating a model but are not required in order to comply with
the OpenMI standard. The utilities can be used as a whole or you can select only a few of
them; alternatively, you can use the utilities as the basis for your own implementations.

This book assumes that you will use the OpenMI utilities to the full extent. Step-by-step
instructions are given for the whole migration process, from defining the requirements for an
OpenMI component, through design and implementation to testing.

This chapter describes the requirements for OpenMI-compliance and introduces the Simple
River model, which is used to illustrate the migration process.

The OpenMI Document Series: Part B - Guidelines Book 4 page 3

HarmonIT © 2005

4.1.1 OpenMI compliance

Book 4 Migrating OpenMI models

The official requirements for OpenMI compliance are given in Part C, org.OpenMI.Standard
interface specification. The OpenMI utilities take care of most of the requirements for

compliance.

There are three basic requirements for compliance:

1. The component must implement the org.OpenMl.Standard.ILInkableComponent

interface (Figure 4-1).

cd ILinkabIeComponent/

«interface»

org.OpenMl.Standard::|Publisher

Subscribe(listener :IListener, eventType :EventType) : void
UnSubscribe(listener :IListener, eventType :EventType) : void

GetPublishedEventTypeCount() : int

+
+
+ SendEvent(Event :[Event) : void
+
+

GetPublishedEventType(providedEventTypelndex :int) : EventType

i

«interface»

org.OpenMI.Standard::ILinkableComponent

Initialize(properties :IArgument([]) : void
«property» ComponentlD() : string
«property» ComponentDescription() : string
«property» ModellD() : string

«property» ModelDescription() : string
«property» InputExchangeltemCount() : int

«property» OutputExchangeltemCount() : int

«property» TimeHorizon() : ITimeSpan
AddLink(link :ILink) : void
RemoveLink(linkID :string) : void
Validate() : string

Prepare() : void

«property» EarliestinputTime() : [TimeStamp
Finish() : void
Dispose() : void

+ 4+ 4+ +

GetlnputExchangeltem(inputExchangeltemindex :int) : lInputExchangeltem

GetOutputExchangeltemoutputExchangeltemindex :int) : IOutputExchangeltem

GetValues(time :ITime, linkID :string) : ValueSet

Figure 4-1 ILinkableComponent interface

2. The component must be associated with an XML file containing information needed
for deployment. The XML file must follow the LinkableComponent schema (Figure

4-2).

Book 4 page 4 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

B attributes
| TType
| Assembly |
LinkableComponent
I : E]_ B attributes .
_____________ ' Key
(P Aeouments B-(— 5 { Argumend BH o0
0.0 CAAASA
' Value |

Figure 4-2 Schema for the LinkableComponent XML file

3. The component must be able to handle invocation of methods in the sequence shown
in Figure 4-3.

Deployment phases and call sequence of an OpenMI LinkableComponent

initialization phase

inspection &
configuration phase

preparation phase

computation/
execution phase

completion phase

disposure phase

Initialize ()

|—

'

ComponentID
ComponentDescription
ModellD

ModelDescription
InputExchangeltemsCount
OutputExchangeltemsCount
GetlnputExchangeltem()
GetOutputExchangeltem()
TimeHorizon

AddLink()

RemoveLink()

GetPublishedEventTypeCount #
GetPublishedEventType() #
SubScribe() #

UnSubscribe() #

SendEvent() #

Validate()
v

HasDiscreteTimes() *

Prepare()

GetDiscreteTimesCount() *

'

GetDiscreteTime() *

GetValues()
EarliestinputTime

SaveState() **
RestoreState() **
ClearState() **

AddLink() ~
RemoveLink() »

Methods from IPublisher interface

Implementation is optional
* if component implements
IDiscreteTimes interface

** if component implements

|

IManageState interface

[Finisho

| A if component supports dynamic

'

| Dispose()

adding/removing links

Figure 4-3 Required sequence for invocation of methods in the LinkableComponent

The OpenMI Document Series: Part B - Guidelines

Book 4 page 5

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.1.2 The Simple River example

A Simple River model engine was developed as an example of model migration. The model
engine is programmed in Fortran and is a very simple conceptual river model.

The Simple River consists of nodes and branches, as shown in Figure 4-4. For each timestep,
the inflow to each node is obtained from a boundary-input file. These flow rates are multiplied
by the timestep length and added to the storage in each node. Then, starting from the
upstream end, the water is moved to downstream nodes and the flow rate in each branch is
calculated.

Q Inflow

Branch 0

Q Inflow Node 1

Q Inflow Node 2
Branch 2

Q Inflow Node 3

[

Figure 4-4 Simple River network

The Simple River engine reads data from three input files, which contain information about
the inflow to the river nodes (boundary file), the simulation period and timestep length
(simulation file) and the river network (network file) — see Figure 4-5.

Boundary file. Simulation file || network file.

I ‘ I

Simple River Engine

Output file

Figure 4-5 Simple River input and output files

The full source code for the Simple River model, the associated wrappers and the test
classes used to migrate the model is available via www.OpenMl.org.

Book 4 page 6 The OpenMI Document Series: Part B - Guidelines

http://www.OpenMI.org.

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.2 Planning the migration

Before you start migrating a model it is important that you have a precise idea about how your
model is intended to be used when it is running as an OpenMI component. Think about any
situation where it will be useful to run your model linked to other OpenMI components. Such
components could be other models, data providers, optimization tools or calibration tools. You
may even find it useful to run two instances of your model component in the same
configuration.

This chapter suggests ways in which you can plan the migration of a model, including the
development of use cases and the definition of exchange items.

The OpenMI Document Series: Part B - Guidelines Book 4 page 7

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.2.1 Use cases

Use cases (examples of how software is used) have become very popular in software
development. There are no formal requirements for defining a use case. However, what
makes a use case different from an example is that a use case is more detailed and well
defined. Most importantly, a use case must be formulated in such a way that, after completion
of software development, you can unambiguously determine whether the use case is covered
or not. The big advantage of use cases is that they are easily understood both by the software
developer and the software user.

At the beginning of the development process, a number of use cases should be defined. It is
important that the repository of use cases at any time, in all areas of the software
development, reflects the current target. If a particular use case cannot be fulfilled it should be
modified or removed.

Two use cases for the migrated Simple River model are given below. The use cases give a
step-by-step description of how a user will use the models.

4.2.1.1 Use case 1: Connecting to other rivers

In the first use case, the Simple River model is connected to another OpenMI-compatible river
model (Figure 4-6).

AY (km)
b)
10 fodE-6 i u
.\ Brang¢h:0|
LD
yd
: K
\
Brancirt
\E)de 2
N
Brangh:2| -
\7 Nodd:3 /’ =~ -~
N\
3 =—p X(km)
5 1

Figure 4-6 Use case 1: Connecting to other rivers

Preconditions:
e The model user has the OpenMI-compliant Simple River model installed on his PC.
o The model user has input files for the Simple River model available on his PC.
e The model user has an OpenMI configuration user interface installed on his PC.

e The model user has another OpenMI-compliant river model (including required data
files) available on his PC.

Book 4 page 8 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

Success guarantee (postconditions):
¢ All models have generated correct results.
Main success scenario:
1. The model user loads the OpenMI GUI on the PC.
2. The model user uses the GUI to browse for available LinkableCompnents.

3. The model user finds the Simple River OMI file and the OMI file for the other river
model.

4. The model user loads the two files (components) into the GUI.

5. The model user creates a unidirectional and ID-based link from the downstream node
in the other river model to the upstream node in the Simple River.

6. The model user selects input and output exchange items for the link (input quantity for
the Simple River is ‘Inflow’).

7. The model user defines the simulation period.
8. The model user runs the simulation.

Extensions to the use case provide alternative flows. Here, the flow splits from step 5 into two
alternatives.

First alternative:

5. The model user creates a unidirectional and ID-based link from the downstream
branch in the Simple River model to the upstream node in the other river model.

6. The model user selects input and output exchange items for the link (output quantity
for the Simple River is ‘flow’).

7. The model user defines the simulation period.
8. The model user runs the simulation.
Second alternative:

5. The model user creates a unidirectional and ID-based link from the downstream
branch in the other river model to an internal node in the Simple River model.

6. The model user selects input and output exchange items for the link (input quantity for
the Simple River is ‘Inflow’).

7. The model user defines the simulation period.

8. The model user runs the simulation.

The OpenMI Document Series: Part B - Guidelines Book 4 page 9

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.2.1.2 Use case 2: Inflow from geo-referenced catchment database

In the second use case, the inflow for the Simple River model comes from an OpenMlI-
compliant runoff database (Figure 4-7).

AY (km)
10 &3.U -
Brangh:0
5
1. . 4\\
DIancCir T
\ﬁ)de:z
N
Brangh:2[™)
\\ ™~ ode:3
‘\

p X (km)

Figure 4-7 Use case 2: Inflow from catchments

Preconditions:
e The model user has the OpenMI-compliant Simple River model installed on his PC.
e The model user has input files for the Simple River model available on his PC.
e The model user has an OpenMI configuration user interface installed on his PC.

e The model user has an OpenMI-compliant runoff database (including required data
files) available on his PC.

Success guarantee (postconditions):
¢ All models have generated correct results.
Main success scenario:
1. The model user loads the OpenMI GUI on the PC.
2. The model user uses the GUI to browse for available LinkableCompnents.
3. The model user finds the Simple River OMI file.
4. The model user finds the OMI file for the runoff database.
5. The model user loads the two files (components) into the GUI.

6. The model user creates a unidirectional and geo-referenced link from the runoff
database to ‘All Branches' input exchange item in the Simple River model.

Book 4 page 10 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

7. The model user selects input and output exchange items for the link (input quantity for
the Simple River is ‘Inflow’).

8. The model user defines the simulation period.
9. The model user runs the simulation.

Note that the runoff for a particular polygon is distributed on the river branches depending on
how large a portion of a branch is included in each polygon. This type of boundary condition,
where water is added to branches, was not possible in the original Simple River engine. The
Simple River engine is (as a result of the migration) extended with this feature, simply
because such a boundary condition becomes a possibility when running in combination the
OpenML.

The OpenMI Document Series: Part B - Guidelines Book 4 page 11

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.2.2 Defining exchange items

Exchange items are combined information about what can be exchanged and where the
exchanged item applies. An input exchange item could define that inflow can be accepted on
nodes or river branches. An output exchange item could specify that flow can be provided on
branches. The Quantity ID identifies what can be exchanged (e.g. ‘Flow’) and the ElementSet
ID identifies where this quantity applies (e.g. ‘Node:1").

The next step is to define input and output exchange items. The exchange items that are
required in order to run the use cases are listed in Table 4-1.

Table 4-1 Required exchange items for use cases 1 and 2

ElementSet.ID Type Quantity.ID = Unit Isinput | IsOutput Use case
‘Branch:0’ Polyline | Flow M3/sec No Yes 1
‘Branch:1’ Polyline | Flow M3/sec No Yes 1
‘Branch:2’ Polyline | Flow M3/sec No yes 1
‘Node:0’ IDBased Inflow M3/sec Yes No 1
‘Node:1’ IDBased Inflow M3/sec Yes No 1
‘Node:2’ IDBased Inflow M3/sec Yes No 1
‘Node:3’ IDBased Inflow M3/sec Yes No 1
‘Branch:0’ Polyline | Inflow M3/sec Yes No
‘Branch:1’ Polyline | Inflow M3/sec yes No
‘Branch:2’ Polyline | Inflow M3/sec yes No

‘All Branches’ Polyline | Inflow M3/sec yes No 2

Naturally, the exchange items should not be limited to a particular network, but for the
purpose of planning the migration it is easier to start out with a specific case and then
generalize this case when it comes to the more detailed design.

Book 4 page 12 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.3 Wrapping

The OpenMI standard was designed to allow easy migration of existing model engines. The
standard is implemented in C# running under the .NET framework. Almost all existing model
engines are implemented in other programming languages, such as Fortran, Pascal, C and
C++. In order to bridge the gap between the different technologies and to minimize the
amount of changes needed to be made to the engine core a wrapping pattern will be the most
attractive choice in most cases.

This chapter describes the process of wrapping and the generic wrapper that is provided by
the OpenMI Software Development Kit.

The OpenMI Document Series: Part B - Guidelines Book 4 page 13

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.3.1 A general wrapping pattern

Wrapping basically means that you create a C# class that implements the
ILinkableComponent interface. This wrapper will communicate internally with your engine
core. The wrapper will appear to the users as a ‘black box’, which means that all
communication will take place through the ILinkebleComponent interface (Figure 4-8).

<<ILinkableComponent>> Access
MyWrapper

O_ ----------- >

Figure 4-8 OpenMI wrapping pattern

Engine Core

One further advantage of using the wrapping pattern is that you can keep the OpenMI-
specific implementations separated from your engine core. Typically, the engines will also be
used as standalone applications where OpenMlI is not used and it is naturally an advantage to
be able to use the same engine in different contexts. This means that even in situations
where new engines are built the wrapping pattern may still be the best choice.

Book 4 page 14 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

4.3.2 The LinkableEngine

Model engines that are doing timestep-based computations have many things in common. It
is therefore possible to develop a generic wrapper that can be used for these engines. This
wrapper is called LinkableEngine and is located in the org.OpenMI.Utilities.Wrapper package.
Basically, the LinkableEngine provides a default implementation of the ILinkableComponent
interface. Naturally, the LinkableEngine cannot know the specific behaviour of your model
engine; this information is obtained though the IEngine interface.

The recommended design pattern for model engine migration when using the LinkableEngine
is shown in Figure 4-9. The design includes the following classes:

e The MyEngineDLL class is the compiled core engine code (e.g. Fortran).

e The MyEngineDLLAccess class is responsible for translating the Win32Api from
MyEngineDLL to .NET (C#).

e Calling conventions and exception handling are different for .NET and Fortran. The
MyEngineDotNetAccess class ensures that these operations follow the .NET
conventions.

e The MyEngineWrapper class implements the IEngineAccess interface, which means
that it can be accessed by the LinkableEngine class.

e The MyLinkableEngine class is responsible for the creation of the MyEngineWrapper
class and for assigning a reference to this class to a protected field variable in the
LinkableEngine class, thus enabling this class to access the MyEngineWrapper class.

More details of these classes are provided in the following sections.

The OpenMI standard puts a lot of responsibilities on the LinkableComponents. The main
idea is that when the GetValues method is invoked the providing component must be able to
deliver the requested values so that these apply to the requested time and the requested
location. To be able to do this the LinkableComponent may have to interpolate, extrapolate or
aggregate both in time and space. These and other things are handled by the
LinkableEngine.

The LinkableEngine class includes the following features:

¢ Buffering: When a model is running as an OpenMI component it may be queried for
values that correspond to a time that is before the current time of the model. Most
models will only keep values for the current timestep and the previous timestep in
memory. It is therefore necessary to store data associated with the OpenMlI links in a
buffer. The LinkableEngine handles the buffering for you.

e Temporal interpolation and extrapolation: Most models are only capable of delivering
results at times that correspond to their internal timesteps. The LinkableEngine class
handles all the temporal operations that are required for LinkableComponents.

e Spatial operations: The LinkableEngine provides a range of spatial data operations.

e Link book-keeping: The LinkableEngine handles book-keeping for links added to your
component.

The OpenMI Document Series: Part B - Guidelines Book 4 page 15

HarmonIT © 2005 Book 4 Migrating OpenMI models

e Event handling: The LinkableEngine sends events that enable an event-listener to
monitor the progress of the linked system when running.

More details about how the LinkableEngine works is given in Part F: org.OpenMlI.Utilities
technical documentation.

Book 4 page 16 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.4 Migration — step by step

The best strategy when migrating a model is to split the process into a number of steps; at the
end of each step you can compile your code and run a small test.

The steps needed for migration are described in this chapter.

The OpenMI Document Series: Part B - Guidelines Book 4 page 17

HarmonIT © 2005

Book 4 Migrating OpenMI models

4.4.1 Step 1: Changing your engine core

The aim of the migration is to develop a class that implements the IEngine interface. As
shown in Figure 4-9, the class that implements the IEngine interface is supported by other

classes and the engine DLL.

MyCompany.OpenMI.MyEngine
MyLinkableEngine

Creates

*

——————————— >

Has reference to

O_ MyCompany.OpenMI.MyEngine

MyEngineWrapper

<<Win32dII>>
MyEngineDlII

Win32API

1
Create ?L Access Has reference to
1

Y
MyCompany.OpenMI.MyEngine
MyEngineDotNetAccess

T
[}
Access

<<--

MyCompany.OpenMI.MyEngine
MyEngineDIlAccess
Access

Figure 4-9 Wrapper classes and engine core DLL

Model engines are typically compiled into an executable file (EXE). Such executable files are
not accessible by other components and as such are not very suitable as a basis for OpenMI
components. It is therefore necessary for your engine to be compiled into a dynamic link

library file (DLL).

Ideally you should make modifications to your engines so that the same engine can be used
both when running as an OpenMI component and when running as a standalone application.
Having two versions of the same engine leads to unnecessary maintenance work. Therefore
you could make a new application (EXE) that calls a function in the engine core DLL which, in
turn, makes your engine perform a full simulation.

Figure 4-10 illustrates the software required to run an engine as a standalone application. The
SimpleRiverApplication.EXE file is never used when running in an OpenMI setting.

Book 4 page 18

The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

Graphical User Interface Engine Input files

Deploy and Run Read

<_____

RunSimulation

MyEngineApplication.exe | . >)

SimpleRiver.dll

i Write

Engine output files

Figure 4-10 Running an engine as a standalone application

The following steps are required in the conversion of the engine core:
1. Change the engine core so that it can be compiled into a DLL.
2. Add a function to the engine core that will run a full simulation:

logical function RunSimulation()

3. Create an engine application (EXE) that from its main program calls the
RunSimulation function in your engine core DLL.

4. Run your engine by deploying the engine application and check that the engine is still
producing correct results.

When your engine is running in the OpenMI Software Development Kit it must be able to
initialize, perform single timesteps, finalize and be disposed as separate operations. This
means that your engine core may need to be reorganized. You can do this in any way you like
but one logical approach is to create four functions:

logical function Initialize()
(Open files and populate your engine with initial data)

logical function PerformTimeStep()
(Perform a single timestep)

logical function Finish(Q)
(Close files)

logical function Dispose()
(De-allocate memory)

The RunSimulation function should now be changed so that it calls the Initialize function, then
repeatedly calls the PerformTimeStep function until the simulation has completed, and finally
calls the Finish and Dispose functions.

At this point you should run your application again and check that the engine is still producing
the correct results.

You have now completed the restructuring of the engine. The remaining changes that you
need to make to the engine will be much smaller. The nature of the changes will be
dependent on the particular engine. For now, you can move on to creating the wrapper code.

The OpenMI Document Series: Part B - Guidelines Book 4 page 19

HarmonIT © 2005

Book 4 Migrating OpenMI models

4.4.2 Step 2: Creating the .NET assemblies

The next step is to create the wrapper classes (Figure 4-11). For this stage, make sure that
the OpenMI Software Development Kit is installed on your PC.

MyCompany.OpenMI.MyEngine
MyLinkableEngine

O_ MyCompany.OpenMI.MyEngine

Creates MyEngineWrapper

Has reference to

¢ —— .

<<Win32dlI>>
MyEngineDlII

Create ?Access Has reference to
|

Vi

- MyCompany.OpenMI.MyEngine

MyEngineDotNetAccess

i
| Access
[}

v/

MyCompany.OpenMI.MyEngine
MyEngineDIIAccess

Win32API

Figure 4-11 C# wrapper classes

Load the .NET development environment. You should create one assembly for your wrapper
classes and it is strongly recommended that you also create one assembly for the

corresponding test classes.

You should use the following naming conventions for your wrapper assembly:

Assembly name:

Assembly DLL name:

Namespace:

Class names:

MyOrganisation.OpenMIl.MyModel
MyOrganisation.OpenMIl.MyModel.DLL
MyOrganisation.OpenMIl.MyModel

MyModelEngineWrapper
MyModelEngineDotNetAccess
MyModelEngineDLLAccess
MyModelLinkableComponent

Naming conventions for the test assembly:

Assembly name:

Assembly DLL name:

Namespace:

Book 4 page 20

MyOrganisation.OpenMITest.MyModel
MyOrganisation.OpenMITest.MyModel.DLL
MyOrganisation.OpenMIl.MyModel

The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

Class names: MyModelEngineWrapperTest
MyModelEngineDotNetAccessTest
MyModelEngineDLLAccessTest
MyModelLinkableComponentTest

Now install the NUnit test software (see Chapter 4.6)
To the wrapper assembly, add the following references:

Org.OpenMlI.Standard
Org.OpenMI.Backbone
Org.OpenMlI.Utilities.Wrapper

To the test assembly, add the following references:

Org.OpenMl.Standard
Org.OpenMI.Backbone
Org.OpenMl.Utilities.Wrapper
NUnit.framework
MyOrganisation.OpenMIl.MyModel

After creating the assemblies and the classes, you can start working on the first class,
MyEngineDLLAccess. Details are given in the next section.

The OpenMI Document Series: Part B - Guidelines Book 4 page 21

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.4.3 Step 3: Accessing the functions in the engine core

The third step is to implement the MyEngineDLLAccess class (Figure 4-12).

MyCompany.OpenMI.MyEngine C MyCompany.OpenMI.MyEngine
MyLinkableEngine Creates N MyEngineWrapper
___________________ >
Has reference to
1
Create éILAccess Has reference to
v
MyCompany.OpenMI.MyEnging|
MyEngineDotNetAccess
i
i Access
v
<<Win32dIl>> - MyCompany.OpenMI.MyEngine
MyEngineDlI| MyEngineDIlAccess

Access

Win32API

Figure 4-12 MyEngineDLLAccess class

Because you are using a C# implementation of OpenMI, your engine needs to be accessible
from .NET. In the pattern shown above this is handled in two wrappers, MyEngineDLLAccess
and MyEngineDotNetAccess. The MyEngineDLLAccess class will make a one-to-one
conversion of all exported functions in the engine core code to public .NET methods. The
MyEngineDotNetAccess class will change some of the calling conventions.

The specific implementation of the MyEngineDLLAccess class depends on the compiler you
are using. Start by implementing export methods for the Initialize, PerformTimeStep, Finish
and Dispose functions.

Figure 4-13 shows an example of such an implementation for the Simple River Fortran

engine. Note that this implementation corresponds to a particular Fortran compiler; the syntax
may vary between compilers.

Book 4 page 22 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

using System;

using System.Run-time. InteropServices;
using System.Text;

namespace MyOrganisation.OpenMI_MyModel

{

public class MyEngineDLLAccess
{
[DLLImport(@”C:\MyEngine\bin\MyEngine.DLL”,
EntryPoint = “INITIALIZE”,
SetlLastError=true,
ExactSpelling = true,
CallingConvention=CallingConvention.Cdecl)]
public static extern bool Initialize(string filePath, uint length);
[DLLImport(@”C:\MyEngine\bin\MyEngine.DLL”,
EntryPoint = “PERFORMTIMESTEP”,
SetlLastError=true,
ExactSpelling = true,
CallingConvention=CallingConvention.Cdecl)]
public static extern bool PerformTimeStep();
[DLLImport(@”C:\MyEngine\bin\MyEngine.DLL”,
EntryPoint = “FINISH”,
SetlLastError=true,
ExactSpelling = true,
CallingConvention=CallingConvention.Cdecl)]
public static extern bool Finish();

Figure 4-13 Implementing the Simple River Fortran engine

The OpenMI Document Series: Part B - Guidelines Book 4 page 23

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.4.4 Step 4: Implementing MyEngineDotNetAccess

The fourth step is to implement the MyEngineDotNetAccess class (Figure 4-14).

MyCompany.OpenMI.MyEngine O_ MyCompany.OpenMIl.MyEngine
MyLinkableEngine Creates MyEngineWrapper

Has reference to

1
Create aI?LAccess Has reference to
|

V.

‘ MyCompany.OpenMI.MyEngine

MyEngineDotNetAccess

Access

v
<<Win32dII>> MyCompany.OpenMI.MyEngine
MyEngineDlII <<StaticClass>>

““““““““ MyEngineDIlAccess
Win32API

Figure 4-14 MyEngineDotNetAccess class

The MyEngineDotNetAccess has two purposes: to change the calling conventions to C#
conventions and to change error messages into .NET exceptions.

Figure 4-15 shows the Simple River example code for a MyEngineDotNetAccess class that
implements the Initialize method, the PerformTimeStep method and the Finish method. In
each of these methods the corresponding method in the MyEngineDLLAccess class is called
and, if this method returns false, the error message from the engine is queried through the
GetMessage method (following which an exception is created and thrown).

Note that the MyEngineDLLAccess class is not instantiated. All the methods in this class are
static and can be accessed directly by referencing the class. (Note that to make the example
simpler, not all DLL import statements are shown.)

The normal convention for Fortran DLLs is that values are returned through the function
(effectively, they are passed by reference); for C# results are passed by value. Therefore
there may be a need to state explicitly that C# parameters passed to a Fortran routine are to
be passed by reference. In Fortran, arrays normally start from index 1 whereas in C# the
convention is to start from zero. These differences can be handled in the
MyEngineDotNetAccess class.

When you have completed the implementation of the methods shown below you can create
and implement the corresponding test class and run the unit test.

Book 4 page 24 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

using System;
using System.Text;
namespace MyOrganisation.OpenMI_MyModel

{
public class MyEngineDotNetAccess
{
public void Initialize(string filePath)
{
if(!(MyModelDLL. Initialize(filePath, ((uint)
filePath._Length))))
{
CreateAndThrowException();
}
}
public void PerformTimeStep()
{
if(! (MyModelDLL.PerformTimeStep()))
{
CreateAndThrowException();
}
}
public void FinishQ)
{
iT(! (MyModel _Finish(Q)))
{
CreateAndThrowException();
}
}
private void CreateAndThrowException()
{
int numberOfMessages = 0O;
numberOfMessages = MyModelDLL .GetNumberOfMessages();
string message = “Error Message from MyModel “;
for (int i = 0; i < numberOfMessages; i++)
{
intn = 1i;
StringBui lder messageFromCore
= new StringBuilder(© ;s
MyModeIDLL .GetMessage(ref n, messageFromCore,
(uint) messageFromCore.Length);
message +=°; “;
message += messageFromCore.ToString()-Trim(Q);
}
throw new Exception(message);
}
}

Figure 4-15 Code for the MyEngineDotNetAccess class

The OpenMI Document Series: Part B - Guidelines Book 4 page 25

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.4.5 Step 5: Implementing the MyEngineWrapper class

The fifth step is to implement the MyEngineWrapper class (Figure 4-16).

MyCompany.OpenMI.MyEngine O_ MyCompany.OpenMIl.MyEngine
MyLinkableEngine Creates MyEngineWrapper

Has reference to

1
Create ?Access Has reference to
|

Y4
MyCompany.OpenMI.MyEngine
MyEngineDotNetAccess

Access

v
<<Win32dII>> MyCompany.OpenMI.MyEngine
MyEngineDlII <<StaticClass>>

Win32API

MyEngineDIlAccess

Figure 4-16 The MyEngineWrapper class

The MyEngineWrapper class must implement the ILinkableEngine interface
(org.OpenMl.Utilities.Wrapper.ILinkableEngine). The easiest way to get started is to make
your development environment auto-generate the stub code for this interface.

The first step is to implement the Initialize method and the Finish method.
The MyEngineWrapper has a private field variable (_myEngine) that holds a reference to the
MyEngineDotNetAccess class. The Initialize method will instantiate the

MyEngineDotNetAcccess object and assign a reference to this object to the _myEngine
variable.

Example code for this is shown in Figure 4-17.

Book 4 page 26 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

using System;
using System.Collections
namespace MyOrganisation.OpenMI_MyModel

{

public class MyEngineWrapper : org.OpenMI.Utilities._Wrapper.lEngine

{

private MyEngineDotNetAccess _myEngine;

public void Initialize(Hashtable properties)

{
_myEngine = new MyEngineDotNetAccess();
_myEngine.Initialize((string)properties[“FilePath’]);

}

public void Finish(Q)

{
_simpleRiverEngine.Finish();

}

Figure 4-17 Example code for the wrapper classes

The OpenMI Document Series: Part B - Guidelines Book 4 page 27

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.4.6 Step 6: Implementing MyModelLinkableComponent

The sixth step is to implement the MyModeLinkableComponent class (Figure 4-18).

MyCompany.OpenMI.MyEngine O_ MyCompany.OpenMIl.MyEngine
MyLinkableEngine Creates MyEngineWrapper

Has reference to

1
Create aI?LAccess Has reference to
|

Y4
MyCompany.OpenMI.MyEngine
MyEngineDotNetAccess

Access

v
<<Win32dII>> MyCompany.OpenMI.MyEngine
MyEngineDlII <<StaticClass>>

““““““““ MyEngineDIlAccess
Win32API

Figure 4-18 MyLinkableEngine class

The MyModelLinkableComponent is the OpenMI-compliant linkable component that is going
to be accessed by other models. Implementation of this class is very simple. The example
shown below (Figure 4-19) is the complete implementation for the Simple River model.

using System;
namespace MyOrganisation.OpenMI_MyModel
{
public class MyModelOpenMIComponent :
org.-OpenMl _Utilities.Wrapper.LinkableEngine

{
protected override void SetEngineApiAccess()
{
_engineApiAccess = new MyEngineWrapper();
}
}

Figure 4-19 Complete implementation for the Simple River model

This class inherits from the LinkableEngine class. The class creates the EngineWrapper and
assigns it to the protected field variable _engineApiAccess.

Book 4 page 28 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

4.4.7 Step 7: Implementation of the remaining IEngine methods

The basic structure of your engine and wrapper code is now in place. The task is now to go
through the MyEngineWrapper class and complete the implementation of the methods that
are currently auto-generated stub code. Some of these methods can be completed only by
changing the code in the MyEngineWrapper; for others, changes also need to be made to the
other classes and the engine core (MyEngineDLL). After completion of each method you
should update the test classes and run the unit test.

For each method you must decide if the bulk of implementation should be located in the
MyEngineWrapper class or in the engine core. There is no general answer to this question.
Placing the bulk of implementation in the engine core could be advantageous from the
perspective of maintenance because you have most things located in one place. On the other
hand, you may want to keep the engine core as free as possible of OpenMlI-related code and
therefore put the bulk of the implementation into the MyEngineWrapper class. Finally, there
may also be considerations about the preferred programming language; the engine core may
be programmed in Fortran, C or Pascal, whereas the MyEngineWrapper class is programmed
in C#.

Implementation of the IEngine interface depends on the engine core, so it is not possible to
give a general explanation of how each individual method should be implemented. However,
the next chapter gives a description of how the IEngine interface has been implemented for
the Simple River model.

The IEngine interface is shown in Figure 4-20.

//== The org.OpenMl _Utilities._Wrapper.lEngine interface ==

// -- Execution control methods (Inherited from IRunEngine) --
void Initialize(Hashtable properties);

bool PerformTimeStep();

void Finish(Q);

//-- Time methods (Inherited from IRunEngine) --

ITime GetCurrentTime();

ITime GetlnputTime(string QuantitylD, string ElementSetlID);
ITimeStamp GetEarliestNeededTime();

//-- Data access methods (Inherited from IRunEngine) --

void SetValues(string QuantitylD, string ElementSetlD, IValueSet values);
IValueSet GetValues(string QuantitylD, string ElementSetlD);

//-- Component description methods (Inherited from IRunEngine) --
double GetMissingValueDefinition();

string GetComponentID();

string GetComponentDescription();

// -- Model description methods --

string GetModellID(Q);

string GetModelDescription();

double GetTimeHorizon();

// -- Exchange items --

int GetlnputExchangeltemCount();

int GetOutputExchangeltemCount();

org.-OpenMI .Backbone GetlnputExchangeltem(int exchangeltemlndex);
org.OpenMI .Backbone GetOutputExchangeltem(int exchangeltemlndex);

Figure 4-20 The IEngine interface

The OpenMI Document Series: Part B - Guidelines Book 4 page 29

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.5 Migration of the Simple River

The previous chapter described the steps involved in migrating a model to the OpenMI. This
chapter shows how the migrated code is developed for the Simple River example.

The OpenMI Document Series: Part B - Guidelines Book 4 page 31

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.5.1 The Simple River wrapper

The Simple River model uses the migration pattern shown in Figure 4-9. Figure 4-21 gives a
detailed explanation of how the Simple River wrapper works in terms of the wrapper classes.

cd Wrapper /

org.OpenMl.Utilities.Wrapper.LinkableEngine

org.OpenMl.Utilities.Wrapper.[Engine

SimpleRiverEngineWrapper
SimpleRiverOpenMIComponent

- _simpleRiverEngine: SimpleRiverEngineDotNetAccess
+ SimpleRiverOpenMIComponent() - _simulationStartTime: double

SetEngineApiAccess() : void - _inputExchangeltems: ArrayList

- _outputExchangeltems: ArrayList

SetValues(QuantityID :string, ElementSetID :string, values:org.OpenMI.Standard.IValueSet) : void
GetMissingValueDefinition() : double

GetTimeHorizon() : org.OpenMI.Standard.ITimeSpan

GetCurrentTime() : org.OpenMI.Standard.ITime

GetValues(QuantitylD :string, ElementSetID :string) : org.OpenMI.Standard.|ValueSet
GetComponentlD() : string

GetComponentDescription() : string

GetModellD() : string

GetModelDescription() : string

Finish() : void

Dispose() : void

GetEarliestNeededTime() : org.OpenMI.Standard.ITimeStamp

Initialize(properties :System.Collections.Hashtable) : void

PerformTimeStep() : bool

GetlnputTime(QuantitylD :string, ElementSetID :string) : org.OpenMI.Standard.ITime
GetlnputExchangeltemCount() : int

GetOutputExchangeltemCount() : int

GetOutputExchangeltem(exchangeltemindex :int) : OutputExchangeltem
GetlnputExchangeltem(exchangeltemIndex :int) : InputExchangeltem

P I R I I I

-_simpleRiverEngine

SimpleRiverEngineDllAccess

SimpleRiverEngineDotNetAccess
AddInflow(index :int, inflow :double) : bool

Initialize(filePath :string, length :uint) : bool

Finish() : bool

GetCumentTime(time :double) : bool
GetModelDescription(description :StringBuilder, length :uint) : bool
GetSimulationStartDate(simulationStartDate :StringBuilder, length :uint) : bool
GetFlow(index :int, flow :double) : bool

GetModellD(id :StringBuilder, length :uint) : bool
GetlnputTime(inputTime :double) : bool

GetMessage(index :int, message :StringBuilder, length :uint) : void
GetNumberOfNodes(hnumberOfNodes :int) : bool
GetXCoordinate(index :int, xCoordinate :double) : bool
GetYCoordinate(index :int, yCoordinate :double) : bool
GetNumberOfMessages) : int

PerformTimeStep() : bool

GetTimeStepLength(timeStepLength :double) : bool
GetNumberOfTimeSteps(numberOfTimeSteps:int) : bool

AddInflow(index :int, inflow :double) : void
Initialize(filePath :string) : void

Finish() : void

GetCurrentTime() : double
GetModelDescription() : string
GetFlow(index :int) : double
GetModellD() : string

GetlnputTime() : double
GetNumberOfNodes() : int
GetSimulationStartDate() : string
GetXCoordinate(nodelndex :int) : double
GetYCoordinate(nodelndex :int) : double
PerformTimeStep() : void
GetTimeStepLength() : double
GetNumberOfTimeSteps) : int

Create AndThrowException() : void

A Tk IR T Tk Tk T T T
I I

Figure 4-21 Simple River wrapper classes

Book 4 page 32 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

4.5.2 Implementation of the Initialize method

The SimpleRiverEngineWrapper has two private field variables:

ArrayList _inputExchangaltems;

ArrayList _outputExchangeltems;

The _inputExchangeltems is a list of org.OpenMI.Backbone.InputExchangeltem objects and
the _outputExchangeltems is a list of org.OpenMI.Backbone.OutputExchangeltem objects.
These arraylists are populated in the Initialize method.

The Simple River wrapper must fulfil the requirements defined by the use cases described in
section 4.2.1. This means that the input and output exchange items are based on the list of
items in Table 4-1.

The source code for implementation of the Initiaize method in the
SimpleRiverEngineWrapper is shown in Figure 4-22.

public void Initialize(System.Collections.Hashtable properties)
{
_inputExchangeltems = new ArrayList(); //ArrayList of
org.OpenMI .Backbone. InputExchangeltem objects
_outputExchangeltems = new ArrayList(); //ArrayList of
org.OpenMI .Backbone.OutputExchangeltem objects

// -- Create and initialize the engine --
_simpleRiverEngine = new SimpleRiverEngineDotNetAccess();
_simpleRiverEngine.Initialize((string)properties[“FilePath’]);

// -- Simulation start time —

// The start time is obtained from the engine core as a string. This string is
// passed and converted to a System.DateTime. Then the

// org.OpenMI .DevelopmentSupport.CalendarConverter class is used to convert

// this time into the ModifiedJulianDay (this is the OpenMIl standard time)

char [] delimiter = new char[]{"-"," ",":"};

string[] strings = _simpleRiverEngine.GetSimulationStartDate().-Split(delimiter);

int StartYear = Convert.Tolnt32(strings[0]);
int StartMonth = Convert.Tolnt32(strings[1]);
int StartDay = Convert.Tolnt32(strings[2]);
int StartHour = Convert.Tolnt32(strings[3]);

int StartMinute = Convert.Tolnt32(strings[4]);

int StartSecond = Convert.Tolnt32(strings[5]);

DateTime startDate = new DateTime(StartYear,StartMonth,StartDay,StartHour,
StartMinute,StartSecond);

_simulationStartTime = org.OpenMI _DevelopmentSupport.CalendarConverter.
Gregorian2ModifiedJulian(startDate);

// -- Build exchange items ---

Dimension flowDimension = new Dimension();

Unit flowUnit = new Unit(“m3/sec”,1,0,’m3/sec”); //The Simple River only uses
// quantities with the unit m3/sec.

Quantity flowQuantity = new Quantity(flowUnit, description’,’Flow”,
org.-OpenMI _.Standard.ValueType.Scalar,flowDimension);

Quantity inFlowQuantity = new Quantity(flowUnit, description’,’InFlow”,
org.-OpenMI _.Standard.ValueType.Scalar,flowDimension);

The OpenMI Document Series: Part B - Guidelines Book 4 page 33

HarmonIT © 2005 Book 4 Migrating OpenMI models

int numberOfNodes = _simpleRiverEngine.GetNumberOfNodes();
for (int i = 0; i < numberOfNodes -1; i++) //For each branch
{
OutputExchangeltem flowFromBranch = new OutputExchangeltem();
InputExchangeltem inFlowToBranch = new InputExchangeltem();
// One ElementSet is created for each branch. The ElementlID’s are
// Branch:<Branch number>. E.g. “Branch:3~
ElementSet branch = new ElementSet(“description’,’Branch:” +
i.ToString(),ElementType.XYPolyLine,new SpatialReference(“ref”));
branch_AddElement(new Element(“Branch:” + i.ToString()));
branch._Elements[0] -AddVertex(new Vertex(_simpleRiverEngine.
GetXCo-ordinate(i),_simpleRiverEngine.GetYCo-ordinate(i),0));
branch_Elements[0] -AddVertex(new Vertex(_simpleRiverEngine.
GetXCo-ordinate(i+1l),_simpleRiverEngine.GetYCo-ordinate(i+1),0));

FflowFromBranch._ElementSet = branch;
flowFromBranch.Quantity = flowQuantity;
inFlowToBranch.ElementSet = branch;
inFlowToBranch.Quantity = inFlowQuantity;

_outputExchangeltems.Add(flowFromBranch);
_inputExchangeltems.Add(inFlowToBranch);
3
for (int i = 0; i < numberOfNodes; i++) //For all nodes
{
InputExchangeltem inflowToNode = new InputExchangeltem();
// Each node is a ID-based ElementSet. The ElementSet ID are
// Node:<node number>. E.g. “Node:3”
ElementSet node = new ElementSet(“description”,’Node:” +
i.ToString(),ElementType. IDBased,new SpatialReference(“ref’));
node .AddElement(new Element(“Node:” + i.ToString()));
inflowToNode.Quantity = inFlowQuantity;
inflowToNode.ElementSet = node;
_inputExchangel tems._Add(inflowToNode);
3
ElementSet Branches = new ElementSet(“description’,”AllBranches”’,
ElementType.XYPolyLine,new SpatialReference(“ref”));
for (int i = 0; i < numberOfNodes - 1;i++) //Create an InputExchangeltem that
// has all branches in one ElementSet
{
Element branch = new Element(“Branch: “ + i.ToString());
branch._AddVertex(new Vertex(_simpleRiverEngine.
GetXCo-ordinate(i),_simpleRiverEngine.GetYCo-ordinate(i),0));
branch.AddVertex(new Vertex(_simpleRiverEngine.
GetXCo-ordinate(i+1l),_simpleRiverEngine.GetYCo-ordinate(i+1),0));
Branches.AddElement(branch);
3
InputExchangeltem inFlowToBranches = new InputExchangeltem();
inFlowToBranches._ElementSet = Branches;
inFlowToBranches.Quantity = inFlowQuantity;
_inputExchangel tems._Add(inFlowToBranches);

Figure 4-22 Implementation of the Initialize method

As you can see from the implementation of the Initialize method, some methods need to be
implemented in the MyEngineDotNetAccess class, the MyEngineDLLAccess class and the
engine core.

Book 4 page 34 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

The sequence diagram in Figure 4-23 illustrates the communication with the other wrapper
classes when the Initialize method is invoked. The EngineDLL is not included in the diagram
since there is a one-to-one communication between the EngineDLL and the
EngineDLLAccess classes. In other words, each time a method is called in the
EngineDLLAccess the corresponding function is called in the EngineDLL.

sd Initialize /

SimpleRiverOpenMIComponent|

SimpleRiverEngineWrapper

Initialize(properties) '

SimpleRiverEngineDotNetAccess
new

— >

Initialize(filePath) H

SimpleRiverEngineDllAccess

new
—_—
T
bool:= Initialize(filePath,length) |
f
- "]
[- T :
i i
string:= GetSimulationStartDate() ! 1
» II |

bool:= GetNumberOfNodes(numberOfNodes)

< _____ -

I mmmmm e e ;
i
double:= GetXCoordinate(nodelndex) }

1
bool:= GetXCoordinate(index,xCoordinate)

< I

<_ ____________________________]

double:= GetYCoordinate(nodelndex)

1
i
1
=T
bool:= GetYCoordinate(index,yCoordinate)

e]

X

1
1
1
1
1
1
!
t

Figure 4-23 Calling sequence for the initialize method

Note that no DataOperations are added to the OutputExchangeltems. The LinkableEngine
class will complete the OutputExchangeltems for you by adding spatial and temporal data
operations to your OutputExchangeltems. You can still add your own data operations as well.

The OpenMI Document Series: Part B - Guidelines Book 4 page 35

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.5.3 Implementation of the SetValues method

The calling sequence for the SetValues method is shown in Figure 4-24.

sd GetValues

SimpleRiverOpenMIComponent MyEngineWrapper MyEngineDotNetAccess MyEngineDIIAccess Q

EngineDIl
1

1
1
! SetValues(QuantitylD,ElementSetID,values) :
I i
]
l

AddInflow(index,inflow)

|

bool:= AddInflow(index,inflow,

bool:= AddInflow(index,inflow)
>

Figure 4-24 Calling sequence for the SetValues method

The EngineWrapper class decides what has to be done, based on the QuantitylD and the
ElementSetID. In the Simple River engine core there is only one possible variable that can act
as input, which is the storage of water in the nodes. For the Simple River model, inflow is
interpreted as additional inflow, which means that the inflow already received from other
sources (the boundary inflow) is not overwritten. The inflow is added to the current storage in
the nodes. The ElementSetID is parsed and the node number to which the water is going is
determined.

If the inflow is going to the branches, the water is added to the downstream node for each
branch. If the inflow is going to the nodes, the water is simply added to the storage of the
node. Understanding the role of the QuantitylD and the ElementSetID is very important when
you are migrating your model. For each Exchangeltem you define your ElementSetIlD and
QuantitylD. These IDs will be included in the link when a user is configuring a system with
your model. When the system is running, the same ElementSetID and QuantitylD will get
back to the ModelComponent when the GetValues method is invoked. Your component will
then use this information to navigate to the correct variables in the engine.

You can use any convention for naming these IDs. In the Simple River ElementSetID, the

convention used was Branch:<branch number> (e.g. ‘Branch:3’) or ‘AllBranches’, and the
Quantity IDs were ‘Flow’ and ‘InFlow'.

Book 4 page 36 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

4.5.4 Implementing the GetValues method

The source code for the IEngine GetValues implementation is shown in Figure 4-25.

public org.OpenMI._Standard. IValueSet GetValues(string QuantitylD, string ElementSetlD)
{

double[] returnValues;

Char[] separator = new char[]{":"};

if (QuantitylD == “Flow”)

{

int index = Convert.Tolnt32((ElementSetlID.Split(separator))[1]);

returnValues = new double[1];

returnValues[0] = _simpleRiverEngine.GetFlow(index);

b

else

{

throw new Exception(“lllegal QuantitylD in GetValues method in
SimpleRiverEngine”);

Figure 4-25 Implementation of the GetValues method

The branch number is extracted from the ElementSetID and used as an index in the
GetValues call to the SimpleRiverDotNetAccess class.

The calling sequence for the GetValues method is shown in Figure 4-26.

sd GetValues /

SimpleRiverOpenMIComponent SimpleRiv erEngineWrapper SimpleRiv erEngineDotNetAccess SimpleRiverEngineDIllAccess

1
IValueSet:= GetValues(QuantitylD,ElementSetID)
1

double:= GetFlow(index)

bool:= GetFlow(index,flow)

<z -~ ---- .

)

Figure 4-26 Calling sequence for the GetValues method

The OpenMI Document Series: Part B - Guidelines Book 4 page 37

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.5.5 Implementation of the remaining methods

Implementation of the remaining methods in the IEngine interface is not complicated. On the
sequence diagram in Figure 4-27 you can see how each method is accessing the other
engine wrapper classes.

sd SimpleRiver IEngine methods /

SimpleRiv erOpenMIComponent SimpleRiv erEngineWrapper SimpleRiverEngineDotNetAccess SimpleRiv erEngineDllAccess

string:= GetComponentID()

-

-

H
H
i
H
H
i
string:= GetComponentDescription(1
el 1
D |
] i :
double:= GetMissingValueDefinition() ! !
g | |
]]]
i i i
string:= GetModellD() ! !
string:= GetModelID i)
fing:= GetModellD) ot pool:= GetModellD(d,length)
I | -
H

S

string:= GetModelDescription()

string:= GetModelDescription()

'
bool:= GetModelDescription(description,length)

Lt g |

ITime:= GetCurrentTime()

double:= GetCurrentTime()

bool:= GetCurrentTime(time) _ |

ﬁ!

L
ITime:= GetInputTime(QuantitylD,ElementSetID)

double:= GetCurrentTime()

».
] bool:= GetCurrentTime(time) _
| g
ITimeStamp:= GetEarliestNeededTime() 1 1
' ' '
double:= GetCurrentTime() | H
bool:= GetCurrentTime(time) - !
Finish() L .
Lam Finish() ! !
». R
] bool:= Finish() -
i
Dispose() - !

U

Figure 4-27 Calling sequence for Simple River

The calling sequence for methods not shown in Figure 4-27 is given in Figure 4-23, Figure
4-24 and Figure 4-26. Note that for some of the methods the full implementation is done in the
SimpleRiverEngineWrapper class. The methods GetCurrentTime, GetlnputTime and
GetEarliestNeededTime are all invoking the GetCurrentTime method in the
SimpleRiverDotNetAccess class. The returned time is the engine local time. This time is
converted to the ModifiedJulianTime in the SimpleRiverEngineWrapper (Figure 4-28).

Book 4 page 38 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

public org.OpenMI_Standard.I1Time GetCurrentTime()
{

double time = _simulationStartTime + _simpleRiverEngine.GetCurrentTime() /

((double) (24*3600));
return new org.OpenMI _Backbone.TimeStamp(time);

}

Figure 4-28 Conversion of time to Modified Julian time

The OpenMI Document Series: Part B - Guidelines Book 4 page 39

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.6 Testing the component

It is important to test the component to check that it is working correctly. Traditionally, the
procedure has been to complete implementation and then run the engine to see if it produces
the correct results. However, in recent years new methodologies have been developed for
testing. The dominant testing method for object oriented programs is unit testing. Unit testing
is done in parallel with the implementation. This means that you will be able to find errors
earlier and thus save time on debugging your code later.

This chapter discusses the testing of migrated components.

The OpenMI Document Series: Part B - Guidelines Book 4 page 41

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.6.1 Unit testing

The testing procedure described here assumes you are using the NUnit test tool. You can
download the NUnit user interface and libraries from http://www.NUnit.org. This web page
also gives more information about NUnit. Basically, you create a test class for each of the
wrapper classes; in the test classes you implement a test method for each public method in
the class.

This chapter focuses on OpenMlI-specific testing. The NUnit home page gives detailed
information about Unit testing.

Section 4.4.2 describes how to create test assemblies. The test classes used for the Simple
River example are shown in Figure 4-29.

cd Simple River Wrapper classes and test classes/

UseCaseTests
Tl Access
= org.OpenML.Utilities.Wrapper.LinkableEngine
SimpleRiverOpenMIComponentTest . .
Access Wrapper::SimpleRiverOpenMIComponent
))) org.OpenMI.Utilities.Wrapper.I[Engine
S et U EE AR RIS Access Wrapper::SimpleRiverEngineWrapper
-_smpleRiverEngine
SimpleRiverEngineDotNetAccess Test Wrapper::
| _______Access_____ > SimpleRiverEngineDotNetAccess

Wrapper::SimpleRiverEngineDllAccess

Figure 4-29 Wrapper and test classes for the Simple River model

There is a one-to-one relation between the wrapper classes and the test classes, with two
exceptions. There is no test class for the SimpleRiverEngineDLLAccess class and there is
one additional class called UseCaseTests. The test «class for the
SimpleRiverEngineDLLAccess class was left out because every method in the
SimpleRiverEngineDotNetAccess class will invoke the corresponding method in the
SimpleRiverEngineDLLAccess class; therefore testing all methods in the
SimpleRiverEngineDotNetAccess class will be sufficient.

Book 4 page 42 The OpenMI Document Series: Part B - Guidelines

http://www.NUnit.org.

Book 4 Migrating OpenMI models HarmonIT © 2005

The main idea of unit testing is to create very simple code that will test each method in the
classes. However, it can also be useful to make some more advanced tests that are actually
running full simulations. This is done in the UseCaseTests class. This class ensures that the
use cases described in section 4.2.1 run without errors.

As described earlier, the model is migrated by implementing the IEngine interface. For every
IEngine method in the MyEngineWrapper class you decide which method needs to be
implemented in the remaining wrapper classes. You will implement the methods or functions
that are needed in the engine core and then implement the corresponding methods in the
MyEngineDLLAccess class and MyEngineDotNetAccess class. Each time you have
completed the implementation of a method you can create a test method in the
MyEngineDotNetAccessTest class and run the unit test. You can then move on to implement
the method in MyEngineAccess and the associated test methods.

Figure 4-30 contains sample test code for the GetModellD method implementation in the
Simple River model. Figure 4-31 shows the NUnit interface.

using System;
using org.OpenMI .Examples._ModelComponents.SimpleRiver.Wrapper;
using NUnit.Framework;
namespace org.OpenMITest.Examples.ModelComponents.SimpleRiver.Wrapper
{
[TestFixture]
public class SimpleRiverEngineDotNetAccessTest
{
[Test]
public void GetModellD()
{
SimpleRiverEngineDotNetAccess _simpleRiverEngineDotNetAccess;
String _filePath;
_simpleRiverEngineDotNetAccess = new SimpleRiverEngineDotNetAccess();
_filePath = “C:\\SimpleRiver\\UnitTest\\Data\\Rhine”;
_simpleRiverEngineDotNetAccess. Initialize(_filePath);
Assert._AreEqual (“The river Rhine”’,
_simpleRiverEngineDotNetAccess.GetModel ID());
_simpleRiverEngineDotNetAccess.Finish();

Figure 4-30 Test code for the GetModellID method implementation

The OpenMI Document Series: Part B - Guidelines Book 4 page 43

HarmonIT © 2005 Book 4 Migrating OpenMI models

=18l

File Yiew Project Tools Help

=@ Examples =
=@ ModelCamponents Rur Stop | SimpleRiver.nunit
=-@ SimpleRiver
@ wrapper
@ SimpleRiverEngineDothettcoessTest
-0 Addinfiow . Enrors and Faiures | Tests Mot Fiun | ConsoleEnor Console Out
@ Create_expectedException . i
@ GetCumentTime Error Message from SimpleRiver Fortran Core j
@ GetFlow ERROR : Could not open input file
A0 GetlnpulTime File : Wrong file path\3impleRiver.sim
- GetMods|Description ERROR : Could not open input file
-0 GetModsllD 5 & 4 R S e i
vent e : FourcedfterGetVWaluesCa
® GEtN“""hE'OfN_”dES Event Message : GetValues(t = 08/10/2004 16:38:32, 05 = Flow ,0T
@ GethumberOfTimeSteps Component ID : Simple Riwver
- GetSimulationStantDate Simulation time : 07/l0/2004 16:38:32
-0 GetTimeStepLength
-~ GetCoordinate . Typ " - .
: vent, e : DataChange
@ GetrCoordinate Event Message : After PerforuTime3tep. Engine time = 097107200
@ PerformTimeStep Component I : Simple Riwver
c-@ SimpleRiverEnginerapperTest Simulation time : 09/10/2004 16:38:32
A0 GetComponentDescription
A0 GetComponentiD & Top i .
N went e : Informative
@ GetCurrentTime Event Message : First § returned Values {5.500000E-001, } for tir
40 GetinpuExchangeltem Component ID 1 Simple River
@ GetinputExchangeltemCount Simulation time : 09/10/2004 16:38:32
~ A GetlnputTime
A0 GetOutputExchangelem & - . T O T IeT
wEnt, e : SourcedfterGetWaluesCa
A GEOuuEchangg i maint Event Message : GetValues{t = 09/10/2004 16:38:32, 0% = Flow QT
@ GefTimeHorizon | |Component ID : Simple River
A Initialize Simulation time : 09/10/2004 16:38:32
-8 SimpleRiverOpenMICamponentTest
A0 ComponentDescription
. @ C e Ewent Tyhe : Informative
ormponed Event Message : First 5 returned Values {1.100000E+000, } for tir
@ GetinpuiExchangeltem Conponent I+ : 3imple River
@ GetOutputExchangelem Simulation time : 09/10/2004 16:38:32
-0 GetValues _I_I
< | 5 < |

Completed TestCases: 35 Tests Run: 35

Failures : 1 ‘T\me s eE1224
A

Figure 4-31 NUnit User interface with Simple River wrapper classes loaded

Book 4 page 44 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.7 Implementing IManageState

Implementation of the IManageState interface is not required in order to claim OpenMi
compliance. However, if you want to use your model in configurations where iterations are
needed or you want to use calibration or optimization controllers, the implementation of the
IManageState interface is required. Normally, you should put the bulk of the implementation
into the engine core and save the data required in order to restore a state in memory.

The OpenMI Document Series: Part B - Guidelines Book 4 page 45

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.7.1 The IManageState interface

Implementation of the IManageState interface is shown in Figure 4-32.

The LinkableEngine class already implements the required methods for the IManageState
interface but it is not specified in this class that it implements the IManageState interface.

To implement the IManageState interface when using the LinkableEngine, the procedure is as
follows:

1. In MyLinkableEngine, specify that it implements the IManageState interface.
2. In MyEngineWrapper, specify that it implements the IManageState interface.
3. Implement the IManageState methods in all wrapper classes. The implementation will

typically be very simple code that redirects the call to the next wrapper class and
finally to the engine core, where the bulk of the implementation is located.

Book 4 page 46 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

Org.OpenMl.Standard
<<Interface>> Org.OpenMI.Standard
ILinkableComponent <<interface>>
IManage State
T Implements A
Org.OpenMI.Utilities Wrapper mplements Org.OperTMI.UtfiIities.Wrapper
LinkableEngine <<interiace>>
IEngine
:\\ Implements
. >~ IManageState
Inherit Atcess y g Implements
\
\\\ .
MyCompany.OpenMI.MyEngine N IEngine MyCompany.OpenMI.MyEngine
MyLinkableEngine Creates > MyEngineWrapper

Has reference to

[}
Create i& Access Has reference to
[}

Vi
MyCompany.OpenMI.MyEngine
MyEngineDotNetAcces

|
| Access
[}
Vi
<<Win32dll>> MyCompany.OpenMI.MyEngine
MyEngineDlI| MyEngineDIlIAccess
Access
_()< ______________
Win32API

Figure 4-32 IManageState implementation

The OpenMI Document Series: Part B - Guidelines Book 4 page 47

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.8 The OMI file

The OMI file defines the entry point to a LinkableComponent. It contains information on the
software unit to instantiate and the arguments to provide at initialization. This file makes it
possible for a user interface to deploy your model.

This chapter describes the OMI file.

The OpenMI Document Series: Part B - Guidelines Book 4 page 49

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.8.1 Structure of the OMI file

The structure of the OMI file is defined in org.OpenMI.Standared.LinkableComponent.XSD.

Figure 4-33 provides a visual representation of the schema definition; Figure 4-34 provides an
example of an OMI file.

H attritutes

LinkableComponent EI—

B attritutes

1 Key !
- (A - e B
S

Figure 4-33 Visual representation of the LinkableComponent XML schema definition

<?XML version=“1.077>

<LinkableComponent Type=“org.OpenMI .Examples_MC.SimpleRain’ Assembly=
“org-OpenMI _.Examples.MC, Version=1.4.0.0, Culture=neutral, PublicKeyToken=
8384b9b46466c568° XMLns=“http://www.openmi .org/LinkableComponent.xsd’>
<Arguments>
<Argument Key=“Data’ ReadOnly=“true’

Value=“c:\OpenMI\Examples\Data\SimpleRain.txt’ />
</Arguments>

/LinkableComponent>

N

Figure 4-34 An example OMI file of the LinkableComponent XML schema definition

Book 4 page 50 The OpenMI Document Series: Part B - Guidelines

http://www.openmi.org/LinkableComponent.xsd

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.9 Design patterns for model migration

A wide variety of software packages have been migrated to the OpenMI so far. This chapter
outlines the processes involved in the migration in various cases.

The OpenMI Document Series: Part B - Guidelines Book 4 page 51

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.9.1 Design patterns for ISIS

ISIS is a modelling package for open channel systems, including loops, branches, floodplain
conveyance and storage. The software incorporates standard equations and modelling
techniques for structures including weirs, sluices, bridges, culverts, pumps, syphons, orifices
and outfalls; it also provides logical control for moving structures. Systems can be simulated
either in full unsteady mode or as an advanced steady-state simulation.

The OpenMI wrapper for ISIS is directly derived from the LinkableComponent and does not
use any of the utilities. This means that the ISIS wrapper itself handles the link handling,
interpolation, buffering and spatial mapping. The reason for this is that the first version of the
ISIS wrapper was written early in the development process of the OpenMlI (v.1.0) before any
of the utilities had been developed. When designing the wrapper, it was decided to keep the
changes to the ISIS Fortran code to a minimum and to write most of the wrapper functionality
in C#. The ISIS design pattern is shown in Figure 4-35.

ILinkableComponent

Implements

LinkableComponent

Derives from

ISISWrapper |—- Yes FortranWrapper

Uses |
. 4

Fortran code

Figure 4-35 The ISIS design pattern

Note that the FortranWrapper is not strictly necessary and the ISISWrapper could have talked
to the Fortran code directly. However, this would mean that all code would have to run in one
process. Like many Fortran programs, ISIS has a large number of global (common) variables,
which means that only one instance of the Fortran code can run at any time. It is not possible
to link two ISIS models and keep the Fortran code in the same process. To solve this
problem, the FortranWrapper can run in a different process from the ISISWrapper and it is
now possible to link many I1SIS models together. The communication between ISISWrapper
and FortranWrapper is done using .NET remoting; however, any inter-process communication
mechanism could have been used.

Book 4 page 52 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

4.9.2 Design patterns for InfowWorks RS

InNfoWorks RS is a one-dimensional river modelling software package. Combining the ISIS
flow simulation engine, geographical analysis and a relational database within a single
environment, InfoWorks RS integrates survey and time-series data with detailed and accurate
modelling. InfoWorks RS includes full solution modelling of open channels, floodplains,
embankments and hydraulic structures. Rainfall-runoff simulation is available using both
event-based and conceptual hydrological methods. The underlying data can be accessed
from any graphical or geographical view.

Running an RS model via OpenMl is essentially a three-stage process:
1. Retrieve input and output quantities from RS.
2. Run the RS engine for the model, setting and getting the required quantities.
3. Import the results back into RS.

RS C++ code had to be modified to expose the functions needed for the first and third steps.
These functions were then called via the RSLinkableRunEngine, which is derived from
LinkableRunEngine.

RS engine Fortran code had to be modified so that the engine ran via a set of timesteps, with
an initialize step and a finalize step. A set of functions was written so that these steps were
exposed and could be called from a DLL. RSRunEngine implements the IRunEngine
interface, which was used to wrap the RS engine and make these calls.

RSLinkableRunEngine creates the RSRunEngine object by .NET remoting so that RS runs in
its own process. This is necessary so that global variables in the RS engine do not conflict
with each other when two RS models are linked and run together. The Infoworks RS design
pattern is shown in Figure 4-36.

LinkableRunEngine IRUNENngine
A A
RSDatabase RSEngine
derives implements
C++ FORTRAN
A A
| |
1 1
! calls functions ! calls functions
: |
)]
. creates .

RSLinkableRunEngine N i g RSRunEnNgine

has reference to

Figure 4-36 The InfoWorks RS design pattern

The OpenMI Document Series: Part B - Guidelines Book 4 page 53

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.9.3 Design patterns for Mikel11

Mikell is a modelling system that covers a number of hydraulic areas that are relevant for
river modelling and management. The major components of Mikell are:

e 1D hydrodynamic river modelling in river networks

e 1D advection dispersion modelling in river networks

e 1D water quality modelling in river networks

¢ 1D sediment transport modelling and morphological modelling in river networks
e Eight built-in rainfall-runoff models for catchment modelling

e A large suite of structures ranging from simple culverts and weirs to advanced control
structures and dam structures tailored for dam break modelling

The engine code for Mikell is written in Delphi and is object oriented.
Migration of the Mikell components has been made using the wrapper pattern included in

org.OpenMlI.Utilities.Wrapper, including both the org.OpenMlI.Utilities.Buffer and
org.OpenMlI.Utilities.Spatial packages. The pattern used is shown in Figure 4-37.

Book 4 page 54 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

«interface»
ILinkableComponent
1
«realize»
1
LinkableEngine «interface»
IManagedState
A
1
«realize»
1
H
MikellLinkableComponent «interface»
IEngine
k>
]
«realize»
1
«interface» Mike11Engine «interface»
IManagedState M11EngineAccess

«realize»

JAY

1
«realize»
H

Mike11COMServ

I

TStateManaged
TMikell

Figure 4-37 The Mikell design pattern

The migration is made by wrapping Mikell into a COM object with an interface
(M11EngineAccess) very similar to the IEngine interface. The COM interface is again made
as a wrapper around the main class of Mikell itself. The COM interface, the COM wrapper
and the main class of Mikell are kept within Delphi. There is no Mikel1-specific code in the
logic for everything above the TMikel1l class. Therefore the migration has been accomplished
without transferring the Mike11 logic out of the engine core.

Table 4-2 and Table 4-3 contain the quantities and element sets that are available.

The OpenMI Document Series: Part B - Guidelines Book 4 page 55

HarmonIT © 2005

Book 4 Migrating OpenMI models

Table 4-2 Exchangeable quantities and element sets

Resistance No.

Groundwater Base Flow
Velocity

Surface Slope

H-points in specific branch
Single H-point

Water level boundaries

All H-points in set-up
H-points in specific branch
Single H-point

Quantity ElementSets Role

Discharge All Q-points in set-up Input and output
Q-points in specific branch
Single Q-point
Discharge boundaries

Water Level All H-points in set-up Input and output

Input and output

Flow Area
Flow Width All H-points in set-up Output
Radius H-points in specific branch
Single H-point
Conveyance
Froude No
Water Level Slope
Energy Level
Energy Level Slope
Bed Shear Stress
Volume
Lateral Inflow All H-points in set-up Input
H-points in specific branch
Single H-point
Point source boundaries
Groundwater level All H-points in set-up Input
H-points in specific branch
Single H-point
Time-series specified control | Single Q-point
structure settings
Table 4-3 Quantities and element sets
Quantity ElementSets Role
Run off ID for each catchment Output
Net rainfall

Book 4 page 56

The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

4.9.4 Design patterns for SOBEK

At the heart of the SOBEK modelling system is a powerful hydraulic engine for combined flow
computation applicable to sewers, open channels and overland flow. This is supported by
engines for real-time system control, rainfall-runoff processes, water quality processes,
sediment transport and morphology. Since all modelling engines of WL Delft Hydraulics are
developed in Fortran90, a solution has been developed that can easily be applied to all
engines.

The solution chosen is an intermediate buffer, implemented in F90/C, where model engines
can get their data from external sources and place their data for exchange. The buffer
contains the logic to sort out which data needs to be kept until used. Computational engines
do not need to be concerned with this data issue or any other time synchronization. Both
engines and OpenMI wrappers can transfer data to and from this intermediate buffer.

The class structure illustrated in Figure 4-38 shows a design pattern on the C# side which is
based on a previous stage of OpenMI development. The WLExchangeModel handles the
InputExchangeltems and OutputExchangeltems and interacts with the model schematization
through the WLModel class. This functionality is an integrated part of the ILinkableEngine
interface.

LinkableRunEngine IRunEngine ;
b e T.....................,‘ l,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,? ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, '
WLLinkableComponent WLEnNgineAPIAccess
WLExchangeModel
SOBEK.DLL
WLModel | FLOW |

' RR IR
GetVaIues' ' PutValues u

Intermediate OpenMI Buffer

WL Delft code (F90)| | WLDelft code (C#) | HarmonIT-code (C#)E

Figure 4-38 Class structure of the migrated SOBEK engines

The WLENgineAPIAccess class implements the IRunEngine interface and provides the run-
time data exchange interface between the F90 code and the OpenMI wrapper. Figure 4-39
illustrates the main methods available and the interaction between the wrapper classes and
the F90 engine module.

The OpenMI Document Series: Part B - Guidelines Book 4 page 57

HarmonIT © 2005 Book 4 Migrating OpenMI models

widelft_someengine.DLL (F90/C) widelft.OpenMI.DLL (C#)
SomeEngine (SE) Intermegisftfe;rOpean | wldelft.OpenMI.WLModel

N
ExchangeltemDefinitions |//

| ,,’-—{ Initialize]

wldelft.OpenMl.
WLEngineAPIAccess

SE_Initialize

: : :] Initialize |
: 3 ,,/{ GetValues] :
! Do 1+—1: :
: Lo ExchangeltemsValues |<\ : :
! | “\'[SetValues] :
|SE_Pen‘ormTimeStep I~ { PerformTimeStep I

| SE_GetInputTime I : { GetlnputTime]
: | SE_GetCurrentTime I : { GetCurrentTime I :
: | SE_GetError I‘ . { GetError I :
: | SE_Finalize I~ { Finalize] :

Figure 4-39 Main interaction between wrapper classes, intermediate buffer and engine

Book 4 page 58 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

Chapter 4.10 Performance issues

This chapter discusses some of the issues that may affect performance when migrating
models to the OpenMl.

The OpenMI Document Series: Part B - Guidelines Book 4 page 59

HarmonIT © 2005 Book 4 Migrating OpenMI models

4.10.1 Memory consumption

When running a set of linked models on one computer it is important to realize that several
models will be kept in memory at the same time and that the overall computation time is the
sum of the computation time for the individual models. Therefore it is crucial that the individual
models should consume as little memory as possible. When the amount of memory used by
all programs exceeds the amount of physical memory in the computer, the computer starts
swapping chunks of memory to disk. This is very slow and can lead to severe performance
degradation.

Book 4 page 60 The OpenMI Document Series: Part B - Guidelines

Book 4 Migrating OpenMI models HarmonIT © 2005

4.10.2 System processes

Although all linkable components run in one system process, the actual computation can
either be run in the same process or in a different process. Running the computation in the
same process is preferable because communication between processes can be up to a
hundred times slower than in-process communication. However, this is not always possible,
especially when Fortran code with many global variables is used. In that case there is no
other option than to run the Fortran code in a separate process.

The OpenMI Document Series: Part B - Guidelines Book 4 page 61

Book 5 Non-model components HarmonIT © 2005

Book5 Non-model components

BOOK 5

Chapter 5.1

511
51.2
5121
51.2.2
513
514
514.1
51.4.2
5.1.5
5151
5.15.2

Chapter 5.2
5.2.1

Chapter 5.3

53.1
53.2
53.3

NON-MODEL COMPONENTS ...ttt 5-1
Desktop and database applications........ccccccccvviviiiiiiiiic 5-3
ASCH IlES. ettt 5-4
Y01 =T £ 1= PPN 5-8
Generating an ASCII i€uuuuuuiiiiiiiiiiiiiiiiiiiiiii e 5-8
Accessing Excel using Visual Studio Tools for the Microsoft Office system..5-8
REPOM ENQINES ...cooviiiiiiiiiiiieeeeeee e 5-12
DAADASES ...ttt e a e 5-13
AccessiNg databases.........cooovviiiiiii 5-13
Accessing databases using ADO.NET ..o 5-13
L 1S TR 5-15
Accessing GIS through software libraries............ccccccciiiiiiiiici, 5-15
Accessing GIS through ASCIIHfileS ..., 5-15
VISUAIIZALION L. 5-17
The OpenMI DataMONItOr.c.uuviiiiieees e 5-18
Advanced CONLIOIIEISuuiiiiiiiiii e 5-19
10T 7= Ui o] o WU PP TP PP PUTRRTPOO 5-20
OPUMIZALION 1. e e e e e 5-26
CaliDratioN ... e 5-30

The OpenMI Document Series: Part B - Guidelines Book 5 page 1

Book 5 Non-model components HarmonIT © 2005

Chapter 5.1 Desktop and database applications

Previous books have discussed the use of OpenMI in model systems. Although linking
models is the primary aim of the OpenMI standard, the OpenMI doesn’t exclude the linking of
other systems. Online measuring systems, databases and decision support systems can be
linked to each other and to models using the OpenMl interfaces.

The OpenMI interfaces are designed to enable data exchange between components. A
component is not necessarily a model system; as long as the application is OpenMI-
compliant, it will be able to run in combination with other OpenMI.

This chapter illustrates the possible implementations of different kinds of OpenMI-compliant
applications. The illustrations should be considered as inspiration for your own developments.

The OpenMI Document Series: Part B - Guidelines Book 5 page 3

HarmonIT © 2005 Book 5 Non-model components

5.1.1 ASCII files

The input for model systems is often contained in simple ASCII files. Wrapping these files
allows you to make the data available to OpenMI-compliant systems.

For example, you can wrap the output file from one component so that it serves as the input
for another component. When such a file is wrapped, it can be accessed in the same way as
any other OpenMI component. The wrapped output file makes it easy to test the OpenMI
component that uses the file as input. It will also be possible to run the component using the
data without having to run the delivering component.

To be OpenMI-compliant, a component needs to implement two interfaces: the IPublisher and
ILinkableComponent interfaces. Therefore the ASCIlI reader needs to implement these
interfaces. As with model systems, this can be done by inheriting from
org.OpenMlI.Utilities.Wrapper.LinkableEngine and implementing specific methods.

The difference between the wrapping of ASCII files and the approach used for model
components lies in the implementation of the Exchangeltems (GetOutputExchangeltem) and
the GetValues call. In the case of a model component, the Exchangeltems will usually be
provided by a populated model kernel. When wrapping an ASCII file, the information about

possible Exchangeltems must be contained in the ASCII file itself.

// Lines starting with // are comment
// The fTirst uncommented line defines the quantity

// The second uncommented line defines the
next lines consist of a timestamp and values of the quantity for each location

/7 All
“"Flow"

"Locl";"Loc2";"Loc3"

''2005-01-01 00:00";"15.4";"18.2";"22._4"
''2005-01-01 03:00";"15.3";"18.5";"22.5"
''2005-01-01 06:00";"15.4";"18.9";"22_4"
''2005-01-01 09:00";"15.2";"19.0";"22.6""
''2005-01-01 12:00";"15.1";"18.8";"22.7"
''2005-01-01 15:00";'"14.8";"18.6";"22.9"
''2005-01-01 18:00";""14.7";"18.4";"23.4"
''2005-01-01 21:00";""14.7";"18.2";"23.8"
''2005-01-02 00:00";""14.6";"18.2";"23.9"
''2005-01-02 03:00";"14.1";"18.1";"24.0"
''2005-01-02 06:00";'"13.8";"18.2";"23.5"
''2005-01-02 09:00";'"13.9";"18.0";"23.6""
''2005-01-02 12:00";""13.6";"17.8";"23.5"
''2005-01-02 15:00";""13.2";"17.3";"23.3"
''2005-01-02 18:00";'"12.8";"17.4";"23.2"
''2005-01-02 21:00";"12.7";"17.2";"23.1"
''2005-01-03 00:00";"12.6";"17.2";"22.9"
''2005-01-03 03:00";"12.1";"16.8";"22.7"
''2005-01-03 06:00";"12.2";"16.6";"22.5"
''2005-01-03 09:00";""11.4";"16.5";"22._4"
''2005-01-03 12:00";"11.6";"16.4";"22.2"
''2005-01-03 15:00";"11.7";"16.3";"21.8"
''2005-01-03 18:00";""11.6";"16.0";"21.5"
''2005-01-03 21:00";"11.2";"15.8";"21.4"
''2005-01-04 00:00";"11.0";"15.6";"21.3"

locations

Figure 5-1 An example ASCII file

Book 5 page 4

The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

Figure 5-1 is an example of an ASCII file; there are four lines of comments, followed by a line
specifying the quantity and another containing the three locations. This information defines
the possible OutputExchangeltems.

The OutputExchangeltems could look like the following:

OutputExchangeltem[0] = { “Flow”, “Loc1"}
OutputExchangeltem[1] = { “Flow”, “Loc2"}
OutputExchangeltem[2] = { “Flow”, “Loc3"}
Implementing an OpenMI-compatible linkable component that uses this ASCII file as input

and makes the contents of the file available through OutputExchangeltems requires the
following steps:

e Start developing the component by implementing
org.OpenMlI.Utilities.Wrapper.LinkableEngine.

e Write code for methods such as Initialize, Finalize, GetModellD and
GetModelDescription.

o Write code for the SetValues, GetlnputExchangeltem and
GetlnputExchangeltemCount methods; these methods are empty because the ASCII
reader does not accept data.

e Write code for the GetOutputExchangeltem method; make sure the ASCII file is read,
the Exchangeltems are extracted from the file and the OutputExchangeltems are
defined.

e Write code for the GetValues method; this should extract the correct data for the
requested timestamp/Exchangeltem combination from the ASCII file.

Prototype code for GetOutputExchangeltem is given in Figure 5-2.

public I10utputExchangeltem GetOutputExchangeltem(int outputExchangeltemlndex)

{

return _output;

}

private void ReadFile()
{
StreamReader reader = new StreamReader(_inputFile);
bool quantityRead = false;
bool elementsRead = false;
_timeStamps.Clear();
_elementValues.Clear();

string line;
while ((line = reader.ReadLine()) != null)

{
if (line.StartsWith("'//™))

{
// ignore

}
else if (lquantityRead)
{

The OpenMI Document Series: Part B - Guidelines Book 5 page 5

HarmonIT © 2005 Book 5 Non-model components

_quantity = new Quantity(line.Trim(" ", ""%));
_output = new OutputExchangeltem();
_output.Quantity = _quantity;

quantityRead = true;

else if (lelementsRead)

string[] elements = line.Split(";");
_elementSet = new ElementSet();
_elementSet.ID = "File Contents";

_output._ElementSet = _elementSet;

for (int i = 0; 1 < elements.Length; i++)
{
_elementSet_AddElement (new Element(elements[i].Trim("""")));

}

elementsRead = true;
else

string[] values = line_.Split(";");

DateTime timestamp = Convert.ToDateTime (values[O]-Trim("""),
_culture);

double modifiedJulianDateTime =
CalendarConverter.Gregorian2ModifiedJulian (timestamp);

double[] locationValues = new double[values.Length - 1];
for (int i = 1; i1 < values.Length; i++)
{
locationValues[i - 1] = Convert.ToDouble (values[i]-Trim("""),
_culture);

}

_timeStamps.Add (modifiedJulianDateTime);
_elementValues.Add (locationValues);

Figure 5-2 Code for GetOutputExchangeltem

A prototype of the GetValues method is shown in Figure 5-3.

Book 5 page 6 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

public IValueSet GetValues(ITime time, string linkID)

{
ILink outgoingLink = (Link) _links[linklID];

f (outgoingLink == null)

i

{
throw new Exception (“'Unknown link or quantity'™);

}

if (time is TimeStamp)

{

TimeStamp timestamp = (TimeStamp) time;

double[] results;
for (int i = 0; 1 < _timeStamps.Count; i++)

{
if ((double)_timeStamps[i] + _delta > timestamp.ModifiedJulianDay)

{

results = (double[]) _elementValues[i];
return new ScalarSet(results);

}

throw new Exception (“'No appropriate values found™);

}

throw new Exception ("Time should be of type TimeStamp'™);

Figure 5-3 Example GetValues method

The OpenMI Document Series: Part B - Guidelines Book 5 page 7

HarmonIT © 2005 Book 5 Non-model components

5.1.2 Spreadsheets

There are a number of ways to make a connection to spreadsheet applications such as Excel.
This section discusses some ways of implementing this.

5.1.2.1 Generating an ASCII file

One way of connecting to a spreadsheet is to modify the OpenMI DataMonitor by redirecting
the output to a file that can be read by desktop applications: for example, the comma
separated value (CSV) file used to export information to Excel.

5.1.2.2 Accessing Excel using Visual Studio Tools for the Microsoft Office system

Using Visual Tools for Office enables the developer to access office documents such as Word
or Excel. The example below illustrates the way in which you can export data to Excel by
generating an Excel document from within Visual Studio .NET 2003.

As well as Microsoft Visual Studio .NET 2003 and Microsoft Office 2003, you must also install
Visual Studio Tools for the Microsoft Office System.

The first step is to create a reference in the project to the Excel x.x Object Library (the version
number depends on the installed version of Microsoft Office). Right-click on the References
folder in the Solution Explorer and choose Add Reference. Choose the COM tab and pick
Microsoft Excel x.x Object Library (Figure 5-4).

Add Reference @

MET COM] Projects |

Browse, ..
Component Marne | Typelib Yer.., | Path |A
Micrasaft DT DOSForm z.0 CH\Program FilesiComman Fil.. Select
Microsoft DTSDataPump Scrip,,. 2.0 Ci\Program Files\Microsoft 5.,
Microsoft DTSPackage Object ... 2.0 C:\Program Files\Microsoft 5...

[

. 1.0 CriProgram FilesiMicrasaft ...

S CiiProgram FilesiMicrasaft O,

. 1o COWINDOWS svskem32mstl,,, —
Microsoft Forms 2.0 Cbject Li... 2.0 CHOWINDOWS, SystemI2FM. ..
Microsoft Forms 2.0 Chject Li... 2.0 AW INDOWS, System32iFM, .
Microsoft Graph 9.0 Object Li.,. 1.3 C:iProgram Files\Microsaft O,
Microsoft Grid Control 1.0 CHOWINDOWS, system3 2 Grid,
Microsoft H323 Service Provid... 1.0 CHOWINDOWS, Swstem32ih3z. .
Mirrnsnft Heln Data Services ... 1.0 APranram FilesiCamman Fil..

Component Mane Type Source 1 [

| Cancel Help

Figure 5-4 Adding an Excel reference

Book 5 page 8 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

In this example, the DataMonitor application is modified so that it generates an MS-Excel
document. Taking the DataMonitor (OpenMI.Tools.Datamonitor.csproj) as a starting point,
you need to change some of the methods:

Add ‘using’ statements.

using
using
using
using
using
using
using
using
using
using
using
using

System;

System_Windows.Forms;
org.-OpenMI _.Standard;

org.-OpenMI .Backbone;
System.Diagnostics;

org-OpenMI _.DevelopmentSupport;
org.-OpenMl .Tools_DataMonitor;
System.Collections;
System.Threading;
System.Reflection;
System.Runtime. InteropServices;
Excel=Microsoft.Office. Interop.Excel;

Declare workbooks, sheets etc.

namespace riza.OpenMI.Tools.DataMonitorPlus

{

/// <summary>
/// The DataMonitorPlus class
/// </summary>
public class DataMonitorPlus:LinkableComponent, IListener
{
private Excel_Application ExcelObj = new Excel.Application();
private Excel _Workbook _workbook;
private Excel.Sheets _sheets;
private Excel _Worksheet _sheet;

Add source to the Initialize method in order to create a workbook and a worksheet.

if (ExcelObj == null)
{
throw new Exception(''Excel object not loaded");
}
// Make Excel object visible and
// add a workbook to populate
ExcelObj .Visible=true;
_workbook = ExcelObj.Workbooks.Add(Type.-Missing);
// Get the sheets collection from the workbook
_sheets =_workbook._Worksheets;
// Get the first (and only) sheet
_sheet = (Excel .Worksheet)_sheets.get_ltem(1l);

The OpenMI Document Series: Part B - Guidelines Book 5 page 9

HarmonIT © 2005 Book 5 Non-model components

¢ Modify the OnEvent code for the DataMonitor so that it writes the values to the
spreadsheet.

/// <summary>

/// OnEvent

/// </summary>

/// <param name="Event''>Event</param>

public static int rownumber;

public void OnEvent (lEvent Event)

{
ILink[] links = GetAcceptingLinks();
Excel .Range range;

foreach (ILink link in links)
{
if (link.SourceComponent==Event.Sender)
{
IValueSet values =
Event.Sender.GetValues(Event.SimulationTime, link.ID);

if (values is IScalarSet)

{

IScalarSet scalarSet = (IScalarSet)values;
string[] subitems = new string[4+scalarSet.Count];

subitems[0] =
CalendarConverter _ModifiedJulian2Gregorian(
Event._SimulationTime.ModifiedJulianDay) .
ToString();
subitems[1] = Event.Sender.ModellD;
subitems[2] = link.SourceQuantity.ID;
subitems[3] = link.SourceElementSet.ID;

rownumber++; // need rownumber in sheet

for (int i=0;i<scalarSet.Count;i++)
subitems[i+4] =
scalarSet._GetScalar(i).-ToString();

ListViewltem item = new ListViewltem(subitems);
_form_listViewl. lItems.Add(item);

// write all cells to next row in Excel Worksheet
for (int i=0;i<scalarSet.Count;i++)
{
char rangeChar = (char)(i+65);
string strCell = rangeChar +
Convert.ToString(rownumber);
range = _sheet._get_Range(strCell,strCell);
range.Value2=subitems[i];

Book 5 page 10 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

The difficult part is to determine the cell co-ordinates for the spreadsheet. Excel uses ranges
such as (Al:C1). In our example, such a range is being created for each value in the
ValueSet (B3:B3) based on the row number and position in the ‘subitems’ array.

The code shows how to incorporate Excel documents in .NET code. This code needs to be

completed by saving the Excel document to a specified filename (either using an argument
from the OMI file or by user input) and closing the file.

The OpenMI Document Series: Part B - Guidelines Book 5 page 11

HarmonIT © 2005 Book 5 Non-model components

5.1.3 Report engines

You can generate reports by developing an OpenMI-compatible tool that incorporates the
Crystal Reports Engine (integrated in the .NET environment). With this engine you can define
a standard report that can be exported to the following industry standards:

e Adobe Acrobat (.pdf)

e Crystal for Visual Studio .NET (.rpt)
e HTML 3.2 and 4.0 (.html)

e Microsoft Excel (.xIs)

e Microsoft Rich Text (.rtf)

e Microsoft Word (.doc)

Book 5 page 12 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

5.1.4 Databases

In the same way as for the ASCII reader, you can expose data contained in a database via
the OpenMI by replacing the methods that implement the Exchangeltems and the GetValues
calls. Furthermore it is possible to store data in the database through the SetValues call. One
way of implementing this is to use SQL statements.

5.1.4.1 Accessing databases

In the OpenMI, the delivering component is obliged to return a set of values for the requested
time. Each GetValues request initiates a processing activity. As many water-related models
progress in time, the time argument is the controlling variable for any processing activity.
Linkable components that do not progress in time can neglect the time argument; they do the
required processing and return the data. However, they must be able to pass the time
argument to another component if they invoke a GetValues call themselves.

If the requested time does not match the timestep in the computation and the computation is
already ahead, an interpolated value must be delivered. If the computation has not yet
reached the requested time, two alternatives are available:

e Calculate the values at the requested time.

e Extrapolate the solution.

Under normal conditions the first alternative should be chosen. For bidirectional links, one of
the components will need to extrapolate its solution in order to prevent deadlock situations.

Components that do not progress in time, such as databases, should also be able to return a
value, whether it is the actual, interpolated or extrapolated one. For those situations where the
exact time information is required, an additional interface is provided to obtain the discrete
timestamps available. Implementation of this interface, IDiscreteTimes, is optional.

5.1.4.2 Accessing databases using ADO.NET

The .NET environment offers a set of classes to access different kinds of database (MS-
Access, SQL-Server, Oracle). Developing a tool that saves data from a GetValues call to a
database is not difficult. The steps are as follows:

1. Connect to an SQL server (Figure 5-5).

// C#
this._sqlConnectionl = new System.Data.SqlClient.SqglConnection();
this._sqlConnectionl.ConnectionString = '"data source=riz02\\NETSDK; " +
"initial catalog=OpenMI;" +
"user id=User;password=Open;" +
"persist security info=True; " +
"workstation id=riz02; " +

"packet size=4096";

Figure 5-5 Connecting to an SQL server

The OpenMI Document Series: Part B - Guidelines Book 5 page 13

HarmonIT © 2005 Book 5 Non-model components

2. Execute an SQL command (Figure 5-6).

//
// SQL command Select
//
this._sqlSelectCommand.CommandText = " select * from measurement';
this._sqlSelectCommand.Connection=this.sqlConnectionl;
//
// SQL command Insert
//
this.sqllnsertCommand.CommandText= " insert into OpenMIl_measurement
(Quantity, Time, Value)
VALUES (QuantitylD, Timestamp, Values[0])
this._sqlSelectCommand.Connection=this.sqlConnectionl;

Figure 5-6 Executing an SQL Command

This is an example of accessing an SQL-server database. The .NET environment provides
classes to access many types of database, including MS-Access.

Book 5 page 14 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

5.1.5 GIS

Geographic information systems (GIS) are widely used to generate model input or present
and process model output. This section gives some suggestions on how to link GIS systems
to OpenMI components.

5.1.5.1 Accessing GIS through software libraries

Most GIS systems support incorporating part of their functionality into custom-built
applications.

For example, with the ESRI GIS software suite, a developer can use MapObjects or
ArcObjects depending on the functionality that is needed. MapObjects is a software library
with functions to display maps within the .NET environment. With ArcObjects (which is
platform-independent), it becomes possible to incorporate complete GIS functionality into a
custom application such as an OpenMI component. Therefore with these libraries you can
build an OpenMI-compatible component with full GIS functionality.

5.1.5.2 Accessing GIS through ASCII files

A very easy way to exchange data between an OpenMI component and a GIS system is by
generating or importing an ASCII file in the GIS environment. Two examples are given below.

Exporting data from GIS to an ASCII file

By exporting data from a GIS system to an ASCII file you can include this file in an OpenMI
composition using a tool like the ASCII reader discussed in section 5.1.1.

Arclinfo is one of the GIS systems used. Figure 5-7 shows Arcinfo aml code combining three
guantities into one grid, sorting this grid by ‘krwdeelstr’ (one of the quantities) and then
exporting the generated table to a comma separated value (ASCII) file.

krwmaxima = combine(.-\..\krwdeelstr, krwmax74, krwmax74gt0)

setmask off

arc tables

select krwmaxima.vat

sort krwdeelstr

unload krwmaxima.csv krwdeelstr krwmax74 krwmax74gtO delimited init

q

Figure 5-7 Arcinfo aml (export)

Importing data from an ASCII file to GIS

If you have developed a tool to generate ASCII files that are based on the results from an
OpenMI component, you can use this file to import the data into a GIS system. Figure 5-8
shows the ArcInfo code used to import data from an ASCII file that has been formatted as
shown in Figure 5-9.

The OpenMI Document Series: Part B - Guidelines Book 5 page 15

HarmonIT © 2005 Book 5 Non-model components

&echo &brief

setwindow O 300000 300000 625000
setcell 500

&do p &list g3 d3 b3
/* &do p &list f1 2 f3 4 f5

arc w m:\national_calculation_2005\%p%\
&r kill gvg2-%p% glg2-%p% ghg2-%p% dgvg2-%p% dglg2-%p% dghg2-%p%

setmask m:\national_calculation_2005\g3\gws-recharge\ghg2

gvg2-%p% = (Float(reclass (m:\monaldata\droogtebasis\plotcode 500 , gvg.rmp)) /
1000000)

glg2-%p% = (float(reclass (m:\monal\data\droogtebasis\plotcode 500 , glg.rmp)) /
1000000)

ghg2-%p% = (float(reclass (m:\monaldata\droogtebasis\plotcode 500 , ghg.rmp)) /
1000000)

/*dgvg2-%p% = gvg2-%p% - m:\national_calculation_2005\%p%\gws-recharge\gvg2
/*dglg2-%p% = glg2-%p% - m:\national_calculation_2005\%p%\gws-recharge\glg2
/*dghg2-%p% = ghg2-%p% - m:\national_calculation_2005\%p%\gws-recharge\ghg2

&end
Figure 5-8 ArcIinfo aml (import)

16612 : 1398699
16613 : 3730433
16614 : 4181700
16615 : 3039099
16616 : 1606600
16617 : 3452666
16618 : 3256366
16619 : 2974466
16620 : 2237799
16621 : 1531333
16622 : 1693533
16623 : 2394033
16624 : 1874899

etc.

Figure 5-9 Imported ASCII file

The ASCII file contains two columns; the first column identifies the grid number and the
second column identifies the quantity value multiplied by 1000000 (in order to get an integer
value, which is obligatory).

The command ‘reclass’ imports the specified ASCII file. The imported value is divided by
1000000 and converted to ‘float’.

The example above is just one of the many possible ways to import or export data to and from
GIS systems.

Book 5 page 16 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

Chapter 5.2 Visualization

This chapter provides background information on how to include a new data display function.

The OpenMI Document Series: Part B - Guidelines Book 5 page 17

HarmonIT © 2005 Book 5 Non-model components

5.2.1 The OpenMI DataMonitor

As the users of OpenMI will certainly need applications to present results or apply statistical
analysis, a variety of applications can be developed. The OpenMI DataMonitor is a good
starting point to understand how OpenMI can be used in combination with visualization tools.

One important design aspect needs consideration. In the OpenMI, components are triggered
by a GetValues call. Applications like the DataMonitor also need data, which they can obtain
by another GetValues call. Care must be taken when deciding the point at which to place this
call. Furthermore, post-processing applications are not meant to trigger model applications to
start a new computation.

This issue is covered by the DataChanged event. The DataMonitor is linked to a linkable
component and is registered as an Event Listener to this component. As soon as the
delivering component has answered a GetValues call from another linkable component, it will
throw a DataChanged event. The DataMonitor will respond to this event by issuing a
GetValues call to the delivering component. This component is able to return the GetValues
call immediately because it has the requested data in its buffer. This is illustrated in Figure
5-10, where the Visualization component is the DataMonitor.

|_O «interface» «interface»
RR model : Visualization

MainProgram ILinkableComponent :Listener
:IListener

GetValues(time=t1,linkiD=TriggerLinkiD)

[I dJ
return ValueSet Runoff [while RRime<ti}

OnEvent(DataChanged)

[o P—— 1
[
|
|

GetValues(time=t1, linkiD=TriggerLinkiD)

return ValueSet Runoff
UpdateDisplay

return handle

R e LS R P P

return handle

D i

Figure 5-10 The DataChanged event

Another issue to keep in mind is the fact that linkable components may have the
IManageState interface implemented. This means that these components may go back in
time, so the data received through the GetValues call from these components is not
sequential. A way to handle these situations is by implementing a buffer and checking
whether the received data is to overwrite data in the buffer or be appended to the buffer.

Book 5 page 18 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

Chapter 5.3 Advanced controllers

OpenMI can be used to address iteration, optimization or calibration issues. To illustrate these
applications, a number of advanced controllers have been developed as part of the
org.OpenMlI.Utilities package. Their usage is described in this chapter.

The OpenMI Document Series: Part B - Guidelines Book 5 page 19

HarmonIT © 2005 Book 5 Non-model components

5.3.1 lteration

Before using an iterated link, it is strongly recommended that you try using a bidirectional link
first. Only when there are strong backwater effects are iterated links really needed. Usually a
bidirectional link with a small timestep will work; in the example below a bidirectional link with
no iterations gives the same result. A bidirectional link is much easier to set up and will run
much faster. Also, to support iterations the models used will have to be able to restore their
state to an earlier time, something that not all OpenMI-compliant models will be able to do.
You should check with the model supplier to ensure that the model supports the ability to
restore its state before trying to use any of the controllers.

The iteration controller should be placed between any components that are to be iterated. Any
access to these components should not be done directly but through the iteration controller.
The iteration controller has a number of data slots, numbered 1, 2, 3 etc. In order to connect
guantities through the iteration controller, the output exchange item of the providing
component should be connected to a certain slot (e.g. 1), and the input exchange item of the
receiving component should be connected to the same slot (i.e. 1). One slot should only be
used for one link.

Figure 5-11" shows an example of two river models connected with the iteration controllers.
Note that there are no direct connections between the two model components; all connections
are through the iteration controller. Figure 5-12, Figure 5-13, Figure 5-14 and Figure 5-15
show the links that were used. The iteration controller should be selected as the start-up
component in this case.

The start and end time and timestep should be chosen in the OpenMI user interface and the
simulation can be run as normal.

The user interface as shown is not operational anymore

Book 5 page 20 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

t™® 0penMI Configuration Editor v1.0 Beta - iteration |Z||E|[z|
File Edit Wew Tools Help

BRI 2 W

Mew Composition | 4 bBx

ISIS - ex3a

i I I &
+

s

Iteration Controller - Iteration Controller

#] Quankity
Quankity)

1515 - ex3b

+| Q

Statuz bar

Figure 5-11 Two river models linked by the iteration controller

The OpenMI Document Series: Part B - Guidelines Book 5 page 21

HarmonIT © 2005 Book 5 Non-model components

Links Editor,

Source Model:i 1515 - exda w | Target Model:i Iteration Controller - lkeration Contraller R |

Source Quantit_l,l:i Q v | Target Quantit}l:i Quantity v |

i Link Properties ~
Source: Destination: D ata operations:

BRIDD
120 2
140 3
160 4
180 7
g
7
8
3

>
>|

200
220
240
260 =
280 10
300 11

il R

| Branches

Add New

[Links

=]
o
%

| FromE lementS et | ToElementSet | DataOperations
3 1

£ *

Delete Selected

Figure 5-12 Linking the outflow from model 1 to slot 1

Book 5 page 22 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

Links Editor,

I [|
Fource Model | Iteration Controllsr - Iteration Contraller b | Target Madel:| 1515 - ex3b hd |

Source Quantit_l,l:i Quantity w | Target Quantit_l,l:i o] - |

i Link Properties ~
Source: Destination: D ata operations:

h - pPymsx_ |
2
3
4
(2]
[
7
g
9

o
&

Lirks
| FramE lementSet | ToElementSet | DataOperationz
L 320
< >

Delete Selected

Figure 5-13 Linking the output from slot 1 to the input of the second river model

The OpenMI Document Series: Part B - Guidelines Book 5 page 23

HarmonIT © 2005 Book 5 Non-model components

Links Editor,

Source Model:i 1515 - ex3b w | Target Model:i Iteration Controller - lkeration Contraller R |

Source Quantit_l,l:i H v | Target Quantit}l:i Quantity v |

i Link Properties ~

Source: Destination: D ata operations:

EZT N, | |

340 ||

260 3

380 4

400 5

420 B
7
8

[E3

440
460
480 3

500 10
520 "
540 12
560

Add New

[Links

&
o
%

| FromE lementS et | ToElementSet | DataOperations
3 2

£ *

Delete Selected

Figure 5-14 Linking the output (stage) of the second model to slot 2

Book 5 page 24 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

Links Editor,

T T
Fource Model | Iteration Controllsr - Iteration Contraller b | Target Madel:| 1515 - ex3a _\.r":|

Source Quantit_l,l:i Quantity w | Target Quantit}l:i H - |

i Link Properties ~
Source: Destination: D ata operations:

~ | R

]
2
3

4

(2]

[

7

g

9

10

"

12

13

&4

Add New

[Links

| FromE lementS et | ToElementSet | DataOperations
[E 320

£ *

Delete Selected

Cloze

Figure 5-15 Linking the output of slot 2 to the stage input of the first model

The OpenMI Document Series: Part B - Guidelines Book 5 page 25

HarmonIT © 2005 Book 5 Non-model components

5.3.2 Optimization

For optimization an objective function is needed. This objective function takes a number of
parameters and calculates a value. The optimizer provides parameter values to the objective
function and the objective function returns values to the optimizer. The optimizer tries to
minimize or maximize the objective function.

The number of parameters and the minimum, maximum and starting value for the
optimization are specified in the OMI file. Figure 5-16 shows an example OMI file for two
parameters, which both have a minimum of =100, a maximum of 100 and a starting value of
3.5. There is no limit on the maximum number of parameters, although the optimization might
take a very long time with a large number of parameters.

<?XML version="1.0"7?>
<LinkableComponent Type="org.OpenMI.Utilities.AdvancedControl.OptimizationController"
Assembly="org.OpenMI _Utilities.AdvancedControl .DLL">
<Arguments>
<Argument Key="Parameter' ReadOnly="true" Value='"P0,-100,100,3.5" />
<Argument Key="Parameter' ReadOnly="true" Value='"P1,-100,100,3.5" />
</Arguments>
</LinkableComponent>

Figure 5-16 An example OMI file for the optimization controller with two parameters

The next step is to connect the objective function and the optimizer in the OpenMI GUI
(Figure 5-17). Figure 5-18 and Figure 5-19 show how to connect the objective function to the
optimizer.

The simulation is run as usual and the message window in Figure 5-17 shows the result. The
real minimum for the objective function is (0, 0) and the real minimum cost is -1 so the
optimizer has been effective in this case.

The optimizer is based on a genetic algorithm and should produce reasonable results with
most objective functions.

Book 5 page 26 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components

= OpenMl Configuration Editor ¥1.0 Beta - optimization

HarmonIT © 2005

File Edit Yiew Tools Help

QAR > B [Nortomwoin |

New Composition |

| Quantity
Cuantity

Simple Model - Simple Model

+| Cost

Cuankity

Optimization Controller - Optimization Controller

| Time

Message

24f01/2005 12:27:24

Mew solution has been created

24/012005 12:27:28
240112005 12:27:33
24/012005 12:27:40
240112005 12:27:44
240112005 12:27:44
24/01[2005 12:27:45
240112005 12:27:45
240112005 12:27:47
24/012005 12:27:56
240112005 12:27:56
24/01f2005 12:27:57
24/01/2005 12:27:58
24/01/2005 12:28:00
24/01[2005 12:258:02
24/01/2005 12:25:09
24/01/2005 12:28:09
24/01/2005 12:258:12
24/01/2005 12:28:14
Z24/012005 12:28:23
240112005 12:258:33
24/01/2005 12:28:33
24/01[2005 12:28:33
240112005 12:258:34
241012005 12:28:37
240112005 12:258:37
24/01/2005 12:28:37
24/01[2005 12:28:37
240102005 12:258:37
24/01/2005 12:28:37
24/012005 12:258:37
£

ModelCommand: Imported model "Simple Model -
ModelCommand: Imported model "Optimization C
TODO! add check that compasition name is unigu
TODO: add check, if we already have this model
TODO: add check that composition name is unigu
TODO: add check, if we already have this model
TODO: add check that composition name is unigu
TODO: add check that composition name is unigu
LinksEditor: O data operations found

LinksEditor; O data operations found

Selected DataOperations:

LinksEditor: O data operations found

Selected DataOperations:

TODO: add check that composition name is unige
LinksEditor; O data operations found

LinksEditar: O data operations found

Selected DataCperations:

TODO: add check that composition name is unigu
TODO: add check thak composition name is unige
Saving solution to the file optimization.oms
TODO: add check that composition name is unigu
Creating directory "optimization. oms_filest"
TODO: add check that composition name is unigu
The Trigger is: Opkimization Controller - Optimiza
Starting a new simulation

TODO: add check that composition name is unigu
Best solution after 1000 evaluations:
(Cosk=-0.999953129415749)
PO=-0,00130166026031065
P1=0.0035956547 3402049

I Status bar

Figure 5-17 Linking the optimizer to the objective function

The OpenMI Document Series: Part B - Guidelines

Book 5 page 27

HarmonIT © 2005 Book 5 Non-model components

Links Editor,

Source Model:i Optirization Contraller - Optirmization Cantraller v| Target Model:i Simple Model - Simple Model v|

Source Quantit_l,l:i Quantity “ | Targst Quantit}l:i Quantity - |

i Link Properties ~

Source: Destination: D ata operations:
F1 2

Add New

[Links

| FromE lementS et | ToElementSet | DataOperations
PO 1
P1 2
5 i

Delete Selected

Figure 5-18 The link from the optimizer to the objective function

Book 5 page 28 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

Links Editor,

Source Model:i Simple Madel - Simple Model v| Target Model:i Optimization Controller - Dptimization Controller v|

Source Quantit_l,l:i Quantity “ | Targst Quantit_l,l:i Cost b |

i Link Properties ~

Source: Destination: D ata operations:

Add New

[Links

| FramE lementSet | ToElementSet | DataOperationz
L 1
) 2

Delete Selected

Figure 5-19 The link from the objective function to the optimizer

The OpenMI Document Series: Part B - Guidelines Book 5 page 29

HarmonIT © 2005 Book 5 Non-model components

5.3.3 Calibration

Calibration can be performed using the optimizer by selecting a special objective function.
This objective function should reflect the difference between the measured and the computed
values. With the controllers, a component that calculates the sum of squared differences is
provided.

In the SSD.OMI file, the start time, end time and timestep should be specified for the
calibration run. Figure 5-20 shows an example of this file. Figure 5-21 shows how to set up
the calibration. The top model represents the measured data and the second model
represents the calculated data. The third block calculates the difference between the
measured and calculated values and returns the result to the optimizer, which in turn sets the
parameters for the calculation model (second block). The actual values for the parameters are
(0.83, 0.42), so the optimizer has produced a good result.

<?XML version="1.0"7?>

<LinkableComponent Type="'org.OpenMI.Utilities.AdvancedControl.SumSquaredDifference"
Assembly="org.OpenMI _Utilities.AdvancedControl .DLL">
<Arguments>
<Argument Key="BeginTime" ReadOnly="true" Value="0.0" />
<Argument Key="EndTime" ReadOnly="true" Value="1.0" />
<Argument Key="TimeStep" ReadOnly="true" Value="0.041666666666666666666" />
</Arguments>

</LinkableComponent>

Figure 5-20 Example of the SSD.OMI file (specifying the start, end and timestep)

Book 5 page 30 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

= OpenMl Configuration Editor v1.0 Beta - calibration
File Edit Wiew Tools Help

DR2EH B |
New Composition | 4 b x || Messages 1 x
Time Message A
TSM2 - TSM2 | 24j01/2005 12:52:09 LinksEditor: 0 data operations Found

24/01/2005 12:52:09 LinksEditor; 0 data operations Found

24012005 12:52:09 LinksEditor: 0 data operations Found

24j01/2005 12:52:12 Selected DataOperations:

Quartity 24/01/2005 12:52:13 TODO: add check that compasition name is unique For current solution

24/01/2005 12:52:16 LinksEditor: 0 data operations Found

24/01/2005 12:52:16 LinksEditor: 0 data operations Found

24/01/2005 12:52:15 TODO: add check that compasition name is unique For current solution

24i01/2005 12:52:18 CompositionEditor: deleting connection Quantity - Quankity

TSM1 - TSM1 24/01/2005 12:52:21 LinksEditor; 0 data operations Found

24j01/2005 12:52:21 LinksEditor: 0 data operations Found

i 24)01)2005 12:52:21 LinksEditor: 0 data operations Found

+ Quantity 24/01/2005 12:52:23 Selecked DataOperations:

Quantity > 24i01/2005 12:52:24 TODO: add check that composition name is unique For current salution
24j01/2005 12:52:31 LinksEditor: 0 data operations Found

/ 24/01)/2005 12:52:31 LinksEditor; 0 data operations Found

-+ Quankity

24/01/2005 12:52:33 Selected DataOperations:

24/01/2005 12:52:534 LinksEditor: 0 data operations Found

24101/2005 12:52:35 Selected DataCperations:

24i01/2005 12:52:36 TODO: add check that composition name is unique For current salution -

Sum of Squared Differences - Sum of Squared Differences

é 24/01/2005 12:52;39 LinksEditor; 0 data operations Found
Quantity 24j01/2005 12:52:39 LinksEditor: 0 data operations Found
24j01/2005 12:52:41 Selected DataOperations:
Cost it 24/01/2005 12:52:42 TODO: add check that compasition name is unique For current solution

24/01/2005 12:52:47 TODO: add check that composition name is unique For current salution
24/01/2005 17:52:54 Sawing solution to the file calibration.oms
24/01/2005 12:52:54 TODO: add check that compasition name is unique For current solution
Dptimization Controller - Dptimization Controller 24j01/2005 12:52:54 Creating directory "calibration.oms_files)"
24/01/2005 17:52:55 TODO: add check that composition name is unique For current solution
24101/2005 12:52:58 The Trigger is: Optimization Cantroller - Optimization Contraller
24012005 12:52:55 Starting a new simulation
Quantity 5 24/01/2005 12:52:56 TODO: add check that compasition name is unique For current solution

24j01/2005 12:52:59 Best solution after 1000 evaluations:

24012005 12:52:59 (Cost=1.33997969673236E-07)

24/01§2005 12:52:59 PO=0.829926003339421

24)01)2005 12:52:59 P1=0.420055536131541 bt
| £ | >

¥ Cost

I Status bar

Figure 5-21 Setting up the calibration

The OpenMI Document Series: Part B - Guidelines Book 5 page 31

HarmonIT © 2005 Book 5 Non-model components

5.3.4 UML diagrams

Figure 5-22 shows the UML diagram for the advanced controllers. The generic Controller
class is derived from LinkableComponent and both the IterationController and
OptimizationController classes derive from the Controller class.

cd AdvancedControl /

LinkableComponent
Controller

IterationController OptimizationController

Prepare() : void

«property» ComponentDescription() : string
«property» ComponentID() : string
«property» ModellD() : string

«property» ModelDescription() : string
«property» EarliestinputTime() : ITimeStamp
«property» TimeHorizon() : ITimeSpan
Finish() : void
GetPublishedEventType(int) : EventType
GetPublishedEventTypeCount() : int
Validate() : string

Initialize(IArgument) : void
GetValues(ITime, string) : IValueSet

Prepare() : void

«property» ComponentDescription() : string
«property» ComponentlD() : string

«property» ModellD() : string

«property» ModelDescription() : string
«property» EarliestinputTime() : ITimeStamp
«property» TimeHorizon() : ITimeSpan
GetPublishedEventType(int) : EventType
GetPublishedEventTypeCount() : int
Validate() : string

Finish() : void
AddParameter(ParameterDescriptor) : void
GetParameters() : ArrayList
Initialize(IArgument) : void
EvaluateCostFunction(ITime, Solution) : double
GetValues(ITime, string) : IValueSet

+ o+ + o+ o+ o+ o+ o+ o+

+ + F o+ o+ o+ o+ o+ A+

Figure 5-22 The advanced controllers

Book 5 page 32 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

The advanced controllers contain an internal buffer, the UML diagram for which is shown in
Figure 5-23.

cd Buffer

Buffer

+ Clear() : void
+ Get(string) : IValueSet
+ Add(string, IValueSet) : void

BufferElement

+ BufferElement(string, IValueSet)
+ «property» ID() : string
+ «property» ValueSet() : IValueSet

Figure 5-23 The internal buffer

The optimization and calibration controllers use a parameter descriptor to describe the
minimum, maximum and default values for parameters. Figure 5-24 shows the UML diagram
for the parameter descriptor.

cd ParameterDescriptor /

ParameterDescriptor

ParameterDescriptor(string, double, double, double)
«property» ID() : string

«property» Minimum() : double

«property» Maximum() : double

«property» CurrentValue() : double

+ o+ o+ o+ o+

Figure 5-24 The parameter descriptor

The OpenMI Document Series: Part B - Guidelines Book 5 page 33

HarmonIT © 2005 Book 5 Non-model components

The optimization and iteration controllers use a Solution class to store candidate solutions.
Figure 5-25 shows the corresponding UML diagram.

cd Solution /

IComparable
Solution

+ _values: double ([])

+ _minimum: double ([])
+ _maximum: double ([])
+
+

_cost: double
random: Random = new Random()

+ Solution(double, double, double, double)
+ Solution(Solution, Solution)

+ randomize(): void

+ mutate() : void

+ CompareTo(object) : int

Figure 5-25 The Solution class

Figure 5-26 shows the UML diagram for the ‘sum of squared differences’ component.

cd SSD /

LinkableComponent
SumSquaredDifference

Prepare() : void

«property» ComponentDescription() : string
«property» ComponentID() : string

«property» ModellD() : string

«property» ModelDescription() : string

«property» EarliestinputTime() : ITimeStamp
«property» TimeHorizon() : ITimeSpan
GetPublishedEventType(int) : EventType
GetPublishedEventTypeCount() : int

Validate() : string

Finish() : void

Initialize (IArgument) : void

GetValues(ITime, string) : IValueSet
GetlnputExchangeltem(int) : lInputExchangeltem
«property» InputExchangeltemCount() : int
GetOutputExchangeltem(int) : IOutputExchangeltem
«property» OutputExchangeltemCount() : int

ot o+ o+ o+

Figure 5-26 The SumSquaredDifference class

Book 5 page 34 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

Figure 5-27 shows an example of two models linked together using the iteration controller.

A OpenMl] Configuration Editor ¥1.0 Beta - iteration |'L”E|[E|
File Edit Yiew Tools Help

ERENICE=IR 2N W

Mew Composition | 4 bBx

ISIS - ex3a

i I I &
+

s

Iteration Controller - Iteration Controller

#] Quankity
Quankity)

1515 - ex3b

+| Q

Statuz bar

Figure 5-27 Two models linked together by the iteration controller

The OpenMI Document Series: Part B - Guidelines Book 5 page 35

HarmonIT © 2005 Book 5 Non-model components

Figure 5-28, Figure 5-29 and Figure 5-30 show the sequence diagrams for the iteration
controller, optimisation controller and calibration controller respectively. Note that Q' and H’
are values after relaxation.

sd Iteration /

:LinkableComponent

ex3b
:LinkableComponent

ex3a

:IterationControlleq
LinkableComponent

IValueSet:= GetVaIues(timeR

SaveState()

gt

|
Save‘:State
i
|
'
1
i
)
1
1

loop Iteration /

[while not converged] RestoreState

gn

)
Resto}eState

GetValues(time,Q)

>

GetValues(time ,H)

GetValyes(time,H)

GetValyes(time,Q) J

Relaxation

S

A
o
=

Relaxation

e d

R
—————

Figure 5-28 Sequence diagram for the iteration controller

Book 5 page 36 The OpenMI Document Series: Part B - Guidelines

Book 5 Non-model components HarmonIT © 2005

sd Optimization /

Deployer :LinkableComponent :OptimizationController CostFunction :LinkableComponent

GetValues(time,LinkiD)

loop Optimization /

[while optimum not found]
GetValues(time,LinkiD)

GetValues(time,parameters)

parameters

——
S

Figure 5-29 Sequence diagram for the optimization controller

The OpenMI Document Series: Part B - Guidelines Book 5 page 37

HarmonIT © 2005 Book 5 Non-model components

sd Calibration /
Deployer :OptimizationController :SumSquaredDifference MeasuredValues Model
:LinkableComponent :LinkableComponent :LinkableComponent
GetValues()
SaveState() -
g n
loop /
[for all parameters]
GetValues()
RestoreState() -
g u|
loop /
[forall timesteps]
GetValues()
values
i
!
GetValues()
GetValues()
parameters
values
squared sum of differences
L] 1
T '
' '
1 1

Figure 5-30 Sequence diagram for the calibration controller

Book 5 page 38 The OpenMI Document Series: Part B - Guidelines

Index

Index

.NET assemblies, 4-20
.NET development environment, 4-20

A

Accessing databases, 5-13
Accessing engine core functions, 4-22
Accessing GIS, 5-15
Activation, 1-18
ADO.NET, 5-13
Advanced controllers, 5-21
calibration, 5-32
iteration, 5-22
optimization, 5-28
UML diagrams, 5-34
ASCI|I files, 5-4
input to spreadsheets, 5-8
using with GIS, 5-15
Attributes, 1-17

B

Base classes, 1-15
Behaviour of objects, 1-14
Benefits of OpenMI, 1-6
Bidirectional links, 2-7
Building visual tools, 3-38

C

Calibration, 5-32
Changing the engine core, 4-18
Child classes, 1-15
Class diagrams, 1-16
Class roles, 1-18
Classes, 1-14
Completion phase, 3-14
Components

locating, 3-5
Compositions, 2-38

adding models, 2-41

running, 2-46

triggers, 2-45

XML files, 3-26
Computation phase, 3-13
Configurable OpenMI systems, 1-32
Configurable systems, 3-23
Configuration, 3-25

validation, 3-25
Configuration editor, 2-39
Configuration phase, 3-10
Configuring conections, 2-44
Configuring links, 2-36
Connecting models, 2-43
Connections between models, 2-43

The OpenMI Document Series: Part B - Guidelines

HarmonIT © 2005

configuring, 2-44
Creating .NET assemblies, 4-20
Creation of objects, 1-19
Crystal Reports Engine, 5-12

D

Data

exchanging, 2-9

mapping, 2-22
Data exchange mechanism, 2-4
Database applications, 5-3
Databases

accessing, 5-13
Databases (OpenMI compliance), 5-13
DataMonitor, 5-20
Deployer, 2-38
Deployer component, 3-31
Deploying systems, 3-31
Deployment phases, 1-33, 3-8
Derived classes, 1-15
Design patterns, 4-51
Desktop applications, 5-3
Destruction of objects, 1-19
Dimensions, 2-12
Disposal phase, 3-14
Dynamic ElementSet, 2-21

E

Element sets, 2-6, 2-15
Elements, 2-15

combining types, 2-17
ElementSet, 2-15

dynamic, 2-21
ElementType

choosing, 2-20
Encapsulation, 1-14
Engine components, 1-9, 1-34
Engine core

accessing functions, 4-22

changing, 4-18
Engine interfaces, 1-9
Engines, 1-9
Error handling, 1-6
Excel (OpenMI compliance), 5-8
Exchange items, 4-12

defining, 4-12
Exchange models, 2-26
Exchangeltem, 2-26
Exchanging data, 2-9

use case, 2-10

values, 2-11
Execution phase, 3-13

F

Flux (quantities), 2-20

Index page 39

HarmonIT © 2005

Functions, 1-14, 1-17

G

Geographic information systems, 5-15
GetValues method, 1-28, 2-4
implementation, 4-37
GIS
accessing, 5-15
using ASCII files, 5-15
GIS (OpenMI compliance), 5-15
Graphical user interfaces, 3-37
GUlIs, 3-37

H

Hard-coded systems, 3-17

|IElementSet, 2-6
IEngine interface, 4-18

implementation of methods, 4-38
ILinkableComponent, 2-4
ILinkableEngine

implementing, 4-26
IManageState, 4-46

implementing, 4-45
Implementing IManageState, 4-45

Implementing MyEngineDotNetAccess, 4-24

Implementing MyEngineWrapper, 4-26

Implementing MyModeLinkableComponent, 4-

28
Information hiding, 1-14
Infoworks RS migration, 4-53
Inheritance, 1-15
Initialization phase, 3-9
Initialize method, 4-33
Inspection phase, 3-10
Instances of classes, 1-14
Instantiation phase, 3-9
Integrated water management, 1-4
Interfaces (objects), 1-21
ISIS migration, 4-52
Iteration controller, 5-22

L

Linkable component interface, 3-8
Linkable components, 1-9, 1-34
phases for use, 3-8
LinkableEngine, 4-15
Linking models, 1-23, 2-43
Links, 2-35
configuring, 2-36
Loops, 1-20

Index page 40

M

Mapping data, 2-22
Memory consumption, 4-60
Messages, 1-17, 1-18
Methods, 1-14, 1-17
Migrating models, 1-34, 4-7
Migration
Infoworks RS, 4-53
ISIS, 4-52
Mikel1, 4-54
planning, 4-7
SOBEK, 4-57
steps in process, 4-17
use cases, 4-8
Migration process, 1-35
Mikell migration, 4-54
Model application, 1-9
Model properties, 2-41
Models, 1-9
adding to composition, 2-41
linking, 1-23, 2-43
migrating, 1-34, 4-7
Modularity, 1-14
MyEngineDLLAccess class, 4-22
MyEngineDotNetAccess class, 4-24
MyEngineWrapper class, 4-26
completion, 4-29
MyModeLinkableComponent class, 4-28

N

Non-model components, 5-3
NUnit software, 4-42
installing, 4-21

o

Object oriented programming, 1-14
Objectives of OpenMI, 1-5
Objects, 1-14
creation, 1-19
destruction, 1-19
OM Il files, 1-32, 3-5, 4-49
structure, 4-50
OmiEd, 2-39, 3-39
adding triggers, 2-45
configuring connections, 2-44
connecting models, 2-43
running compositions, 2-46
starting, 2-40
OOP, 1-14
OpenMl, 1-3
benefits, 1-6
configuration editor, 2-39
objectives, 1-5
OpenMI architecture, 1-37
OpenMI compliance, 1-9, 1-37, 4-4
OpenMI compliant systems, 3-3
OpenMI components
locating, 3-5
OpenMI DataMonitor, 5-20

Index

The OpenMI Document Series: Part B - Guidelines

Index

OpenMl interface, 1-10
OpenMI Software Development Kit, 1-37
OpenMI systems, 1-32, 3-4
configurable, 1-32, 3-23
deploying, 3-31
developing, 1-31
establishing, 3-7
hard-coded, 3-17
migrating, 1-34
running, 3-31
Operations of classes, 1-17
Optimization, 5-28
Overriding methods, 1-15

P

Parent classes, 1-15
Performance, 1-6

Performance issues, 4-59
Persistent storage, 3-25

Phases for using components, 3-8
Preparation phase, 3-12

Prepare method, 3-12
Procedures, 1-14

Pull mechanism, 1-26, 2-4

Q

Quantities, 2-12
flux, 2-20
source, 2-36
target, 2-36

R

Report engines, 5-12
Request-reply mechanism, 1-26
Running compositions, 2-46
Running systems, 3-31

S

Scalars, 2-11
Sequence diagrams, 1-17
SetValues method, 4-36
Simple River example, 4-6
migration, 4-31
wrapper, 4-32
SOBEK migration, 4-57
Source quantity, 2-36
Spreadsheets (OpenMI compliance), 5-8
State of objects, 1-14

The OpenMI Document Series: Part B - Guidelines

HarmonIT © 2005

Structured grids, 2-15
Subclasses, 1-15
Subroutines, 1-14
Superclasses, 1-15
System processes, 4-61

T

Target quantity, 2-36
Terminology, 1-9
Test software, 4-42
Testing units, 4-42
Triggers, 2-45, 3-13

U

UML, 1-16
UML diagrams
advanced controllers, 5-34
Unified Modelling Language, 1-16
Unit conversions, 1-29
Unit testing, 4-42
Units, 2-12
Use cases, 1-8
migration, 4-8
User interfaces, 1-9

\%

Validation (configuration), 3-25
Values, 2-11
Variables, 1-14
Vectors, 2-11
Visual tools, 3-37
building, 3-38
Visual Tools for Office, 5-8
Visualization, 5-19

W

Water Framework Directive, 1-4
WFD, 1-4

Whole catchment modelling, 1-4

Wrapping, 4-13
Wrapping pattern, 4-14

X

XML files, 3-26

Index page 41

