
The OpenMI Standard in a nutshell v.1.4.0 September 2007

The OpenMI Association © 2007 1 www.openmi.org

The OpenMI Standard in a nutshell
Peter J.A. Gijsbers (WL | Delft Hydraulics)
Jan B. Gregersen (DHI Water & Environment)

This paper
This paper contains the summary of the org.OpenMI.Standard, the Open Modelling
Interface specification to explicitly define, describe and transfer data, (i.e. numerical
data variable in space and time), between components on a time basis, including
associated component access. The full text version is contained in the document:
OpenMI Association (2007) The OpenMI Document Series Part C - The
org.OpenMI.Standard interface specification. (for OpenMI v.1.4)
This full text version is available on www.openmi.org and is also included in the
OpenMI software release available under Lesser GPL license conditions.

OpenMI is initially developed as part of the HarmonIT research project co-funded by
the European Commission (Contract EVK1-CT-2001-00090). The OpenMI
Association takes responsibility for the promotion of the use and development of the
OpenMI. Its support and improvement is co-funded by the OpenMI-Life project as
part of the EU-LIFE Environment program (Contract no : LIFE06 ENV/UK/000409).
OpenMI is on its way to become a widely accepted ‘standard’ for model linkage in
the water and environmental domain.

Introducing OpenMI
Integrated catchment management asks for integrated analysis that can be supported
by integrated modelling systems. These modelling systems can only be developed and
maintained if they are based on a collection of interlinked models. OpenMI has been
developed to provide a widely accepted unified method to link models, both legacy
code and new ones.

Model applications consist of many parts, the most common being the user
interface, input files, the engine and output files. OpenMI only addresses the engine
part of a model application, where a model can be regarded as an entity that can
provide data and/or accept data. Using this data exchange paradigm as a leading
principle for model linkage, OpenMI is based on direct access of the model at run
time, thus not using files for data exchange. In order to make this possible, the engine
needs to be turned into an engine component and the engine component needs to
implement an interface through which the data inside the component is accessible.
OpenMI defines a standard interface that engine components must implement to
become OpenMI compliant engine components. When an engine component
implements this interface it becomes a linkable component.

The linkable component interface enables on-line (memory based) data
exchange between components on a time (e.g. a time stamp or a time span). By
combining this linkable component interface with a state management interface,
advanced model combinations can be developed with simple controllers for iteration
or optimization purposes. Most important however is the fact that OpenMI is not
based on framework, it is based communicating linkable components only.

In summary, OpenMI primarily focuses on providing a complete protocol to
explicitly define, describe and transfer (numerical) data between components on a
time basis, including associated component access.

http://www.openmi.org
http://www.openmi.org

The OpenMI Standard in a nutshell v.1.4.0 September 2007

The OpenMI Association © 2007 2 www.openmi.org

OpenMI: a request & reply architecture
OpenMI is based on the ‘request & reply’ mechanism. According to Buschmann et al.
(1996), OpenMI is a pull-based pipe and filter architecture which consists of
communicating components (source and target components) which exchange data in a
pre-defined way and in a pre-defined format. OpenMI defines both the component
interfaces as well as how the data is being exchanged. The components in OpenMI are
called linkable components to indicate that it involves components that can be linked
together.

From the data exchange perspective, OpenMI is a purely single-threaded
architecture where an instance of a linkable component handles only one data request
at a time before acting upon another request. Data exchange in the OpenMI-
architecture is triggered by a component at the end of the component chain. Once
triggered, components exchange data autonomously without any type of supervising
authority. If necessary, components start their own computing process to produce the
requested data. Only when output needs to converge to a certain criteria, a
LinkableComponent with controlling functionality might need to be incorporated.

How OpenMI addresses general issues of model linkage
The OpenMI standard addresses the following items required for model linkage:

Data definition:
The base data model of OpenMI addresses the numerical values itself, and its
semantics in terms of quantity (what), element set (where), time (when), and data
operations (how). The relevant interfaces are represented in Figure 1.
Meta data defining potentially exchangeable data:
Quantities, elements sets and data operations are combined in exchange item
definitions to describe the data that can potentially be provided and accepted by a
linkable component (see Figure 2)
Definition of actually exchanged data:
A link describes the data to be exchanged, in terms of a quantity on an element set
using certain data operations. (See Figure 2)
Data transfer:
Linkable components can exchange data by a pull mechanism, meaning that a
(target) component that requires input asks a source component for a (set of)
value(s) for a given quantity on a set of elements (i.e. locations) for a given time.
If required, the source component calculates these values and returns them. This
pull mechanism has been encapsulated in one single method, the GetValues()-
method. Dependent on the status of the source component, this call may require
associated computation and even more requests for data. An important feature is
the obligation that components always deal with requests in order of receipt.
Generic component access:
All functionality comes available to other components through one base interface,
the linkable component interface (see Figure 2). This interface needs to be
implemented by any component to become OpenMI complaint. Two optional
interfaces have been defined to extend its functionality with discrete time
information and state management (see Figure 2). To locate and access the binary
software unit implementing the interface, the OMI-file has been defined. The OMI
file is an XML file of a predefined XSD-format which contains information about
the class to instantiate, information about the assembly hosting the class and the
arguments needed for initialization (see Figure 3, Figure 4 and Figure 5).

http://www.openmi.org

The OpenMI Standard in a nutshell v.1.4.0 September 2007

The OpenMI Association © 2007 3 www.openmi.org

Event mechanism
In addition to the above mentioned functionalities to link components, a
lightweight event mechanism has been introduced (interfaces defined in Figure 2).
Via this mechanism a wide range of messages can be passed to enable call stack
tracing, progress monitoring and to flag status changes which might trigger other
components (e.g. visualization tools) to request for data via a GetValues()-call.

By convention a linkable component has to throw an exception if an internally
irrecoverable error occurs. This exception should be based on the Exception-class as
provided by the development environment.

Consequences of the OpenMI architecture for a model
The OpenMI enables model engines to compute and exchange data at their own
heartbeat, without any external control mechanism. Deadlocks are prevented by the
obligation of a component always to return a value whatever the situation. When each
model is asked for data it decides how to provide it – it may already have the data in a
buffer because it has previously run the appropriate simulation, or by running its own
simulation or calculation, or by making a best estimate via interpolation or
extrapolation. Or it may not be able to provide the requested data, so will raise an
exception. The exchange of data at run-time is automated and driven by the pre-
defined links, with no human intervention.

To become an OpenMI linkable component, a model has to:
be able to expose information (what, where) to the outside world on the modeled
variables which it is can provide, or which it is able to accept;
submit to run-time control by an outside entity;
be structured in a way that initialization is separate from computation, where
boundary conditions are collected in the computation phase and not during
initialization;
be able to provide the values of the modeled variables for the requested points in
time and space;
be able to respond to a request, even when the component itself is time
independent; if such response requires data from another component, the
component should be able to pass on the time as well in its own request.
In case some values in the value set are missing, this should be flagged in the
value set.
In the exceptional case that an entire value set is unavailable, an exception needs
to be thrown. Be aware that such exception will stop the entire computation
process and thus should be prevented whenever possible.

The utilization phases of an OpenMI linkable component
An OpenMI linkable component provides a variety of services which can be utilized
in various phases of deployment. Figure 6 provides an overview of the phases that can
be identified, and the methods which might be (logically) invoked at each phase.
While the sequence of phases is prescribed, the sequence of calls within each phase is
not prescribed.

http://www.openmi.org

The OpenMI Standard in a nutshell v.1.4.0 September 2007

The OpenMI Association © 2007 4 www.openmi.org

ID Phase Description
I Initialization This phase ends by the situation where a linkable component

has sufficient knowledge to populate itself with model data and
expose its exchange items. Whether the linkable component has
been populated with model data depends on the solution chosen
by the code developer.

II Inspection &
Configuration

Dependent on the setting this phase might be very static and
straightforward or very dynamic. The end situation of this
phase is the following: The links have been defined and added
and the component has validated its status

III Preparation This phase is entered just before the computation/data retrieval
process starts. Its main purpose is to define a clear take off
position before the bulky work load starts.

IV Computation /
execution

During this phase, the heavy work load will be executed and
associated data transfer will get bulky.
The data transfer mechanism of OpenMI is defined as a
request-reply service mechanism, having direct interaction
between two linkable components without any involvement of
external facilities. Two types of data transfer are distinguished:
unidirectional data transfer and bi-directional data transfer.

V Finish This phase comes directly after the computation/data retrieval
process is completed. Code developers can utilize this phase to
close their files and network connections, clean up memory etc.

VI Disposure This is phase is entered at the moment an application is closed.
All remaining objects are cleaned and all memory (of
unmanaged code) is de-allocated. Code developers are not
forced to accommodate re-initialization of a linkable
component after Dispose() has been called.

Note that linkable components may support dynamic adding and removing links at
computation time. However, as addressed in the grouping of deployment phases, this
requirement is not enforced. Those who do not support this method-call at
computation-time should throw an exception.

Final remarks
In principle, the GetValues()-call stack of all linkable components takes place in one
thread. Linkable Components may internally use distributed computing techniques to
improve computational efficiency.

Code developers may create container components holding other components,
as long as the container implements the linkable component interface.

By separating various phases of deployment, code developers can choose
themselves when to instantiate and populate the engines. Exchange item information
might be obtained from the engine, but may also be captured in files which are parsed
during the inspection phase. Exchange item information might also be derived
dynamically by querying linked components.

The element set contains a version number which can be utilized to
accommodate dynamic changes of the content.

http://www.openmi.org

The OpenMI Standard in a nutshell v.1.4.0 September 2007

The OpenMI Association © 2007 5 www.openmi.org

cd org.OpenMI.Standard

data definitions

«interface»
IDimension

+ GetPower(baseQuantity :DimensionBase) : double
+ Equals(otherDimension :IDimension) : bool

«enumeration»
DimensionBase

+ Length: = 0
+ Mass: = 1
+ Time: = 2
+ ElectricCurrent: = 3
+ Temperature: = 4
+ AmountOfSubstance: = 5
+ LuminousIntensi ty: = 6
+ Currency: = 7
+ NUM_BASE_DIMENSIONS:

«enumeration»
ElementType

+ IDBased: = 0
+ XYPoint: = 1
+ XYLine: = 2
+ XYPolyLine: = 3
+ XYPolygon: = 4
+ XYZPoint: = 5
+ XYZLine: = 6
+ XYZPolyLine: = 7
+ XYZPolygon: = 8
+ XYZPolyhedron: = 9

«interface»
IQuantity

+ «property» ID() : string
+ «property» Description() : string
+ «property» ValueType() : ValueType
+ «property» Dimension() : IDimension
+ «property» Unit() : IUni t

«interface»
IUnit

+ «property» ID() : string
+ «property» Description() : string
+ «property» ConversionFactorToSI() : double
+ «property» OffSetToSI() : double

«enumeration»
ValueType

+ Scalar: = 1
+ Vector: = 2

«interface»
ITime

«interface»
ITimeStamp

+ «property» ModifiedJulianDay() : double

«interface»
ITimeSpan

+ «property» Start() : ITimeStamp
+ «property» End() : ITimeStamp

«interface»
IVector

+ «property» XComponent() : double
+ «property» YComponent() : double
+ «property» ZComponent() : double

«interface»
IVectorSet

+ GetVector(elementIndex :int) : IVector

«interface»
IScalarSet

+ GetScalar(elementIndex :int) : double

«interface»
IValueSet

+ «property» Count() : int
+ IsValid(elementIndex :int) : bool

«interface»
IElementSet

+ «property» ID() : string
+ «property» Description() : string
+ «property» SpatialReference() : ISpatialReference
+ «property» ElementType() : ElementType
+ «property» ElementCount() : int
+ «property» Version() : int
+ GetElementIndex(elementID :string) : int
+ GetElementID(elementIndex :int) : string
+ GetVertexCount(elementIndex :int) : int
+ GetFaceCount(elementIndex :int) : int
+ GetFaceVertexIndices(elementIndex :int, faceIndex :int) : int[]
+ GetXCoordinate(elementIndex :int, vertexIndex :int) : double
+ GetYCoordinate(elementIndex :int, vertexIndex :int) : double
+ GetZCoordinate(elementIndex :int, vertexIndex :int) : double

«interface»
ISpatialReference

+ «property» ID() : string

«interface»
IArgument

+ «property» Key() : string
+ «property» Value() : string
+ «property» ReadOnly() : bool
+ «property» Description() : string

«interface»
IDataOperation

+ Initial ize(properties :IArgument[]) : void
+ «property» ID() : string
+ «property» ArgumentCount() : int
+ GetArgument(argumentIndex :int) : IArgument
+ IsValid(inputExchangeItem :IInputExchangeItem, outputExchangeItem :IOutputExchangeItem, SelectedDataOperations :IDataOperation[]) : bool

How

When

Where

What

Figure 1 Data definitions in the org.OpenMI.Standard interface specification

http://www.openmi.org

The OpenMI Standard in a nutshell v.1.4.0 September 2007

The OpenMI Association © 2007 6 www.openmi.org

cd org.OpenMI.Standard

meta data to express what can be
exchanged

component interfaces for generic component access

specification what will be
exchanged and how

advanced component interface extensions (optional)

«interface»
IExchangeItem

+ «property» Quanti ty() : IQuantity
+ «property» ElementSet() : IElementSet

«interface»
IInputExchangeItem

«interface»
IOutputExchangeItem

+ «property» DataOperationCount() : int
+ GetDataOperation(dataOperationIndex :int) : IDataOperation

«enumeration»
Ev entType

+ Warning: = 0
+ Informative: = 1
+ ValueOutOfRange: = 2
+ GlobalProgress: = 3
+ TimeStepProgres: = 4
+ DataChanged: = 5
+ TargetBeforeGetValuesCal l: = 6
+ SourceAfterGetValuesCall: = 7
+ SourceBeforeGetValuesReturn: = 8
+ TargetAfterGetValuesReturn: = 9
+ Other: = 10
+ NUM_OF_EVENT_TYPES:

message definition

«interface»
IManageState

+ KeepCurrentState() : string
+ RestoreState(stateID :string) : void
+ ClearState(stateID :string) : void

«interface»
IDiscreteTimes

+ HasDiscreteTimes(quantity :IQuantity, elementSet :IElementSet) : bool
+ GetDiscreteTimesCount(quantity :IQuanti ty, elementSet :IElementSet) : int
+ GetDiscreteTime(quantity :IQuantity, elementSet :IElementSet, discreteTimeIndex :int) : ITime

IPubl isher
«interface»

ILinkableComponent

+ Initial ize(properties :IArgument[]) : void
+ «property» ComponentID() : string
+ «property» ComponentDescription() : string
+ «property» Model ID() : string
+ «property» ModelDescription() : string
+ «property» InputExchangeItemCount() : int
+ GetInputExchangeItem(inputExchangeItemIndex :int) : IInputExchangeItem
+ «property» OutputExchangeItemCount() : int
+ GetOutputExchangeItem(outputExchangeItemIndex :int) : IOutputExchangeItem
+ «property» TimeHorizon() : ITimeSpan
+ AddLink(link :ILink) : void
+ RemoveLink(linkID :string) : void
+ Validate() : string
+ Prepare() : void
+ GetValues(time :ITime, linkID :string) : IValueSet
+ «property» EarliestInputTime() : ITimeStamp
+ Dispose() : void
+ Finish() : void

«interface»
IListener

+ OnEvent(Event :IEvent) : void
+ GetAcceptedEventTypeCount() : int
+ GetAcceptedEventType(acceptedEventTypeIndex :int) : EventType

«interface»
IEvent

+ «property» Type() : EventType
+ «property» Description() : string
+ «property» Sender() : ILinkableComponent
+ «property» SimulationTime() : ITimeStamp
+ GetAttribute(key :string) : object

«interface»
ILink

+ «property» ID() : string
+ «property» Description() : string
+ «property» DataOperationsCount() : int
+ GetDataOperation(dataOperationIndex :int) : IDataOperation
+ «property» TargetQuantity() : IQuantity
+ «property» TargetElementSet() : IElementSet
+ «property» SourceElementSet() : IElementSet
+ «property» SourceComponent() : ILinkableComponent
+ «property» SourceQuantity() : IQuantity
+ «property» TargetComponent() : ILinkableComponent

Figure 2 Meta data, link definition and component access interfaces of the org.OpenMI.Standard

http://www.openmi.org

The OpenMI Standard in a nutshell v.1.4.0 September 2007

The OpenMI Association © 2007 7 www.openmi.org

Figure 3 Graphical view of the OMI file structure

<?xml version="1.0" ?>
<xs:schema id="LinkableComponent" targetNamespace="http://www.openmi.org/LinkableComponent.xsd"
 xmlns:mstns="http://www.openmi.org/LinkableComponent.xsd"
xmlns="http://www.openmi.org/LinkableComponent.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 attributeFormDefault="qualified" elementFormDefault="qualified">
 <xs:element name="LinkableComponent">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Arguments" minOccurs="1" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Argument" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="Key" form="unqualified" type="xs:string" />
 <xs:attribute name="ReadOnly" form="unqualified" type="xs:boolean" use="optional" />
 <xs:attribute name="Value" form="unqualified" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Type" form="unqualified" type="xs:string" />
 <xs:attribute name="Assembly" form="unqualified" type="xs:string" use="optional" />
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 4 The Xml Schema Definition (XSD) of an OMI file

<?xml version="1.0"?>
<LinkableComponent Type="wlDelft.OpenMI.WLLinkableComponent" Assembly="wlDelft.OpenMI, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=8384b9b46466c568" xmlns="http://www.openmi.org/LinkableComponent.xsd">
 <Arguments>
 <Argument Key="Model" ReadOnly="true" Value="RR" />
 <Argument Key="Schematization" ReadOnly="true" Value="D:\Rain-RR-CF\Model\Cmtwork\sobek_3b.fnm" />
 </Arguments>
</LinkableComponent>

Figure 5 Example of an OMI file

http://www.openmi.org

The OpenMI Standard in a nutshell v.1.4.0 September 2007

The OpenMI Association © 2007 8 www.openmi.org

Initialize()

GetPublishedEventTypeCount #

GetPublishedEventType() #

SubScribe() #

UnSubscribe() #

SendEvent() #

HasDiscreteTimes() *
GetDiscreteTimesCount() *
GetDiscreteTime() *

ComponentID
ComponentDescription
ModelID
ModelDescription
InputExchangeItemsCount
OutputExchangeItemsCount
GetInputExchangeItem()
GetOutputExchangeItem()
TimeHorizon
AddLink()
RemoveLink()
Validate()

GetValues()
EarliestInputTime

SaveState() **
RestoreState() **
ClearState() **

AddLink() ^
RemoveLink() ^

initialization phase

identification &
configuration phase

computation/
execution phase

disposure phase

Prepare()

Finish()

Dispose()

Methods from IPublisher interface

Implementation is optional
* if component implements

IDiscreteTimes interface

** if component implements
IManageState interface

^ if component supports dynamic
adding/removing links

preparation phase

completion phase

Deployment phases and call sequence of an OpenMI LinkableComponent

Figure 6 Deployment phases and call sequence of a Linkable Component

http://www.openmi.org

