
Summary:
This document describes
the new concepts in
OpenMI 2.0, compared
with OpenMI 1.4

Contact:

rvm@ceh.ac.uk
www.openmi-life.org

Version:

V1.0

Date:

30/10/2010

Status:

Final

Copyright © 2010
The OpenMI Association

What’s New in OpenMI 2.0
1 Introduction

This document describes the new concepts in OpenMI 2.0, compared with OpenMI
1.4, and their elaboration in the class design.

The new features of OpenMI 2.0 can be summarized as:

 A more flexible way of linking

 More flexibility in the overall control flow

 Less difference between spatial and temporal models

 Support in categorized data values

 Extensions processing new types of components

2 Base Interfaces and extensions

OpenMI 2.0 has become more versatile. Whereas OpenMI 1.4 was mainly restricted
to models that progress in time, OpenMI 2 offers a set of base interfaces that are not
aware of the type of a model. These interfaces can easily be extended, e.g. with the
extension for time and space dependent components towards models that progress in
time. Alternatively they can be externded to models that express the exchange items
and their values in terms of ontologies, instead of in terms of spatial and time scale
definitions.

This implies that an OpenMI compliant component can now comply to the base
interfaces (and indeed has to), but that it can also comply to one or more of these
extension interfaces. The classical 1.4 compliant components would have to
implement the base interfaces as well as the extension for time and space dependent
components in order to become OpenMI 2.0 compliant.

The current version of this document (July 2010) specifies the base interfaces and the
extension supporting the time and space dependent component. Future extensions
could support parallel computing, compliance with the standards of the Open
Geospatial Consortium OGC, and more. Implementing several extensions can
combine the features of these extensions, e.g. a time and space dependent
component that can run in parallel with other components (Figure 1, right side)

Figure 1: OpenMI 2.0 compliant components implementing uncoupled interfaces;
the one on the left side is already feasible, the other one a forecast

It is recommended to check the website www.openmi.org for information about the
coming extensions.

Deleted: beta

Deleted: 31

Deleted: 07

mailto:rvm@ceh.ac.uk
http://www.openmi-life.org
http://www.openmi.org

3 Linking components

In OpenMI 1.4 the link object was used to connect components, containing a
reference to the source component and the target component, and to the source
output (exchange) item and the target input (exchange) item. Any operations in
between the output item and the input item, to make them ‘compatible’, was handled
by a series of DataOperations, also specified by the link object (Figure 1).

Figure 2 Linking components in OpenMI 1.4

In OpenMI 2.0 a link between a source component and a target component is realized
by a direct reference between an output item and an input item. The link, as a
separate object, has been removed from the specification. If the values of an output
are not in the exact form in which they are needed, you can ‘adapt’ an output. This
opens the possibility to add additional data operations in between the original output
and input item, realizing a true piping and filtering pattern.

The adapted outputs take over the role of data operations in OpenMI 1.4.
Typically,,such intermediate adapted outputs

are spatial and time interpolations and unit conversions. In the sequence of adapted
outputs, the order in which such adapting operations are carried out is defined
explicitly. Also, the possible data flows are extended, because each output and
adapted output may be reused and connected to several requesting input items.

In Figure 2 below there are three adapted outputs added using the same output item,
and an input item can connect using any of the four relations marked by the arrow-
lines.

Figure 3 Linking components in OpenMI 2.0

To implement this, the GetValues call of the linkable component has moved to the
output item. The data operation is gone and instead, an adapted output, which is an
output item, is introduced. The adapted output is configurable, in order to control
operations such as unit conversion and interpolation. It also performs data exchange
between components with different extensions, meaning the adapter has to be aware
of the concepts in both extensions.

The adapted output has a Refresh() method, which is used to notify an adapted output
that the values of its parent output may have been changed.

Whereas in OpenMI 1.4 the requested timestamp or time span was the main
argument in the GetValues() call, in OpenMI 2.0 the argument has become a full
'query specification'. Of course, the requested timestamp or time span can still be
provided, but now also the requested element set can be specified, so that OpenMI
2.0 is fitter for use with GIS systems. This refers to the extension for time and space
dependent components.

4 Requesting values and control flow

In OpenMI 1.4, a linkable (model) component was asked for values for a certain time
for a particular link. The component had the responsibility to return values meeting the
requirements specified through the data definition in the link: basically, the target
quantity and target element set. If the calculation required input from other
components, those would be triggered as well (the pull-based chain computation
approach).

In OpenMI 2.0, the concept of the link has been removed. The data definition is now
passed in the GetValues() call. For the classical time and space dependent
components this call contains the requested timestamps or time spans, element set
and value type. (Note that multiple timestamps and time spans are supported.)

Further extensions may use different arguments in the GetValues() call. The
designated extension supporting ontologies will use indexes to specify the exchange
data. If components with different extensions to the standard transfer data, it is
recommended to develop an adapted output, performing the necessary conversions.

4.1 Calibration and data assimilation support

Development of calibration, optimization and data assimilation tools for OpenMI-
compliant models is possible with version 1.4 of the standard. However, the pull-driven
architecture sometimes makes this complicated.

In OpenMI 2.0 the data exposed for exchange is a precise reflection of the data inside
the component. Therefore, version 2 supports the setting of values before running a
component, thus allowing the use of the OpenMI in calibration, optimization, data
assimilation and decision support systems.

4.2 Component status

Linkable components implement a property status. This property describes the status
of the component at any time. Figure 3 is a diagram of the possible changes between
different states.

The status can be used to check what a component is actually doing, which is relevant
for the outer world (e.g. de GUI), but also for the component itself: If one of the
component’s output items receives a GetValues() call when the component is in the
‘Waiting for data’ state, this means that the GetValues() call was self-imposed: i.e. it is
the result of a feedback loop.

Deleted: In OpenMI 1.4, the control
flow was purely pull driven, since
linkable components were triggered
to perform an action when there was
a request to produce data.¶
In OpenMI 2.0 this is still the same
but a designated extension offers the
loop-approach, an alternative control
flow with an external controller. ¶

Deleted: could

Deleted: in the loop approach
(‘Waiting for data’ versus ‘Updated)
as well as in the pull driven approach.

Deleted: (A

Deleted: on an output

Deleted: its

Deleted:)

4 What’s New in OpenMI 2.0

Figure 4 Linkable component status

4.3 Less focused on time stepping models

The OpenMI 1.4 Standard was developed specifically with the linkage between
numerical time-stepping models in mind. However, in integrated modelling systems
other components such as data providers, databases and viewers are also used.

Therefore OpenMI 2.0 provides the flexible extension for time and space dependent
components. The various types of models can be accessed as unified a way as
possible:

 Varying in time or in space

 Varying in time but not varying in space

 Varying in space but not varying in time

4.4 Events

Version 1.4 had its own event system. For version 2 the standard .NET and Java
mechanisms are applied in the Standard.

What’s New in OpenMI 2.0 5

5 Data definitions

5.1 Quantity and Quality

Values in OpenMI 1.4 could only be quantitative, but OpenMI 2.0 adds support for
qualitative information (e.g. land use types or indications such as ‘hot’ and ‘cold’ or
‘more sustainable’ and ‘less sustainable’). The standard also allows custom types of
values.

5.2 Element set

The element set definition was expanded to follow the OpenGIS standard. The
distinction between element sets in the horizontal plane and the three-dimensional
space (e.g. XYPoint / XYZPoint) has been removed, so geo-referenced items are now
positioned on a Point, a Polyline or a Polygon, while a HasZ property indicates
whether the vertical dimension is involved or not. Also, M-coordinates (linear
referencing) have been introduced.

The ISpatialReference interface has been replaced by the ISpatialDefinition interface.
Due to the latter an element set has now a string that defines the spatial reference.
This string follows the OGC standard WKT (well known text) for spatial reference.

5.3 Time set

Handling of time has been made similar to the handling of the element set. An
exchange item now has a time set, specifying for which timestamps or time spans the
item can provide values (output) or wants to retrieve values (input).

5.4 ValueSet

In OpenMI 1.4, the ValueSet could contain double-precision scalars, or vectors
consisting of double-precision X/Y/Z-components, with one value for each element. A
ValueSet instance applied to one timestamp or time span.

In OpenMI 2.0 the values are organized in a two-dimensional array (times and
elements) and the stored values can be objects of any type. The most common type is
the double-precision real value but there are many quantities that can be expressed
by an integer value, a boolean value or a user-defined type such as a vector. Another
type now supported is categorized data, used to represent qualitative information.

