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Abstract In low lying deltaic areas in temperate climates, groundwater can be brackish to
saline at shallow depth, even with a yearly rainfall excess. For primary production in
horticulture, agriculture, and terrestrial nature areas, the fresh water availability may be
restricted to so-called fresh water lenses: relatively thin pockets of fresh groundwater floating
on top of saline groundwater. The persistence of such fresh water lenses, as well as the quantity
and quality of surface water is expected to be under pressure due to climate change, as summer
droughts may intensify in North-West Europe. Better understanding through modelling of
these fresh water resources may help anticipate the impact of salinity on primary production.
We use a simple model to determine in which circumstances fresh water lenses may disappear
during summer droughts, as that could give rise to enhanced root zone salinity. With a more
involved combination of expert judgement and numerical simulations, it is possible to give an
appraisal of the hazard that fresh water lenses disappear for the Dutch coastal regions. For such
situations, we derive an analytical tool for anticipating the resulting salinization of the root
zone, which agrees well with numerical simulations. The provided tools give a basis to
quantify which lenses are in hazard of disappearing periodically, as well as an impression in
which coastal areas this hazard is largest. Accordingly, these results and the followed proce-
dure may assist water management decisions and prioritization strategies leading to a secure/
robust fresh water supply on a national to regional scale.
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1 Introduction

Soil and groundwater salinity have long been recognized as major problems for crop produc-
tion worldwide (Maas and Hoffman 1977; Tanji and Kielen 2002; Rozema and Flowers 2008).
Whereas it may be most pressing in semi-arid regions (Allison (1964) mentions one third of
agricultural land in arid and semi-arid regions), in temperate regions, salinity may cause
problems as well (De Louw et al. 2013; Vandenbohede et al. 2014). Commonly, this is due
to elevated salinity by seawater intrusion via groundwater or surface water, but it may also be
significant by salt spray near the coast or by de-icing roads (Thunqvist 2004). Due to climate
change, the area that may be salt affected can increase. For temperate regions, particularly
more frequent droughts may enhance salt stress in the growing season (KNMI 2014).

Plants exposed to elevated salinity may experience different forms of stress. Due to the high
osmotic value of saline solutions, soil water may become less available for plants to accommodate
their transpiration and primary production (de Wit 1958; Maas and Hoffman 1977) in a similar
way as drought. However, it is alsowell known that salts (e.g. involvingNa+, Cl−) may be toxic for
plants, or that toxic components such as boron (B) and selenium (Se) become more bio-available
under saline conditions. In addition, induced nutrient deficiency has been well documented, e.g.
for iron and nitrate (Schinas and Rowell 1977; Grattan and Grieve 1992). Salt tolerance has been
investigated much for agricultural crops, both in field and greenhouse conditions, and particularly
for the case that salts enter the root zone. Different plant species have different salt tolerances and
strategies to deal with salinity (Parida and Das 2005; Munns and Tester 2008).

Because of the long awareness of the impact of salinity on primary production, research of salt
affected soils has a long tradition. Twomain routes for salts entering the root zone are (i) capillary
rise from brackish to saline groundwater leading to primary salinization, and (ii) salt spray and
irrigation causing secondary salinization (Szabolcs 1989). For the case of secondary salinization,
an important model concept has been developed, called the Leaching Requirement (Richards et
al. 1954) and that is aimed at preventing too large salt concentrations in the root zone.

For temperate regions, where annual precipitation is usually sufficient for plant transpira-
tion demands, infiltrating water can meet upward seeping groundwater, if the soil surface is
close to the drainage level. In that case, the so-called fresh water lenses that develop on top of
brackish or saline groundwater in coastal areas may become rather thin (Eeman et al. 2011; De
Louw et al. 2011). If these lenses temporarily disappear in summer, this may lead to saline
capillary rise water, that salinizes the root zone.

Avoiding, mitigating or adapting to the adverse effects of groundwater salinity is possible if
we recognize in which cases salts accumulate in the root zone. In this paper, we consider the
hazard of root zone salinization due to depletion of fresh water lenses, as in that case, capillary
rise of saline water to the root zone commences. We provide relatively simple tools that differ
with respect to their data demand, to appraise this hazard.

2 Fresh Water Lens Persistence

In low lying regions with shallow saline groundwater, such as in deltaic areas or small islands,
saline water may enter the root zone due to capillary upward flow of groundwater. In case the
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annual rainfall is sufficient, precious fresh water lenses may develop preventing the underlying
saline groundwater to reach the root zone via capillary rise. Experimental evidence of fresh
water lenses on saline groundwater has been provided for different continents, e.g. De Louw et
al. (2011), Fetter (1972), Underwood et al. (1992), even for inland areas of Australia (Jolly et
al. 1998; Cendón et al. 2010), Oman (Young et al. 2004) and Hungary (Szabolcs 1989; Toth
2008). Whether or not a fresh water lens protects primary production from salt induced yield
depressions will depend on the persistence of such lenses in temperate climates in the dry
season (often summer).

Fresh water lenses resemble large fresh water volumes in coastal dune areas (Martinez and
Psuty 2008) and analytical solutions have been found for different assumptions regarding e.g.
the outflow zone at the dunes’ perifery, or whether or not the salt underlying water is flowing,
assuming a sharp fresh/salt interface (Badon-Ghijben 1888; Herzberg 1901; Van Der Veer
1977; Maas 2007). Investigating fresh water lenses in low-lying flat coastal regions, Eeman et
al. (2011) revealed that the analytical solution provided by Maas (2007) is in close agreement
with their numerical modelling using the model SUTRA-3D. The solution of Maas is given
by:
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where S is upward seepage rate [LT−1], P is mean net precipitation or infiltration rate [LT−1], R
is the Rayleigh number (R=κgΔρ/(μP) with intrinsic permeability κ [L2], gravity acceleration
g [LT−2], density difference Δρ [M/L3], and dynamic viscosity μ [ML−1T−1], L is the half
spacing [L] between two drains or ditches, i.e., the distance from drain or ditch to hydrological
divide, and Z is the largest thickness of the lens at the hydrological divide. For such a lens, the
volume VM [L3] is equal to

VM ¼ 1

4
πLZ ð2Þ

The impact for upward seepage S in (1) is a crucial one, as it is a major force that counters
the development of a full Badon-Ghijben-Herzberg (BGH) lens that complies with
Archimedes’ law. Especially this occurs for low lying areas in e.g. delta regions, as in Dutch
polders (De Louw et al. 2011, 2013) or the Po delta, Italy (Vandenbohede et al. 2014). In the
absence of such seepage, other (simpler) solutions are available that are outside the scope of
this paper, as here we are focusing on lowland areas with upward saline seepage rather than
coastal dunes, where groundwater flow is predominantly downward and BGH lens thicknesses
of tens of meters can develop.

For the case that the groundwater densities of the lens and the underlying groundwater are
equal, the solution follows directly from (1) by setting the Rayleigh number equal to zero,
giving for the right hand side (1+S/P)−1. Such a situation is often found in topographically
higher areas with upwelling fresh groundwater as in stream valleys (Cirkel et al. 2014). Then,
lens thickness thicker than those for sea water salinity circumstances are found. From (1), we
then obtain for any value of R, an expression for Z:
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Impressions of lens properties are given for different parameter combinations in Fig. 1 for a
seepage/recharge ratio S/P=1, and a permeability κ=10−12 m2 which is equivalent to a
hydraulic conductivity of about 1 m/day (K=κρg/μ). Lens thickness Z is proportional to the
half distance between drains or ditches L and increases as the water density Δρ differences
between lens and groundwater become smaller in agreement with a BGH lens.

Recognizing that both the lens thickness and the mixing zone thickness are important for
the risk that brackish water from the mixing zone moves up by capillary rise into the root zone,
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Fig. 1 Lens properties as a function of system parameters: a Lens thickness Z as a function of half spacing
between drains or ditches L for several water density Δρ differences between lens and groundwater, seepage/
recharge ratio S/P = 1, κ = 10−12 m2. b Mixing zone thickness σZ as a function of lens thickness for different
longitudinal dispersivity values αL. c Thickness of fresh water zone Z-σZ as a function of Z for different
longitudinal dispersivity values. d Thickness of lens Z that may disappear as a function of rainfall deficit ET-P for
different longitudinal dispersivity values, specific yield sy = 0.1. e Threshold rainfall/precipitation deficit at which
the total fresh water zone disappears as a function of seepage/recharge ratio for different half distances between
ditches, a density difference as found in Dutch coastal subsoils of Δρ = 15 kg m−3, κ = 10−12 m2, αL = 0.1 m,
sy = 0.1. f Threshold rainfall deficit at which the total fresh water zone disappears as a function of half distance
between ditches, for different values of hydraulic conductivity, S/P = 1, Δρ = 15 kg m−3, αL = 0.1 m, sy = 0.1
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an alternative to numerically estimating the critical mixing zone thickness is appealing. Based
on the analysis of Cirkel et al. (2015) this thickness can be estimated easily. We consider a lens
of thickness Z where half of the mixing zone is situated in the lens, and the other half is in the
saline groundwater below the lens.

This half thickness (σZ) can also be represented by the variance or second central spatial
moment of vertical salt concentration change

σ2
z ¼ 2αL vzj jh it ð4Þ

In (4), αL is the longitudinal dispersivity [L
2] and in view of recent insights by Eeman et al.

(2012) and Cirkel et al. (2015), we may interpret 〈|vz|〉t as the total distance that the mixing
zone travels during one year (lens growing in winter, diminishing in summer). If the lens
disappears at the end of each drought period and the fluctuation of the mixing zone is
sinusoidal, the amplitude of vertical transition zone position is equal to Az=Z. This leads to
〈|vz|〉=4Az f where f is the seasonal frequency. We then obtain from (4)
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In Fig. 1b we show how σZ increases as a function of lens thickness if the longitudinal
dispersivity αL increases. As these figures show, for relatively thin lenses, their thickness can
be of the same order of magnitude as that of the mixing zone, which means that the water lens
contains significant amounts of salts. This is also seen from the thickness of fresh water zone,
when the mixing zone thickness within the lens, σZ, is subtracted from the lens thickness Z. In
Fig. 1c, Z-σZ is shown as a function of Z and for different longitudinal dispersivities. For thin
lenses, the lens may become brackish throughout, as is implied by the negative values of Z-σZ.
This was also found by field measurements in the south-western Dutch delta which showed
that almost all rainwater lenses lacked truly fresh water (De Louw et al. 2011). Since the lens
thickness represents a volume of water, it is possible to assess for which thicknesses of the lens
it will disappear as a function of rainfall deficit ET-P, longitudinal dispersivity αL, and specific
yield sy (taken to be 0.1). For the Netherlands, a cumulative rainfall deficit of 200 mm is not
uncommon, hence, lenses of 3–4 m thickness may disappear to such a degree, that brackish
water can reach the root zone by capillary rise. With this in mind, we show in Fig. 1e, how the
rainfall deficit for which the lens disappears will depend on the distance L between drain and
middle of the field, and the ratio of seepage and recharge (S/P, see Eq. 1). It is clear, that for the
chosen parameters and a reasonable rainfall deficit, this is mostly the case for small fields and
relatively large seepage rates. Underlying reason is that stronger upward groundwater seepage
(S) forces the interface between fresh and salt water upwards, i.e., leads to small Z-values. Such
a combination may represent a wetland under native vegetation rather than an agricultural
field. If, however, predictions for a substantial sea water level rise become true, this inevitably
causes an increase in upward seepage (Oude Essink et al. 2010).

A factor that is somewhat hidden in the illustrations is the soil type. This can be illustrated
with Fig. 1f that shows how the rainfall deficit, where the lens disappears, depends on both half
spacing (L) and the soil hydraulic conductivity. Realistic values may be reached with high
hydraulic conductivities or small L-values. In practice, ditch distances depend on the hydraulic
conductivity of the soil, with smaller conductivities meaning smaller L-values, but also on
desired drainage levels. In Fig. 2, the lenses are shown for a clayey and for a peaty soil. Despite
its larger conductivity, fields in peat soil are often more densely drained, in order to more
accurately fix groundwater levels. If groundwater levels were allowed to fall significantly in
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peat, this might lead to mineralization of peat, irreversible consolidation and land subsidence.
As Fig. 2 shows, good control of groundwater level by intense drainage results in a thin and
vulnerable fresh water lens. In our calculations it has not been taken into account that soil type
may affect net infiltration, as larger hydraulic conductivities favour a large net infiltration rate,
hence thicker fresh water lenses (De Louw et al. 2011). This may mean that in practice, the
total salinization threshold differences between different soil types are slightly smaller than
represented in Fig. 1f.

With results as in Fig. 1, it is also easy to see what the risk is that a lens will disappear
completely during a dry period if we consider climate change projections. In the next decades,
the average rainfall deficit in summer may increase from 144 to 187 mm in 2050, with 10-year
extremes of 288 mm (KNMI 2014). This implies that lenses with a thickness of 0.25 m/
sy=2.5 m (for our default parameter values) may regularly disappear. A record dry year was
1976, in which the rainfall deficit grew to 360 mm, and for a specific yield of 0.1, even lenses
of 3.6 m thick might disappear.

The approximations of Fig. 1 are somewhat crude, because under water and salt stress,
plants will cease to transpire at the potential rate. At which concentrations salt stress occurs
depends on both crop and genotype. Also regarding evaporation from the bare soil surface, it is
unlikely to continue at maximum rate as drought sets in. Instead, a drying front may cause a
rapid decline of evaporation as soil dries out. In addition, water that flows upward from the
declining fresh water lens towards the root zone will take time to travel that distance. This time
is important in view of the frequency with which significant rainfall occurs, as such showers
may leach salt that is underway. In other words, characteristic times of rainfall and water travel
times between saturated groundwater and root zone become important. This is even more so
the case if cumulative effects over years can be anticipated, e.g. due to summers that become
drier due to climate change. For instance, a rainfall deficit requires time to be balanced by a
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rainfall excess, yet during this time, discharge to drains and ditches continues to remove fresh
water. Accordingly, the risk of a succession of different dry summers is probably a factor to be
accounted for.

Although simplifications have been made on the reaction of fresh water lenses to erratic
rainfall, this is not the case with regard to the impact of erratic rainfall on the fresh/salt mixing
zone. High frequency variations of lens recharge may affect the thickness of the lens and
therefore the value of Z, but these variations do not affect the validity of (4) and (5), as was
demonstrated (Cirkel et al. 2014).

3 Regionalization of Fresh Water Persistence

The tools that were discussed in the previous section are based on analytical approximations
that can be easily communicated. However, for management it is often attractive to present
dependencies between environmental conditions and output of interest in the form of maps, as
done by De Louw et al. (2011, 2013). With various numerical instruments, we made such a
vulnerability map for regions with saline or brackish groundwater in The Netherlands.

The vulnerability map was inferred from the chloride concentration below the upper
confining layer in the Netherlands (Oude Essink et al. 2010; De Lange et al. 2014). This data
was retrieved from numerical models at the regional/national scale of the Netherlands (De
Lange et al. 2014), with which future stresses were simulated. Comparing the results of this
exercise with field data from for example De Louw et al. (2011) yielded acceptable results,
except in the polder areas which used to be inland lakes and that were reclaimed relatively
recently (i.e., later than 1800 AD). In these areas, this approach underestimated the thickness
of the freshwater lenses. Therefore, a paleogeographical map (Vos 2015) was used to delineate
these ‘recently’ reclaimed polders and to assign them to the ‘Low’ class. The year 2000 was
compared with 2100, to indicate the effect of future stresses, such as land subsidence
(Haasnoot et al. 1999), climate change and sea level rise.

Figure 3 shows the vulnerability of shallow fresh water lenses, for the current situation as
well as for the situation in year 2100 AD. For the year 2100 AD, climate change impacts on
the chloride concentration below the upper confining layer were implemented using results of
national groundwater flow model simulating effects due to sea level rise, changes in precip-
itation patterns and autonomous salinization (Oude Essink et al. 2010; De Lange et al. 2014).
Land subsidence was incorporated using the map of Haasnoot et al. (1999) in the expert
judgement analysis. Because this approach is in some aspects fuzzy, the results of the final
maps should be used with care. On the other hand, this exercise does show how with limited
time but with distributed data used in numerical models, a reasonable indication of the
vulnerability of fresh water lenses can be obtained. A profound advantage is also, that
parameters that co-vary (e.g. L and K in Fig. 1f) are considered in their mutual dependency.
Results as Fig. 3 can then be used by water authorities and policy makers as first-step decision
information.

4 Modelling Root Zone

As is already apparent from the previous sections, changes of precipitation and evapo-
transpiration affect the salinity of the shallowest groundwater that may enter the root
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zone by capillary rise if fresh water lenses disappear temporarily. This may introduce
salts into the root zone. Though salinity has been investigated already for a long time
(Richards et al. 1954; Bresler et al. 1982), the impact of erratic weather has not often
been the focus.

Practically, a major problem is that weather can be predicted in a statistical sense (mean
temperature, long term average rainfall), but actual weather may differ significantly from
the average behaviour and is hardly predictable. It is nearly impossible to predict whether a
year will be average, or dry or wet. However, for e.g. farmers and water managers, this
type of information is crucial. For practice, it is important to deal with erratic weather, as it
affects e.g. primary production (yield) and it is necessary to recognize the risk of crop
failure.

To model soil, which is implied in predicting, the basis is usually the Richards’ equation
(for unsaturated water flow, see e.g. Kuhlmann et al. 2012) and the convection dispersion or
CDE equation for salt transport. Despite improving hardware and data availability, combining
these equations with e.g. GCM modelling of climate change is still a challenge. This is much
less the case with the popular, though simplified, root zone ‘bucket’ approach, in which the
root zone is assumed to be a perfectly homogenized (ploughed) soil layer (Rodriguez-Iturbe
and Porporato 2004).

Adopting this latter approach, taking into account the capillary upward flow from ground-
water (Vervoort and van der Zee 2008), the salt balance has been solved for the long term by
Shah et al. (2011). Recently, this numerical analysis has been extended towards sodicity, which
considers the relative accumulation of sodium in soil to levels where it may induce soil

Fig. 3 Vulnerability of shallow fresh water lenses in the Dutch coastal zone, on 2000 AD and 2100 AD, as well
as the rate of increase of the vulnerability of the fresh water lenses over this 2000 AD–2100 AD period, all based
on a national numerical model and expert judgement. The vulnerability classes ‘No’, ‘Low’, ‘Moderate’, and
‘High’ correspond with chloride concentrations below the upper confining layer of Cl− = 0 mg l−1, 0 mg l−1 > Cl−

< 1000 mg l−1, 1000 mg l−1 > Cl− < 5000 mg l−1, and Cl− > 5000 mg l−1
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structure degradation (Bresler et al. 1982; van der Zee et al. 2014). Although soil sodicity is a
long term threat to sustainable soil use because it is poorly reversible, we will not address this
process in detail in this paper, to avoid duplication with the recent analysis using the model
SODIC by van der Zee et al. (2014).

Due to the irregular rainfall and seasonal evapotranspiration, the root zone has periods of
drought and of wetness. During drought, capillary rise of groundwater may replenish the root
zone, while during wet periods, root zone water above the field capacity may readily drain. For
different conditions, Shah et al. (2011) investigated how salt accumulates in the root zone if the
groundwater is somewhat brackish. Likewise, Suweis et al. (2010) considered the situation
where salt spray supplies salts to the root zone.

To give an impression of the impact of weather on salinity, we simulated water and salt
balances. To efficiently simulate the water and salt balances, we adopted the approach of
Vervoort and van der Zee (2008) and Shah et al. (2011), where a root zone was considered at
some distance above the water table. Though the Netherlands are characterized by sufficient
rainfall of about 800 mm/y, net recharge has a distinct seasonal variation, as evapotranspiration
is mainly concentrated in the summer period. On average, net groundwater recharge is less
than 1 mm/d.

For Dutch conditions, it is quite well possible that groundwater at the water table is
brackish, e.g. if fresh water lenses disappear in summer (De Louw et al. 2011, 2013). We
considered a soil that initially is not saline. Due to alternation of rainfall and irrigation
water entering the soil and of capillary rise of groundwater, the root zone will salinize to
some degree. As demonstrated in earlier work (Suweis et al. 2010; Shah et al. 2011), this
leads to irregular fluctuations of salt concentration (C) that builds up first and then
stabilizes around a long term mean value. The resulting strongly erratic pattern of C as a
function of time, is a direct consequence of the erratic pattern of rainfall, irrigation, and
other water balance terms. Therefore, this pattern as such is not tractable to real prediction.
In a first assessment, it may be sufficient to assess the mean concentration around which C
will vary through time, for comparison with the crop’s tolerance. Such a first assessment
was already developed much earlier (Richards et al. 1954), for the case that salts originate
from brackish irrigation water. As its main concept, it used the so-called leaching require-
ment (LR) given by

LR ¼ Ddw

Dirr
¼ θfc

θsp
:
Cirr

Ce
ð6Þ

written in terms of concentrations, instead of electrical conductivity as often used. In Eq.
(6), D is the quantity (in water layer thickness per year) of irrigation water applied (irr)
and drainage water (dw), C refers to the concentration of salts in irrigation water and in
the saturated paste of soil (subscript e), and θsp and θfc are the volumetric water contents
of the saturated paste and at field capacity (pF = 2.5), respectively, and correspond with
the water contents at the point of liquefaction and above which water drains due to
gravity (Richards et al. 1954). The principle is that if the tolerance of a crop for salt is
designated as Ce, then the leaching requirement tells us how much irrigation water excess
for drainage is needed, to keep concentrations in this soil at this tolerance threshold. LR
is attractive, as it gives a simple and robust tool to predict salinity due to irrigation with
water that contains some salts, in other words, it is simple tool to assess irrigation
practise sustainability.
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It is attractive to develop a similarly robust tool to predict salinity if salts originate from
capillary upward flowing groundwater and erratic weather. Shah et al. (2011) investigated the
long term salinity for a range of conditions, using the approach that has just been described.
Using the same model SODIC, that was extended to account for sodicity, but for Dutch
conditions, the long term average salt concentration was simulated numerically. It appeared
that in its simplest form, if only groundwater is a source of salts, the long term root zone
salinity can be estimated with

Ch i ¼ Dcrh i
Ddwh i CZ ð7Þ

where brackets < . > denote time-average, Dcr stands for capillary rise flux of groundwater,
Ddw is the drainage water flux, and the phreatic groundwater concentration is Cz.

In many agricultural regions, besides precipitation, both groundwater and irrigation water
are used for evapotranspiration. Therefore, we take the result of Shah et al. (2011) as a point of
departure to consider the case where irrigation water has a distinct salt concentration Cirr, but
also groundwater is (somewhat) saline. We consider a clayey soil covered with grass, with
different groundwater levels below soil surface (Zf) in the range 100 cm < Zf < 250 cm and a
root zone thickness of 25 cm. By using the reasoning that resulted in (7), we obtain in analogy
the following result

Ch i ¼ Dcrh i CZ þ Diwh i Cirr

Ddwh i ð8Þ

This expression, that ignores short term fluctuations, agrees quite well with numerical
results, and only has a small systematic bias as can be seen from Fig. 4.

Figure 5 illustrates the long-time average salt concentrations under various Dutch
conditions as calculated with Eq. 8, assuming capillary rise of (moderately) saline ground-
water after (partial) disappearance of a fresh water lens. Average salt concentrations do not
exceed groundwater concentrations due to dilution (precipitation surplus, Fig. 5a), al-
though in practice, the concentrations would vary seasonally. The salinizing effects of
capillary rise (during seasonal precipitation deficit, assuming no reduction of evapotrans-
piration) may be mitigated by irrigating with water that has a lower salt concentration than
the average concentration that would have occurred without irrigation (Fig. 5b, d and e).
Moreover, it should be noted that irrigation lead to decreased capillary rise as well, adding
to the mitigating effect. If however, the concentration of irrigation water is equal to the
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groundwater salinity, irrigation leads to increased long-term average concentrations
(Fig. 5c).

More refined predictions of long term root zone concentrations can be made, based on
projected future rainfall intensities and evapotranspiration demand. At this moment, it is not
yet clear whether such predictions have to account for the travel time of capillary upward
moving water and salt, and the probability that saline water is leached before it reaches the root
zone, by incidental rainfall showers.
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Fig. 5 Average salt concentrations as calculated by Eq. 8. Drainage (Ddw) is calculated as the sum of the
precipitation surplus (P-ET), capillary rise (Dcr) and irrigation (Dirr). a The effect of precipitation surplus on the
average salt concentration as a function of capillary rise, in a situation without irrigation and a groundwater
chloride concentration of 1000 mg l−1. b–e show the effect of irrigation on the average chloride concentration as a
function of capillary rise. A precipitation surplus of 225 mm y−1 is assumed and the sum of irrigation and
capillary rise is assumed to not exceed 360 mm y−1. bAverage chloride concentration with a groundwater salinity
of 1000 mg l−1 Cl− and irrigation water salinity of 200 mg l−1 Cl−. c Average salt concentration with a
groundwater salinity of 1000 mg l−1 Cl− and irrigation water salinity of 1000 mg l−1 Cl−. d Average salt
concentration with a groundwater salinity of 5000 mg l−1 Cl− and irrigation water salinity of 200 mg l−1 Cl−. e
Average salt concentration with a groundwater salinity of 5000 mg l−1 Cl− and irrigation water salinity of
1000 mg l−1 Cl−
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5 Summary and Conclusions

In managing fresh water scarcity and salinity in the deltaic areas, which may grow in
importance due to climate change and related sea level rise, modelling of the behaviour of
shallow fresh water lenses in relation to increased root zone salinities is an important tool to
help us anticipate possible chances in primary food production. To be of use, models have to
be aligned with experimental results, i.e., be properly parameterized. A main issue is that a
proper assessment must be made of how crops respond to salinity. Despite that this has been
under investigation for decades, quite basic issues such as compensation behaviour of plants in
dealing with drought and salt stress are still frontiers in our science (Javaux et al. 2008;
Kuhlmann et al. 2012).

Despite the recognition of scientific gaps in knowledge, for managing our resources, a
robust prediction of broad features may be sufficient these coming decades. An example
is given by predicting the persistency of fresh water lenses in saline, shallow ground-
water situations such as in deltaic areas. Numerical modelling by Eeman et al. (2011,
2012) revealed that analytical solutions of e.g. Maas (2007) describe the mean depth of
the fresh/salt transition zone pretty well. With some approximations that are also
founded on a good agreement with numerical simulations, we can judge also the
thickness of the fresh water lens above the fresh/salt transition zone. In combination,
this resulted in an assessment of the combination of factors for which fresh water lenses
may disappear in drier summers as predicted for climate change on the European sub-
continent. It appears that in practice, fresh water lenses have to be very thin or subject to
large mixing at the interface to be threatened to disappear completely. However, near
draining ditches or gullies, the risk may be larger as lens thickness decreases signifi-
cantly in their vicinity.

Based on numerical models and available spatially distributed data from different sources, a
relatively straightforward data assimilation is possible towards the vulnerability of fresh water
lenses to temporarily disappear. Such an assessment was done for the Dutch coastal region,
and this may provide a basis for later, more detailed predictions.

If the shallowest groundwater becomes brackish or saline, this can cause the root zone
to become saline due to capillary rise of marginal water. With simulations that account for
erratic aspects of weather, notably rainfall, it is possible to investigate the root zone
salinity as a function of different factors such as vegetation or crop, root zone thickness,
groundwater depth, and climate. Typically, this leads to a salt concentration that fluctuates
much as a function of time. To predict which concentrations in root zone develop on the
longer term, two very simple approximations (7) and (8) are presented that reproduce the
main features obtained with detailed numerical simulations pretty well. Accordingly, the
concept of Leaching Requirement, that has proven its use for practical soil water and
salinity management during the last 7 decades, has been extended to more complex
situations. However, despite the promise of the good agreement between numerical
simulations and these approximations, it is necessary to confirm the applicability with
experimental evidence. If that leads to favourable results, a very useful management tool is
the result.
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