
UTRECHT STUDIES IN EARTH SCIENCES

Utrecht University
Faculty of Geosciences
Department of Physical Geography

263ISSN  2211-4335

U
S

E
S

 2
6

3
Ju

d
e K

in
g

 –  A
irb

o
rn

e electro
m

ag
n

etic m
ap

p
in

g
 o

f co
astal g

ro
u

n
d

w
ater salin

ity

Airborne electromagnetic
mapping of coastal

groundwater salinity

Quantifying uncertainty and investigating 
methodological improvements

Jude King





Airborne electromagnetic mapping of  
coastal groundwater salinity 

Quantifying uncertainty and investigating methodological improvements

 
Airborne elektromagnetische kartering van het 

zoutgehalte van grondwater in kustgebieden
Kwantificering van onzekerheden en onderzoek naar verbetering methodes

 (met een samenvatting in het Nederlands) 
  
 
 
 

Proefschrift 
 
 
 
 

ter verkrijging van de graad van doctor aan de  
Universiteit Utrecht 

op gezag van de 
rector magnificus, prof.dr. H.R.B.M. Kummeling, 

 ingevolge het besluit van het college voor promoties  
in het openbaar te verdedigen op 

 
vrijdag 21 oktober 2022 des middags te 4.15 uur 

 
 
 

door 
 
 

Jude Axon King

geboren op 27 februari 1984 
te Grahamstown, Zuid-Afrika



Promotoren:
Prof. dr. ir. M.F.P. Bierkens 
Dr. ir. G.H.P. Oude Essink 

Beoordelingscommissie:
Prof. dr. J. Carrera 
Prof. dr. rer. nat. S. Attinger 
Dr. M. Karaoulis 
Prof. dr. ir. T.J. Heimovaara 
Prof. dr. J. Griffioen 

 

This research is financed by the Netherlands Organisation for Scientific Research (NWO), 
which is partly funded by the Ministry of Economic Affairs, and co-financed by the 
Netherlands Ministry of Infrastructure and Environment and partners of the Dutch Water 
Nexus consortium.



Utrecht Studies in Earth Sciences 263

Airborne electromagnetic mapping of  
coastal groundwater salinity

Quantifying uncertainty and investigating methodological improvements

Jude King

Utrecht 2022

Department of Physical Geography
Faculty of Geosciences

Utrecht University



Promotor:
Prof. dr. ir. M.F.P. Bierkens 

Co-Promotor:
Dr.ir. G.H.P. Oude Essink 

Examination Committee:
Prof. dr. J. Carrera 
Prof. dr. rer. nat. S. Attinger 
Dr. M. Karaoulis 
Prof. dr. ir. T.J. Heimovaara 
Prof. dr. J. Griffi  oen 

ISBN 978-90-6266-632-4
Published by the Faculty of Geosciences, Universiteit Utrecht, Th e Netherlands, in: Utrecht 
Studies in Earth Sciences (USES), ISSN 2211-4335

Th is work is licensed under the Creative Commons Attribution 4.0 International License, 
https://creativecommons.org/licenses/by-nc-sa/4.0/
© 2022 by Jude King

Th e following chapters are either unpublished articles or fi nal author versions of previously 
published articles, © by Jude King and co-authors. More information and citation suggestions 
are provided at the beginning of these chapters. 



Contents
1: Introduction 9
1.1  Background 10
1.2  Factors affecting the distribution of fresh-saline groundwater 11
1.2.1  Natural Causes of Fresh-Saline Groundwater Distributions 11
1.2.3  Anthropogenic Causes of Fresh-Saline Groundwater Distributions 11
1.2.4  Impacts and threats of groundwater salinization 12
1.3  Geophysical Methods to Map Groundwater Salinity 13
1.3.1  Intrusive Methods 13
1.3.2  Non-Intrusive Geophysical Methods 13
1.4  Estimating Groundwater Salinity using Groundwater Models 15
1.5  Previous Research 16
1.6  Research Questions and Thesis Outline 18

2: Quantifying Geophysical Inversion Uncertainty Using Airborne Frequency Domain 
Electromagnetic Data—Applied at the Province of Zeeland, the Netherlands. 23
2.1 Introduction 24
2.2  Background 25
2.2.1  Study Area 25
2.2.2  Geology 26
2.2.3  Hydrogeology 27
2.2.4.  Data 27
2.3  Methodology 34
2.3.1  Processing of HEM Data 35
2.3.2  Inversion Setup 35
2.3.3  Regularization Parameter Choices 35
2.3.4  Removing Inversions Results From Further Analysis 36
2.3.5  Testing Regularization Terms 37
2.3.6  Selecting Inversion Parameters for Each Code 38
2.3.7  3-D Interpolation 40
2.3.8  Translating the Conductivity Volume Into Salinity Distributions 41
2.4  Results 42
2.4.1  Qualitative Observations 43
2.4.2  Volume Estimates 45
2.4.3  Overall Accuracy of Groundwater Distributions 45
2.4.4  Interface Depth Accuracy 47
2.5  Discussion 49
2.5.1  Volume Estimates 50
2.5.2  Accuracy of Salinity Distributions 50
2.5.3 Interface Mapping 50



2.6 Conclusions 52
2.7 Acknowledgments 52

3: A practical quantification of error sources in regional-scale airborne  
groundwater salinity mapping. 55
Abstract  55
3.1 Introduction 56
3.2 Methods 58
3.2.1  General approach 58
3.2.2. Step 1: Synthetic data generation 58
3.2.3.  Step 2: Simulate AEM acquisition 60
3.2.4.  Step 3: Simulate lithological data collection 62
3.2.5.  Step 4: 3D interpolations of ECb inversion results and lithological data 63
3.2.6.  Step 5: Conversion to ECw and chloride 64
3.2.7.  Step 6: Comparison with reference chloride model and error analysis 64
3.3.  Results 65
3.3.1  MAE of salinity estimates 65
3.3.2  Volumes 66
3.3.3  Interfaces 68
3.4.  Discussion and conclusions 70
3.5.  Acknowledgements 71

4. Controlling the smoothness of airborne geophysical inversions to improve the 
accuracy of regional groundwater salinity mapping 73
Abstract  73
4.1.  Introduction 74
4.2.  Methods 76
4.2.1  Summary of approach 76
4.2.2  Creating the synthetic case 77
4.2.3  The inversion method 78
4.2.4  The minimization criterion 78
4.2.5  Details of inversion and minimization procedure 78
4.2.6  Application to the synthetic case 79
4.2.7  Application to a real case 81
4.3.  Results 81
4.3.1.  Synthetic model results 81
4.3.2.  Real case results 83
4.4.  Discussion & Conclusions 90



5. Joint estimation of groundwater salinity and hydrogeological parameters using variable-
density groundwater flow, salt transport modelling and airborne electromagnetic surveys 93
Abstract  93
5.1.  Introduction 94
5.2.  Methods 96
5.2.1  General approach 96
5.2.2  Creating a synthetic case 98
5.2.3.  3D-VDG model simulation and initial parameter estimates 103
5.2.4.  The optimization 104
5.3.  Results 105
5.3.1  AEM sensitivity to estimated chloride distributions 105
5.3.2  Estimated Parameters 106
5.3.3  Estimated chloride distributions 107
5.4.  Discussion 109
5.5.  Conclusions 112
5.6  Acknowledgements 113

6. Synthesis 115
6.1 Introduction 116
6.2 Research Questions 116
6.2.1  What is the effect of using different inversion methods and parameters  

on mapping results? (Chapter 2) 116
6.2.2 How are results affected by different quantities of available data? (Chapter 3) 117
6.2.3  Based on the results of chapters 2 and 3, what further  

methodological improvements can we make? (Chapter 4) 118
6.2.4  Are groundwater salinity movements sensitive to repeated  

AEM surveys? (Chapter 5) 119
6.3 Recommendations for further research 120
6.3.1 Deterministic inversion methods 121
6.3.2 Coupled hydrogeophysical modelling 121
6.3.3 Applying repeat AEM surveys to a real case 122
A: Appendix to Chapter 2 125
The 3D interpolation validation 125
B: Appendix to Chapter 3 133
C: Appendix to Chapter 5 139
Bibliography 163

7. Summary 175
Samenvatting 179
Acknowledgements  182
About the author 185





1 
Introduction



Chapter 1

10

1.1  Background

Low elevation coastal zones (LECZs), defined here as areas that are ≤10 m above mean 
sea-level, currently host nearly 800 million people – about 10% of the world’s population 
on only 2% of the earth’s surface (Neumann et al., 2015). Thanks to these resource rich 
environments, people have been drawn to LECZs for millennia, notably occupying deltaic 
areas almost in synchronicity with the formation of modern deltas about 7000 yr. B.P (Stanley 
and Warne, 1997). Popularity of these areas has not changed – in fact current estimates point 
to significant population growth in the future, with estimates of 949 million and 1.4 billion 
inhabitants by the years 2030 and 2060 respectively (Neumann et al., 2015). Despite current 
(and predicted) global popularity, these zones are fraught with environmental challenges. A 
few famous examples include Jakarta (Indonesia) and the Mekong Delta (Vietnam), where 
because of anthropogenic stressors, large parts of these cities are sinking below sea-level – 
causing significant property damage and human displacement (Minderhoud et al., 2017). 
Unfortunately, what happens on the surface is only part of the picture, and is often either 
indicative, or indeed caused by what’s going on beneath us.

Figure 1.1. Global population centres within low elevation coastal zones (LECZs). 
LECZ data from Macmanus et al., (2021), population represented as all settlements with populations > 100,000 
inhabitants from ESRI’s ‘World Cities’ database – accessed 2022. 

With sustained population growth comes an increased demand for fresh water, including 
household, industrial and agricultural uses. A major source of fresh water in LECZs is 
groundwater. Within these coastal aquifers, saltwater intrusion (SWI) can occur, where 
freshwater is displaced by largely unusable saline groundwater. Worryingly, this phenomenon 
can worsen with various anthropogenic drivers, such as excessive groundwater extraction, 
land subsidence, and sea-level rise (Jasechko et al., 2020; Meyer et al., 2019; Oude Essink et 
al., 2010). Moreover, historical events such as sea-level transgressions and land reclamation 
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also affect the current availability and distribution of fresh groundwater (Delsman et al., 
2014; van Engelen et al., 2018). These challenges necessitate careful management of LECZ 
aquifers, and in turn effective management requires reliable and accurate subsurface data. 
Acquiring such data is challenging given the regional scales involved, which often extend 
100’s of kilometres along coastlines, and 10’s of kilometres landward. Mapping regional scale 
fresh-saline groundwater distributions economically, and with the required precision is 
the topic of this thesis. More specifically I investigate the use of airborne electromagnetics 
for this purpose. In this chapter, I will first describe in more detail the current threats to 
fresh groundwater, followed by on overview of known mapping methods and an outline of 
my research. 

1.2 Factors affecting the distribution of fresh-saline groundwater

As this research is focussed on mapping, I will explain the drivers that control the spatial 
distribution of fresh or saline groundwater within coastal groundwater systems. First, I 
will describe natural processes, followed by human influences, and finally future challenges 
relating to the availability of fresh groundwater. For brevity, I will focus on primary drivers, 
rather than a detailed description of hydrogeological properties or transport processes. For 
more detailed explanations refer to Werner et al. (2013). 

1.2.1 Natural Causes of Fresh-Saline Groundwater Distributions
Over time, a combination of tectonic and climatic events caused global changes in sea-levels; 
this in turn resulted in the deposition of salt layers and saline groundwater within aquifers 
(e.g., Delsman et al., 2014; van Engelen et al., 2018). With subsequent sea-level regression, 
fresh-water infiltration (primarily from rain, also driven by climatic events) into these 
aquifers resulted in the formation of freshwater volumes. Driven by density contrasts, this 
freshwater lies above saline groundwater, creating freshwater lenses. Along coastlines, this 
manifests as a saltwater wedge between the land and the sea. Finally, sea-level rise (natural, 
or human driven) can cause a landward movement of this wedge, causing a gradual intrusion 
of seawater. 

1.2.3 Anthropogenic Causes of Fresh-Saline Groundwater Distributions
Resulting fresh-saline groundwater distributions from natural causes are further affected by 
humans through various means. In what is analogous to tectonic events causing global sea-
level changes, but on a considerably shorter timescale, recent land reclamation can cause the 
freshening of saline groundwater – in these cases shallow freshwater lenses can form (e.g., 
Delsman et al., 2014). Freshening can also occur through the artificial recharge of aquifers, 
through aquifer storage and recovery programmes (Zuurbier et al., 2015). Of course, human 
intervention can also cause salinisation, primarily via groundwater extraction through several 
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mechanisms: 1) the upconing of saline groundwater from excessive pumping , 2) a lowering 
of the land surface and thus the piezometric head, causing saltwater intrusion, 3) surface 
sealing and the resulting decline of groundwater recharge and 4) enhanced upconing caused 
by the draninage peat/clay soils and land subsidence (Werner et al., 2013) – all of which have 
essentially the same effect as sea-level rise, but again often on a much shorter timescale. 

1.2.4 Impacts and threats of groundwater salinization
With an understanding that human activity can rapidly affect the availability of fresh 
groundwater within LECZs, as well as the knowledge that these areas are expected to see 
explosive population growth – we can begin to piece together the potential costs of poorly 
managed (or mapped) aquifers in these areas. An overview of these threats globally are 
presented in van Weert et al., (2009), and summarised in the following.  

A clear threat is simply the availability of fresh drinking water. Besides the obvious problems 
associated with not having access to fresh water, the consumption of even slightly saline 
water – potentially in doses that are undetectable to humans – have been shown to cause 
hypertension (Scheelbeek et al., 2017). Furthermore, depending on plant type and salinity 
levels, saline water can cause plant stress – reducing, or even eliminating growth altogether 
(Maas and Hoffman, 1977). Besides toxicity to plants, livestock are also intolerant to various 
levels of saline water (López et al., 2021). Naturally these effects can affect agricultural yields, 
which in turn could result in food shortages and financial loss to farmers, potentially leading 
to migration. There are also broader economic costs. Desalinisation plants are expensive 
compared to simply extracting fresh groundwater (Cooley et al., 2019), the costs of which will 
be passed on to consumers – who are often located in low-income LECZ areas (Neumann et 
al., 2015). 

Thanks to ongoing research, it’s not all bad news. Recent advancements in groundwater 
management include aquifer storage and recovery, where fresh water is infiltrated into 
aquifers for later use (Dillon, 2005), a method that is already used extensively in the United 
States (David and Pyne, 2020). Furthermore, the extraction of groundwater can be optimised 
to reduce or eliminate upconing of saline groundwater and land subsidence (Wagner, 
1995). Another recent example highlights the possibility of using a network of optimised 
pipelines for decentralised groundwater extractions in the Netherlands (Willet et al., 2020). 
All these management strategies share a single trait – they require an excellent (often three-
dimensional) spatial understanding of fresh-saline groundwater distributions for effective 
implementation and ongoing use. That is to say: innovations to manage and safeguard fresh 
groundwater resources require good data. 
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1.3 Geophysical Methods to Map Groundwater Salinity
In simple terms, most geophysical methods to map groundwater salinity exploit the fact that 
saline water is electrically conductive. By measuring the electrical conductivity (EC) of a 
groundwater sample, typically in SI units as siemens per metre (S/m), empirical relationships 
can be used to quantify the amount of salinity present (Lewis and Perkin, 1981). The resulting 
data are often expressed as total dissolved solids (TDS), typically in grams per litre (g/l), or as 
chloride – as chloride is the main conservative anion of seawater. Not all methods measure 
the salinity of groundwater on its own, frequently the combined conductivity of lithology 
and groundwater (as pore water) is measured – known as bulk electrical conductivity 
(ECb). To convert ECb to groundwater EC (ECw) – and ultimately salinity – petrophysical 
transformations are used (e.g. Archie, 1942; Waxman and Smits, 2003). There are several 
methods that map groundwater using EC. In the following I will briefly outline some 
commonly used techniques. All methods follow the basic principles described above. 

1.3.1 Intrusive Methods
The simplest way to map groundwater salinity are intrusive methods, typically using a 
monitoring well – where ECw measurements are directly measured. Other intrusive methods, 
such as electrical cone penetration testing (ECPT) provide a vertical profile of ECb (Begemann, 
1952), thus inferring both salinity and lithology. Intrusive methods provide excellent vertical 
resolution, but naturally lack horizontal information. 

1.3.2 Non-Intrusive Methods
Mapping groundwater salinity using non-intrusive methods are typically undertaken using 
ground-based or airborne electromagnetic platforms. As the principles are the same for 
both, the method will first be described in general – followed by a comparison of ground-
based and airborne approaches. An overview of electromagnetic methods for subsurface 
characterisation is given in Swift (1988). 

With electromagnetic techniques, electrical signals are first transmitted from an instrument. 
This in turn produces secondary currents in the subsurface which are recorded by a receiver. 
The method is sensitive to EC contrasts of the subsurface – in terms of groundwater salinity, 
these contrasts highlight areas where fresh, brackish, or saline interfaces contact. The resulting 
observations require additional processing to translate measurements into usable (ECb) data, 
a process known as inversion (e.g., Farquharson et al., 2003; Vignoli et al., 2015). Inverting 
data is a great source of uncertainty, given that an infinite number of models can fit the data 
– otherwise known as non-uniqueness. Two electromagnetic methods are used – frequency 
and time-domain – referred to in the following as FEM and TEM respectively. 

FEM methods transmit and record currents at discrete frequencies, each frequency relates to 
conductivity contrasts at different depths (Siemon, 2009). FEM methods are generally used 
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for shallow (10’s of metres depth), near surface high-resolution investigations (e.g., Siemon 
et al., 2018). TEM operates by transmitting a current (the primary field) through a loop, the 
current is then switched off and a secondary field is measured from a receiver loop, resulting 
in so-called decay curves. These curves can be windowed (known as gates) for modelling, 
where the magnitude of the curves over time relate to subsurface conductivity contrasts. 
Penetration depths vary according to the system and subsurface conditions, but this method 
is typically used for deeper (~100’s of metres) groundwater investigations (e.g., Barfod et al., 
2016; Vandevelde et al., 2018).

Ground-based EM is often undertaken on foot, where equipment is carried into the field 
and measurements are taken on a point-by-point basis (e.g., Bording et al., 2017). Other 
methods utilise powered transport, such as a quad bike or a boat, to tow the instrument – 
taking essentially continuous measurements along a path (Auken et al., 2019). Ground-based 
EM methods offer useful information on a local scale (as 1-D or 2-D measurements), but 
on regional scales result in a disconnected understanding of the subsurface. Ground-based 
measurements also require direct land access which is not always practical in difficult terrain, 
such as areas with surface water.

Airborne electromagnetics (AEM) provide a solution to these shortcomings. Here, the EM 
instrument is towed beneath a helicopter or fixed-wing aircraft. Surveys are flown in grid-like 
pattern at low altitude (~50m above the surface), where flightlines are typically 100 – 500m 
apart (e.g., Delsman et al., 2018). The measurements are high frequency, such that data are 
typically measured every ~5m along flightpaths – despite survey speeds of up to ~150km/h. 
Given the high density of measurements and the grid-like coverage, the inverted results lend 
themselves well to 3D interpolation – where ultimately 3D volumes of estimated groundwater 
salinity can be delivered to stakeholders (e.g., Delsman et al, 2018). Several contractors have 
developed AEM systems, including: SkyTEM, Spectrem, VTEM, Xcite, GEOTEM, TEMPEST, 
HELITEM and RESOLVE – comparisons between systems are given in Mulè et al. (2019) and 
Viezzoli and Selfe (2018). 
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Figure 1.2. Ground and airborne electromagnetic systems. 
Top left: Time-domain quad-bike system in the Netherlands, as used by the Geoligical Survey of the Netherlands (TNO-
GDN) (photo: self). Top right: the Xcite time-domain AEM system operating in Africa (photo courtesy of NRG at https://
www.nrgex.co.za). Bottom: the frequency domain AEM system in The Netherlands, as used by the Federal Institute for 
Geosciences and Natural Resources, Germany (BGR). Photo courtesy of Deltares at https://www.deltares.nl/. 

1.4 Estimating Groundwater Salinity using Groundwater Models

Apart from geophysical methods, groundwater models, or more specifically 3D variable-
density groundwater flow and coupled salt transport models (necessarily 3D-VDG models 
for short), have been used since the early 2000’s to estimate groundwater salinity distributions 
(e.g., Oude Essink, 2001). A 3D-VDG model solves the coupled density-dependent 
groundwater flow and salt transport equations. Here, density differences, along with hydraulic 
drivers, cause pressure differences, that initiate groundwater flow and associated advective 
and diffusive-dispersive transport of dissolved salts. Salt transport in turn affects the salinity 
and thus density distribution, impacting flow and transport etc. 3D-VDG models can be used 
to estimate past, present, and future groundwater salinity distributions (e.g., Meyer et al., 
2019; Oude Essink et al., 2010; Van Engelen et al., 2019). An advantage of 3D-VDG  models 
is that like AEM, it results in a 3D model of groundwater salinity over regional scales. It 
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does however suffer from great uncertainty – given the large number of parameters and 
heterogeneity involved. This uncertainty, however, can in part be reduced with the addition of 
observations, including both intrusive and geophysical data sources. 

Figure 1.3.  A country scale 3D-VDG groundwater salinity model in the Netherlands (Delsman et al., 2020). 

1.5 Previous Research

The research presented in this thesis focusses on the use of Airborne Electromagnetics (AEM) 
to map groundwater salinity. Given the challenges involved, the innovation of this work is 
sought in combining AEM methods with other data sources such as intrusive well monitoring 
with 3D-VDG modelling.  As a result, in the following I will not focus on technological 
advancements in the form of equipment (e.g., a new AEM system with improved resolution) 
– but rather on methods and processing using AEM systems that were available at the time. A 
general review of using AEM for groundwater exploration is presented in Siemon et al. (2009) 
and Paine and Minty (2005). For clarity this will be described in chronological order and is, 
for practical reasons, non-exhaustive – thus will focus only on studies that relate in a broader 
sense to the work presented in this thesis. More specific details, including an extensive list of 
references are provided in the chapters that follow. 

The first use of AEM to map groundwater salinity was in 1978 on the island of Spiekeroog, 
Germany in the North Sea (Sengpiel and Meiser, 1981). Here an early three frequency FEM 
system was used to successfully map the depth of the fresh-saline interface across the island. 
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The resulting observations were inverted using a so-called resistivity/depth sounding curves, 
and delivered results were depth-contours of the fresh-saline interface. Later, in 1981 the 
same AEM system was used to map saline intrusion beneath a riverbed in Pakistan (Sengpiel, 
1989). In this study, a centroid-depth algorithm was used to invert the data – an improved 
approach that was shown to compare well with in-situ data. 

A large portion of the Everglades Nation Park, Florida was surveyed in 1998 to delineate 
coastal saline intrusion (Fitterman and Deszcz-Pan, 1998). The survey covered just over 1000 
km2 and was flown by an improved, five frequency FEM system – allowing greater mapping 
accuracy. The data were inverted using a layered earth method, which was subsequently 
converted to salinity using petrophysical relationships with help of ground data. This work is 
one of the first to provide regional, quantitative estimates of groundwater salinity – usefully 
represented as chloride concentrations rather than just ECb. 

In the meantime improved processing methods were developed, including pseudo 2-D 
inversions (Auken and Christiansen, 2004). This approach links neighbouring model 
properties to produce laterally coherent results in coastal aquifers and allowed the use of in-situ 
data as constraints. Initially developed for ground EM surveys, the method was subsequently 
adapted for AEM surveys (Siemon et al., 2009a) – where it was used to invert FEM data 
from a survey on Borkum, a North Sea island, in 2008 (Siemon et al., 2009b). The resulting 
inversions resolved the vertical and lateral extent of a freshwater lens on the island and were 
subsequently transformed to ECw to determine the volume of fresh groundwater available. 
Further inversion method developments saw the use of Spatially Constrained Inversions (SCI) 
for AEM data – where models are also constrained between neighbouring flightlines (Viezzoli 
et al., 2009) – creating pseudo 3D results. Subsequently, several AEM groundwater salinity 
mapping programmes utilised these (and other similar) methods effectively (e.g., Ball et al., 
2010; Bedrosian et al., 2013; Chongo et al., 2015; de Louw et al., 2011; Faneca Sánchez et al., 
2012; Gunnink et al., 2012). A notable example is the almost complete coverage of Denmark 
by AEM and ground EM measurements, where a subsurface atlas of ECb was effectively 
created, allowing hydrologically related insights across an entire country (Barfod et al., 2016). 

However, there are inherent uncertainties found in the processing of AEM data for groundwater 
salinity mapping. These are primarily from two sources: 1) the inversion method, given the 
non-uniqueness of traditional approaches (Minsley, 2011), and 2) error associated from 
the petrophysical transformation from ECb to ECw (Revil et al., 2017). So far, most AEM 
investigations had taken a sequential approach to recover salinity of observations – running 
a geophysical inversion and then performing the petrophysical transformation to recover 
salinity sequentially. This approach is now known as sequential hydrogeophysical inversion, 
and has tendency to propagate error from the two steps (Hinnell et al., 2010). Joint, or coupled 
hydrogeophysical inversions (CHI) were subsequently developed to (in part) try and reduce 
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these uncertainties and explore more interdisciplinary approaches (e.g., Bauer-Gottwein et 
al., 2010; Hinnell et al., 2010; Steklova and Haber, 2015). CHI avoids the use of traditional 
geophysical inversion, whereby a 3D-VDG model is transformed into a physical property that 
is forward modelled and iteratively compared to AEM observations until a suitably small fit 
is found. Of course, uncertainty isn’t eliminated using this approach as there is still a reliance 
on a petrophysical transformation – and results are dependent on the choice of conceptual 
model used for the 3D-VDG model. Delsman et al. (2018) took a probabilistic, sequential 
hydrogeophysical inversion approach to create a 3D map groundwater salinity across an 
entire province of the Netherlands. Here, each step of the process was included in a stochastic 
model, which allowed insights into uncertainties of the whole process – including (amongst 
others such as interpolation) the inversion and petrophysical transformation. The results of 
this highlighted that inversions add the greatest source of uncertainty, followed closely by the 
petrophysical step. 

Research presented here highlights that there are an array of available acquisition and 
processing techniques for mapping groundwater salinity using AEM. Especially encouraging 
is the notable increasing interest in hydrogeophysics in general (Binley et al., 2015), a sure 
sign of uptake in the future. However, a quantitative understanding of mapping accuracy 
over regional scales is not fully understood. This uncertainty includes unknowns about the 
effect of using different inversion methods, as well as ambiguity regarding the financial benefit 
of including additional in-situ data to interpret results – or indeed the effect of changing 
flightline spacing. As groundwater salinity can change rapidly due to anthropogenic stressors, 
it is also unknown whether AEM surveys are sensitive to these movements over time. If they 
are sensitive to this, the practical viability of using repeated surveys for time-lapse monitoring 
is also not understood – and indeed if it is possible, it opens up exciting research avenues. One 
of them being the potential of using repeated AEM surveys to improve the parameterisation 
of 3D-VDG models. 

1.6 Research Questions and Thesis Outline 

The research in this thesis makes use of recently available AEM data, from a survey over the 
Province of Zeeland, The Netherlands (Delsman et al., 2018). These data are also used to 
construct synthetic models to help fill research gaps. Flightline locations of these data are 
illustrated in figure 1.5.
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Figure 1.5.  Locations of available AEM data for the research presented in this thesis, represented as flightlines. 

Understanding uncertainty relating to regional scale AEM groundwater salinity mapping 
served as an initial target of this PhD research. Based on knowledge obtained from these 
initial studies, as well as uncertainties identified from previous research, the main objectives 
of this thesis are addressed: 

(1) developing improvements on existing processing methods, focussing on combining 
AEM with intrusive in-situ data;

(2) investigating the potential of flying repeat AEM surveys to monitor groundwater 
salinity changes over time. 

Based on the identified knowledge gaps, research questions were formulated as per the 
following:

What is the effect of using different inversion methods and parameters on mapping results? 
In chapter 2, extensive research highlights the most commonly used inversion methods for 
groundwater investigations. Using available in-situ data for validation purposes, these inversion 
methods are then quantitatively tested for a variety of practical mapping outcomes. 
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How are results affected by different quantities of available data?
Another practical and quantitative study is undertaken in chapter 3, using the results of 
chapter 2 to guide the inversion method. Here, using a highly realistic synthetic model, the 
effects of different quantities of in-situ geological data (for estimating formation factors) and 
flightline spacing are investigated. The results help highlight the relative importance of data and 
consequently offers financial guidance in regard to survey planning in other LECZs. 

What further methodological improvements can we make, based on the results of chapters 2 and 3? 
The results from chapter 2 and 3 are revisited, where the usefulness of a customised and novel 
inversion method to improve mapping accuracy is investigated in Chapter 4. The method is 
practical as it is based on a commonly used inversion method, but changes the characteristics 
of the inversion results to better match the groundwater salinity values at the locations of in-
situ data. 

Are groundwater salinity movements sensitive to repeated AEM surveys? 
In chapter 5, AEM surveys and groundwater models are physically coupled to synthetically 
investigate the sensitivity of AEM data to groundwater movements. Consequently, the time 
needed for surveys to map groundwater salinity changes are understood, resulting in the 
development of a novel tool that can improve the parameterisation of groundwater models 
using time lapse AEM. 
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Quantifying Geophysical Inversion 

Uncertainty Using Airborne Frequency 
Domain Electromagnetic Data—

Applied at the Province of Zeeland, the 
Netherlands.

An accurate understanding of the fresh-saline distribution of groundwater is necessary for 
effective groundwater management. Airborne electromagnetic (AEM) surveys offer a rapid 
and cost-effective method with which to map this, offering valuable additional information 
about the subsurface. To convert AEM data into electric conductivity and ultimately 
groundwater salinity, an inversion is undertaken. A number of algorithms are available for this 
purpose; however, these are affected by significant uncertainty, owing to inherent nonunique 
characteristics of this process. The most commonly used inversion codes in hydrogeophysical 
studies were quantitatively tested using frequency domain AEM and ground data from the 
province of Zeeland, the Netherlands. These include UBC1DFM code and quasi-2D laterally 
constrained inversions. Following an investigation of inversion parameter settings, data were 
inverted for four inversion methods and interpolated into 3-D volumes. Using geological 
data and empirical electrical conductivity and water salinity relationships, each inversion 
was converted into groundwater electrical conductivity and split into fresh-brackish-saline 
regions. For groundwater volume estimates out of a total volume of 2.8 billion m3, a fresh 
groundwater estimate could differ by as much as 178 million m3, depending on the inversion 
used. The primary factor here was the choice of model smoothness, which was shown to 
affect the thickness of the brackish interval. Fresh-brackish-saline interfaces were consistently 
mapped with an accuracy of ~3 m, the brackish being the most accurately resolved. The few 
layer method was less successful at resolving smoothly varying salinity distributions but more 
successful at mapping the brackish interface at greater depth.

Based on: King J, Oude Essink G, Karaolis M, Siemon B and Bierkens M F P. (2018) Quantifying 
geophysical inversion uncertainty using airborne frequency domain electromagnetic data—

applied at the province of Zeeland, the Netherlands Water Resour. Res. 54 8420–41
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2.1 Introduction

Globally, over 600 million people live within low-elevation coastal zones less than 10 m 
above sea level; this number is estimated to rise to over 1 billion by 2060 (Neumann et al., 
2015). As many of these areas are around or below sea level, fresh groundwater resources 
suffer from saline intrusion—a problem further exacerbated by the threat of sea level rise 
and land subsidence (Minderhoud et al., 2017; Oude Essink et al., 2010; van Weert et al., 
2009). An accurate understanding of the fresh-saline groundwater distribution is therefore 
required for effective groundwater management. Nonintrusive airborne electromagnetic 
(AEM) techniques offer a rapid and cost-effective method with which to achieve this, in 
contrast to conventional ground-based techniques that offer limited spatial resolution at the 
larger regional scales required. AEM systems were initially developed for mineral exploration 
(Fraser, 1978) and comprise two primary methods: frequency and time domain—differences 
and capabilities of each are discussed in Steuer et al., (2009). Early AEM programs include 
mapping the fresh-saline groundwater interface over a small island in the North Sea (Sengpiel 
and Meiser, 1981), and later a more advanced AEM system was used to map fresh groundwater 
in Pakistan (Sengpiel and Fluche, 1992). These methods have since been successfully applied 
for groundwater mapping campaigns across the world (e.g. Auken et al., 2008; Chongo et al., 
2015; Fitterman & Deszcz-Pan, 2001; Siemon et al., 2015). In the Netherlands, the technique 
was used in 2009 over the island of Schouwen-Duivenland (Faneca S̀anchez et al., 2012) and 
again in 2014–2015 covering the entire province of Zeeland (Delsman et al., 2018).

Frequency domain AEM, commonly referred to as helicopter-borne electromagnetics (HEM), 
operate by transmitting electrical signals from an instrument towed beneath a helicopter 
called a bird. These signals produce currents in the subsurface, which are in turn detected by 
receivers. As a result, the system detects electrical conductivity (EC) within the subsurface—
which, in the case of hydrogeophysical studies, relates primarily (but not exclusively) to clay 
content of the lithology and/or the salinity of the groundwater (McNeil, 1980). To obtain useful 
quantitative data, AEM measurements need to be converted into an EC distribution, and 
ultimately a groundwater salinity estimate, or to map hydrostratigraphy—this is undertaken 
using a process called inversion. In AEM mapping programs, a number of inversion algorithms 
are available for this purpose, which include 1-D methods (Farquharson et al., 2003; Siemon 
et al., 2009a; Vignoli et al., 2015), or more complex 2-D (Hermans et al., 2012) and 3-D 
(Cox et al., 2012; Scheunert et al., 2016) inversions. To validate new inversion techniques (or 
improvements on existing algorithms), these are typically tested using a synthetic model and 
then applied to an area where relatively little is known about the subsurface (Auken et al., 
2005; Farquharson et al., 2003; Siemon et al., 2009a). Furthermore, inversions used in applied 
hydrogeophysical studies are often presented without a sensitivity analysis of the effects of 
available inversion types and inversion parameter settings. Using a probabilistic approach, 
Minsley, (2011) illustrated that a range of inversion models can sufficiently explain the 
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measured frequency domain (or observed) data, highlighting the problem of accepting a single 
result that fits. As academia has observed a year-by-year increase in hydrogeophysical related 
publications (Binley et al., 2015), it is therefore suggested that the uncertainty introduced by 
the inversion process on estimated resistivity and derived subsurface properties, including 
salinity, should be better understood. A comparison of inversions was undertaken by Hodges 
and Siemon (2008), qualitatively comparing the capabilities of a number of 1-D techniques 
by means of a synthetic model and real data using two flightlines. This article aims to build 
on this by quantitatively examining the practical effectiveness and uncertainty of a number of 
frequently used 1-D inversion algorithms, while making use of 2-D sections and interpolated 
3-D models. This is possible due to extensively available HEM and ground data in the province 
of Zeeland, the Netherlands, where the subsurface distribution of geological and hydrological 
features is thoroughly understood.

In the following, some of the most commonly used 1-D inversion methods used for AEM 
were first tested individually for different inversion parameter settings using a test flightline. 
Second, based on these results, four different inversion methods were selected for further 
analysis, where remaining flightlines were inverted for each. Third, results were interpolated 
into 3-D volumes of EC and transformed into groundwater EC using geological information. 
Finally, inversion uncertainty was analyzed based on practical hydrogeophysical mapping 
aims, such as groundwater salinity distributions and groundwater interface mapping. Section 
2 introduces the study area and available data, with an overview of inversion methods. Section 
3 presents the methods and the selection process for inversion parameter settings, followed by 
the results in section 4 and a discussion in section 5.

2.2 Background

2.2.1 Study Area
Located in southeastern Netherlands within the province of Zeeland, the rhombic-shaped 
former island of Walcheren (~20 × 20 km2) faces the southern North Sea (Figure 2.1). Along 
the coast, topography is characterized by elevated sand dunes—reaching a height of around 
40 m above sea level. Inland, the so-called creek ridges are apparent. They are the result of 
topographic inversion by agricultural drainage, which resulted in a larger subsidence of the 
adjacent peat-dominated low-lying polders than of the former sandy tidal creeks (Pauw et al., 
2015). Much of the rest of Walcheren lies at, or below sea level.
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Figure 2.1: The 2-D horizontal map of the study area, including flightline locations (thin black lines), the test line 
location (thick red line), ground data (red) triangle: ECPT, black triangle: boreholes, and blue triangle: VES. Dune 
areas (red) and creek ridges (yellow). Zoomed area highlights labeled ECPT used for analysis. ECPT = Electric Cone 
Penetration Test; VES = Vertical Electrical Sounding.

2.2.2 Geology
Geologically, Walcheren is located at the southern edge of the North Sea basin and comprises 
gently north dipping Neogene and Quaternary sediments (Stafleu et al., 2011). As a result of 
sequential sea level transgressions throughout the Holocene, these sediments were deposited 
mostly in shallow marine, estuarine or fluvial conditions (Vos, 2015). Holocene sediments 
primarily comprise the Naaldwijk formation—consisting of the Wormer and Walcheren 
members that lie above an eroded peat unit called the Basisveen. The Wormer member 
is heterogeneous and comprises fine sands and clay. The surficial Walcheren member is 
separated from the Wormer by a thick peat unit and consists of 1- to 5-m thick clay-rich 
tidal flats, sand-rich tidal channels that caused up to 45-m deep incisions into the underlying 
sediments. Along the coast, the Zandvoort and Schoorl members of the Naaldwijk formation 
form a sandy coastal barrier (Stafleu et al., 2011). The underlying Pleistocene deposits include 
the sands and silts of the periglacial Boxtel formation deposits, which have in places been 
eroded by the Walcheren member tidal channels.
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2.2.3 Hydrogeology
A current estimate of the fresh-brackish-saline groundwater distribution has been recently 
undertaken across the Dutch province of Zeeland using the HEM data available for this study 
(Delsman et al., 2018; Van Baaren et al., 2018). The hydrological situation of Walcheren is 
largely influenced by early Holocene sea level transgressions and the subsequent construction 
of man-made coastal defenses (Berendsen, 2005). Sea level transgressions during the 
Holocene caused extensive salinization, whereby the denser saline water displaced the less 
dense freshwater in shallow aquifers (Delsman et al., 2014). The construction of coastal 
defenses and resulting land reclamation prevented further sea water inundation and in 
turn allowed the freshening of shallow aquifers. Freshening primarily occurs through the 
formation of rainwater lenses, where less dense fresh groundwater floats on the underlying 
denser saline groundwater (Goes et al., 2009). In Walcheren, this lensing effect is observed 
differently in three main areas: (1) 2-m thick lenses in low-lying areas, (2) 5- to 15-m thick 
lenses underneath creek ridges, and (3) up to ~60-m thick around coastal dunes (Delsman et 
al., 2018). As freshwater lens thicknesses are controlled by geomorphological features (Goes 
et al., 2009), they are easily identifiable using topographical data, as observed in Figure 2.1.

2.2.4. Data
The available geophysical and geological data in Walcheren are summarized in Table 2.1 and 
illustrated in Figure 2.1. The data are described in more detail in the following section.

Table 2.1. Data Types and Quantities Used in This Study
Name Type Quantity
Helicopter-borne EM (HEM) Airborne Geophysical ~1000 line km
Electrical Cone Penetration Tests (ECPT) Ground Geophysical 12 holes
Geo-electrical boreholes Ground Geophysical 16 holes
GeoTOP Ground Geological. 3D Geological Model. From surface down to 50m depth
Vertical Electrical Sounding (VES) Ground Geophysical ~80 Measurements

Note. EM = electromagnetics.

2.2.4.a
In 2014/2015 a HEM survey was flown over the entire province of Zeeland, the Netherlands, 
by the Federal Institute for Geosciences and Natural Resources (BGR). The survey was 
undertaken for the research project FRESHEM Zeeland (fresh salt groundwater distribution 
by helicopter electromagnetic survey in the province of Zeeland) and a research program 
involving Deltares, the Geological Survey of the Netherlands (TNO) and BGR. The survey 
covered an area of ~2,000 km2, totaling over 9,000 line kilometers. The primary aim of 
FRESHEM was to translate the HEM data into a 3-D volume of fresh-saline water distributions 
in the subsurface (Delsman et al., 2018).

The survey was flown with the following parameters by BGR’s RESOLVE System (manufactured 
by Fugro Airborne Surveys, Table 2.2).
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Table 2.2. Instrument Parameters and Specifications Used by BGR for the HEM Survey

Towed bird HEM system specifications
Frequencies 380, 1770, 5410, 8300, 41000 and 129500 Hz
Coil separation ~8m/9m (depending on conductivity)
Coil orientations 5 x horizontal coplanar, 1 x vertical coaxial
Depth of investigation 50 - 150m max
Measurement spacing ~4m downline
Bird type and manufacturer RESOLVE, BKS60. Fugro Airborne Systems
Survey parameters
Flight line spacing 300m (100m or 200m in some areas)
Bird height ~40m

Note. BGR = Geosciences and Natural Resources; HEM = helicopter-borne electromagnetics.

Over the study area in Walcheren, available airborne data totals ~1,000 line kilometers, 
covering an area of ~270 km2—as reading is taken approximately every 4-m downline, in 
total about 250,000 individual airborne measurements were available. Line spacing was 
mostly flown at 300 m across most of the area; however, to the north this was decreased to 
100 m over an area of interest called the Waterfarm. Tie lines were flown perpendicularly to 
these at 1,000-m spacing. Flightline orientation was selected to be perpendicular to the strike 
of prominent features such as dunes and creek ridges and was therefore oriented NE-SW or 
NW-SE for tie lines. As inversion results directly depend on data quality, AEM data requires 
careful processing to minimize influence from measurements that do not reflect the targeted 
subsurface properties. This process is summarized as follows: (1) data were calibrated in the 
field to more accurately convert observed data into parts per million (ppm) relative to the 
primary field; (2) measurement drift was corrected during the survey and postprocessing; (3) 
microleveling was applied to remove striping in the data; and finally, (4) based on a data quality 
assessment, selected data were removed—such as those affected by man-made infrastructure 
or where the altitude of the HEM system was increased for safety reasons. Detailed reviews 
and processing steps undertaken for HEM surveys are available in Siemon et al., (2011).

BGR’s RESOLVE HEM system generates primary magnetic dipole fields through transmitter 
coils, which in turn induce eddy currents in the subsurface. The coils are housed in a 
cigar-shaped instrument towed beneath a helicopter called a bird, which typically is about 
10-m long. Each of the transmitter coils produces sinusoidally varying currents at discrete 
frequencies, ranging from 380 Hz to 130 kHz. Low and high frequencies relate to deep and 
shallow features, respectively. The eddy currents generate secondary magnetic fields based on 
the conductivity distribution of the subsurface, which are measured by receiver coils. Due to 
the induction process within the Earth, there is a small phase shift between the primary and 
secondary field, that is, the relative secondary magnetic field is a complex quantity having 
in-phase (I) and quadrature (Q) components. The measured secondary field is very weak 
compared to the primary. Therefore, the primary field is bucked out and receiver coils record 
the data in parts per million relative to the primary field. Coil orientation is selected according 
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to survey requirements and is either vertical (VMD: vertical magnetic dipole) or horizontal 
(HMD: horizontal magnetic dipole); corresponding receiver coil orientation is coupled to 
that of the transmitter. The system’s depth of investigation (DOI) ranges approximately from 
50 to 150 m in conductive or resistive conditions respectively. A more detailed review and 
description of the RESOLVE system are available in Siemon, Christiansen, et al. (2009).

2.2.4.b Electric Cone Penetration Test
Twelve Electric Cone Penetration Test (ECPT) measurements were used for this study, all 
located in the densely sampled area called the Waterfarm. These were mostly measured at, or 
adjacent to creek ridges. Data were sampled vertically every 0.5 cm up to a depth of around 
25 m below surface. Originally developed for geotechnical surveys, cone penetration testing 
(CPT) forces a cone-shaped tool vertically into the ground at a controlled rate, whereby 
resistance and friction are measured to obtain a vertical soil profile (Begemann, 1965). With 
the addition of an EC sensor (henceforth ECPT), a profile of EC is measured. ECPT has 
been used extensively as a high vertical resolution tool for hydrological mapping purposes 
(Gunnink et al., 2012; De Louw et al., 2011).

2.2.4.c Boreholes.
Located throughout the study area, 15 geo-electrical borehole measurements were available. 
Importantly, a number of these were measured to a greater depth in the dunes areas to the 
north, where a deeper fresh-brackish groundwater interface is expected. Measurement depths 
range from 10 m in the central area to ~45 m in the coastal dune areas. The method works by 
using an electrical probe, where a measurement is taken every 5 cm and measures conductivity 
of both the groundwater and lithology and, therefore as with ECPT data, measures bulk EC. A 
detailed description of the method is available in (Spies, 1996).

2.2.4.d Geological Data
The Geological survey of the Netherlands (TNO) hosts a national database of geological data 
and models (dinoloket.nl—accessed November 2016). TNO’s GeoTOP provides a high-
resolution 3-D volume of the onshore part of the Netherlands up to 50-m depth. Available as 
a 3-D voxel model, the volume contains numerous properties for each cell at a horizontal and 
vertical resolution of 100 and 0.5 m, respectively. Properties used for this study were lithoclasses, 
where an estimate of the following classes was available for each cell: peat, clay, sandy clay and 
clayey sand, fine sand, medium-grained sand, coarse-grained sand, and gravel. A more detailed 
description of the geological model and how it was constructed is available in Stafleu et al. (2011).

2.2.5 Geophysical Inversions
Geophysical inversions calculate a distribution of physical properties based on a set of 
observations or measured data. In electromagnetics, this is fitting a calculated electromagnetic 
response to a set of observed values. The resulting physical properties can be presented in 
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SI units as either conductivity in Siemens per meter (S/m) or the reciprocal—resistivity in 
ohm-meter (Ω m). For consistency, conductivity as S/m will be used to present results and 
describe data in this paper. In order to delineate features in the subsurface, a physical property 
contrast is required—in the case of EC, these are present as clay content, water saturation, 
water salinity, and temperature (McNeil, 1980).

As hydrogeophysical investigations are oft en conducted in areas with young, horizontal or 
subhorizontal substrata, physical property contrasts are generally horizontally smoothly 
varying. Furthermore, depending on system altitude, system frequency, and subsurface EC 
(Tølbøll and Christensen, 2007), HEM systems have a relatively small footprint (~100–200 
m); therefore, the benefi ts of 2-D (e.g., Boesen et al., 2018; Li et al., 2016) and 3-D (e.g., Cox 
et al., 2012; Scheunert et al., 2016) inversions are limited and considered to be impractical 
compared to the less computationally expensive 1-D techniques. As a result, this study will 
focus on 1-D inversion methods only. A number of these are available for HEM (e.g, Auken 
& Christiansen, 2004; Brodie & Sambridge, 2006; Farquharson et al., 2003; Huang & Fraser, 
1996; Macnae et al., 1998; Siemon, Auken, et al., 2009; Viezzoli et al., 2008; Vignoli et al., 2015; 
Yin & Hodges, 2007). However, for practical purposes, it was decided that a thorough analysis 
of all available 1-D methods was not possible. Instead, a literature review of applied AEM-
based hydrogeophysical studies was undertaken in order to highlight the most commonly 
used methods. Results of this are presented in Figure 2.2.

Figure 2.2. Results of a literature review studying commonly used inversion techniques and mapping objectives.
SCI = spatially constrained inversion, LCI = laterally constrained inversion, UBC =University of British Columbia 
EM1DFM. Other refers to studies that were either unclearly specifi ed or used other older methods such as homogeneous 
half-space inversions. Structural = mapping of hydrological units. Salinity = mapping of saline distributions or salinity 
interfaces. (Auken  et al., 2008; Ball et al., 2010; Bedrosian et al., 2013; Brodie et al., 2004; Chongo et al., 2015; De Louw et 
al., 2011; Delsman et al., 2018; Faneca S ̀anchez et al., 2012; Fitterman & Deszcz-Pan, 2004; Gunnink et al., 2012; Haider 
et al., 2014; He et al., 2014; Herckenrath et al., 2013; Hill., 2011; Jørgensen et al., 2012; Rasmussen et al., 2013; Sengpiel 
and Fluche, 1992; Siemon, Auken, et al., 2009; Siemon, Christiansen, et al., 2009; Siemon et al., 2015; Wynn, 2005).
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Here it was found that over ~50% used either laterally constrained inversion (LCI) or University 
of British Columbia (UBC) EM1DFM (Farquharson et al., 2003) inversions, while another 
~30% used the spatially constrained inversion (SCI) method (Auken and Christiansen, 2004; 
Viezzoli et al., 2008).. The SCI process requires a number of neighboring lines to be inverted 
in order to test measurements along a single flightline, a process that is further complicated 
because the regularization term needs to be selected according to flightline spacing—where 
the Waterfarm area has a line spacing of 100 m, in contrast to the 300-m spacing flown for 
remainder of Walcheren. It was therefore decided that a robust analysis of SCI was impractical 
for this study.

Both LCI and EM1DFM inversion methods recover a layered, discretized model of the 
subsurface, where a distribution of EC and corresponding depths are recovered—known as 
1-D layered half-space inversions (Sengpiel & Siemon, 2000). Here these inversion algorithms 
will be subcategorized into two types: (1) smooth, multilayer inversions (Constable, 1987; 
Farquharson et al., 2003) and (2) layered, few layer inversions (Auken and Christiansen, 
2004). Smooth, multilayer inversions (Type 1) have fixed thicknesses, whereby the starting 
model layer thicknesses are preserved. Layered, few layer inversions (Type 2) invert for both 
layer thicknesses and conductivity values and have between three and nine layers. Both types 
take all frequencies into account. Multilayer (Type 1) inversions aim to produce smooth, 
minimum structure models that lack sharp boundary definition, whereby the smoothest 
model that fits the data is sought (Farquharson et al., 2003). In contrast, few layer (Type 2) 
inversions result in sharp boundaries as a result of the inclusion of depths as a parameter 
and are therefore suitable for areas with more horizontally continuous formation boundaries 
(Auken & Christiansen, 2004).

In these inversions, there are generally more unknowns than observed data, resulting in an 
infinite number of possible outcomes, otherwise known as nonuniqueness. In mathematics 
this is referred to as an ill-posed or underdetermined problem (Tikhonov & Arsenin, 1979). 
These algorithms therefore need stabilization, otherwise known as regularization (e.g., 
Constable, 1987; Marquardt, 1963). Regularization is introduced through the model norm, 
which favors specific properties in the inverted model. The balance between fitting the data 
and the regularization is approached as an optimization problem—conceptually, this can be 
expressed as minimizing the objective function (Farquharson and Oldenburg, 2004):

𝜙𝜙(𝑚𝑚, 𝑝𝑝) = 	𝜙𝜙)(𝑚𝑚, 𝑝𝑝) + 𝛽𝛽𝜙𝜙,(𝑝𝑝)   (1)

where the vector p contains parameters of the Earth model, m is a vector with the observed 
data, ϕd is data misfit, ϕr is a regularization term based on the difference between current 
parameter values and the initial estimate of the parameters of the Earth model, and β is the 
regularization parameter that balances ϕd and ϕr. If the data are fitted too well, artifacts could 
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be present in the final model, resulting in unrealistic structures. Conversely, a fit too far from 
observed data will result in a model that opts to fit data according to the regularization term 
used instead. This effect is generally referred to as a trade-off, whereby the regularization term 
can be set to be fixed if noise levels are understood or calculated automatically (Farquharson 
and Oldenburg, 2004). In smoother, minimum structure methods, a fit that favors the trade-
off parameter will result in a smoother model. The addition of lateral and spatial constraints 
used in LCI and SCI methods allows the adjustment of the inversion input parameter to favor 
proximity to neighboring models (Auken and Christiansen, 2004; Viezzoli et al., 2008).

As well as a regularization term, layered half-space inversions require a conceptualized model 
of the subsurface, or a starting model, where the Earth is discretized into a set number of 
layers, each of which are given property and thickness values. Starting models can be based 
on prior knowledge, such as known (hydro) geological boundaries (Brodie et al., 2004), or 
automatically generated based on observed data using sounding curves (Delsman et al., 2018; 
Gunnink et al., 2012; Sengpiel & Siemon, 2000); mostly, however, these are based on a simplified 
conceptual model of the subsurface (Auken et al., 2008; Bedrosian et al., 2013; Chongo et al., 
2015). The type of inversion, starting model, and inversion parameter settings relating to the 
regularization term will affect the inversion’s outcome. Based on this, the inversion will then 
iteratively change the starting model until the observed data are sufficiently explained. The 
response of the current model at each iteration is then calculated by forward modeling and 
compared to the measured (or observed) data, where a misfit is calculated. The inversion is 
performed iteratively through a linearized approximation of the nonlinear forward mapping 
of the model to the data space (Auken et al., 2005; Menke, 1989). The inversion process stops 
once it reaches a specified trade-off threshold, that is, minimizing a criterion such as equation 
1, or until the maximum specified number of iterations is reached. In order for the resulting 
inversion model to be considered as a potential candidate of the subsurface, a suitable fit to 
the data is necessary—referred to here as the misfit between observed and predicted data.

UBC inversions comprise four methods, all of which are smooth, multilayer types, and have 
the same base formulas. However, each method differs in regard to how the trade-off parameter 
is dealt with (Farquharson et al., 2003; Farquharson and Oldenburg, 2004). These encompass 
the following: (1) Generalized Cross Validation (GCV), (2) L curve, (3) Fixed Trade-Off, and 
(4) Line Search (Farquharson & Oldenburg, 2004) and will be described in more detail in 
that order. By searching for a model that is least affected by any other data point, the GCV 
method provides an estimated value of the trade-off parameter that sufficiently explains the 
data. As a result, an estimation of noise is provided (Haber and Oldenburg, 2000). For the 
L-curve method, if an inversion misfit is plotted against the model norm for a selection of 
appropriate trade-off values, an L-shaped curve is produced. Here the point of maximum 
curvature approximately depicts a balance between misfit and model norm and is therefore 
considered an appropriate trade-off value (Farquharson & Oldenburg, 2004). In contrast to 
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GCV and L-Curve methods, Fixed Trade-Off  and Line Search methods require an inversion 
input parameter that assumes some knowledge of noise. Th e Fixed Trade-Off  method is 
the simplest approach, where the user provides a value that remains fi xed throughout the 
inversion. As a result, this method has the fastest calculation times. It may, however, require 
a time-consuming trial-and-error approach. As the GCV method results in a determination 
of trade-off  values along a fl ightline, these could be used as values for the Fixed Trade-
Off  method. Th e Line Search approach is most useful if the noise in a set of observation is 
understood. Here the expectation of the misfi t equals the number of observations, and the 
trade-off  parameter is chosen according to a target misfi t in relation to this (Farquharson 
& Oldenburg, 2004). A more technical description of regularization estimation for UBC 
EM1DFM inversions is available in Farquharson and Oldenburg (2004).

Conceptually, the LCI method consists of linked 1-D models along individual fl ightlines, 
where the model spacing is determined by downline measurement spacing. As a result, the 
models are inverted as one system along each fl ightline (Auken et al., 2005). LCI inversion 
input parameters (or trade-off  parameters) impose lateral and vertical constraints that tie 
together resistivities and depths of adjacent layers (Auken et al., 2005). As a result, LCI 
inversions favor laterally continuous physical property distributions, as demonstrated in 
Hodges & Siemon (2008). Th e primary inversion parameters are therefore resistivities, or 
in the case of few layer methods—also depths, as demonstrated in Figure 2.3, (adapted from 
Auken et al., 2005).

Figure 2.3: A conceptual fi gure of the LCI method demonstrating how neighboring models are linked. R = lateral 
constraints, ρ = resistivity values, and d = depth values. Th e LCI few layer approach links both depths (d) and resistivities 
(ρ); the LCI multilayer method links only resistivities (Auken et al., 2005). LCI = laterally constrained inversion.

Furthermore, LCI inversions allow a sharp option, whereby vertical resistivity changes are 
permitted to change more rapidly and could be seen as a compromise between few layer 
and smooth inversions (Vignoli et al., 2015). LCI inversion input parameters are described 
in detail by Auken et al. (2005) and Vignoli et al. (2015) and will be described and analyzed 
here as three primary options: (1) horizontal (2) vertical, and (3) sharpness constraints. 
Th ese inversion input parameters may be chosen based on knowledge of the subsurface, for 
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example, over Walcheren we know that rapid vertical changes in EC are expected within the 
scale of a few meters, due to expected fresh-saline groundwater interfaces (Delsman et al., 
2018). Horizontal variations are expected to be smoother, in the order of around 10m, due to 
gently dipping Holocene and Pleistocene sediments (De Louw et al., 2011; Vos, 2015).

In order to eff ectively assess inversion uncertainty, a misfi t threshold between observed and 
predicted data is needed. Th is allows diff erences between the methods and inversion input 
parameters to be analyzed with the knowledge that they fi t the data and thus are all correct, 
where each quantitatively represents a possible model of the subsurface. Although the data 
for this study is of high quality and undergone extensive processing (Delsman et al., 2018), 
fi eld data will nevertheless always be contaminated with some degree of noise (Siemon et al., 
2009a). As a result, fl exibility in regard to misfi t is required, where an estimate of noise can 
inform the threshold misfi t value for inversion results. For this study an approximate value of 
5% will be used based on previous estimates (Farquharson et al., 2003), and therefore, in this 
paper results that do not fi t this criterion will be excluded. In the following, misfi t is calculated 
as relative %, using the method of Siemon, Auken, et al. (2009).

2.3 Methodology

Inversions were undertaken using two platforms: (1) UBC’s EM1DFM code through the UBC 
Geophysical Inversion Facility (UBC GIF, Farquharson et al., 2003) and (2) LCI inversion 
methods using Aarhus Workbench (Auken and Christiansen, 2004; Vignoli et al., 2015). 
Initially, eight separate inversion types were tested using a single fl ightline, encompassing 
each of the four EM1DFM trade-off  options, two LCI multilayer inversions, the smooth and 
sharp inversions, and the few layer LCI method with either fi ve or nine layers.

Th e process is summarized by an eight-part workfl ow as illustrated in Figure 2.4 and discussed 
in order in sections 3.1 to 3.8.

Figure 2.4: Th e eight-part methodology workfl ow used for this study.
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2.3.1 Processing of HEM Data
Standard processing of the HEM data was undertaken by BGR and, for this survey, is 
summarized in Delsman et al. (2018) and detailed in section 2.4.1. The following postprocessing 
steps were undertaken for this study: (1) measurements where bird altitudes above 60 m were 
removed due to low signal to noise ratios, and (2) every second downline measurement was 
removed, resulting in a measurement every 8 m to facilitate faster inversion times. As the 
footprint of the HEM system is ~100 m to 200 m (Tølbøll and Christensen, 2007), an 8-m 
measurement distance is assumed to have no or little effect on the outcome, while allowing 
practical computation times given the amount of inversion runs required for this study.

2.3.2 Inversion Setup
All data were inverted using measured in-phase (I) and quadrature (Q) secondary field data. 
To minimize ambiguity, it was decided that the same starting model was to be used for all 
inversions. For smooth and sharp multilayer inversions, these were chosen to consist of 20 
layers, with the thickness of the top layer starting at 0.5 m and subsequent layers increasing 
logarithmically with depth till 60 m. These layers are parallel to Dutch AHN25 topography 
data, a high-resolution LIDAR topographical data set of the Netherlands. For few layer 
inversions, the same criteria were applied but using 5 layers instead of 20. The 60-m depth 
was chosen according to borehole measurements in the dune areas, where they indicated 
a probable fresh-saline groundwater interface at a maximum depth of ~50 m, based on 
observed strong conductivity contrasts. This depth also reflects the DOI capabilities of the 
HEM system. For inversions undertaken in Aarhus Workbench, a starting conductivity of 
1 S/m was selected owing to the highly conductive saline environment of Walcheren. For 
UBC inversions, the starting conductivity was calculated automatically for each inversion 
as this was found to improve stability, particularly in areas where apparent shallow, highly 
conductive features were present (Farquharson and Oldenburg, 2004).

2.3.3 Regularization Parameter Choices
For practical purposes, inversion types and parameter inputs were initially tested on a single 
flightline. Flightline 9.9 (Figure 2.1) was selected for this purpose, as it covers a range of 
hydrological settings, including a shallow, highly conductive area to the south-east, and crosses 
perpendicularly to the more resistive dune area to the north-west. It was also found that bird 
altitudes were relatively high in some places, likely because of proximity to anthropogenic 
features, and therefore offers a range of mapping challenges, many of which would typically be 
found in a HEM survey. Furthermore, this flightline is in close proximity to available ground 
constraints. Inversion parameter input options for each inversion type are summarized in 
Table 2.3, alongside the ranges of values used for this study. For each inversion method, a 
significant number of parameter input combinations are possible; therefore, parameter values 
were changed one parameter at the time, while keeping the other parameters at their defaults 
(ceteris paribus). In total over 70 separate inversions were run for this process.
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Table 2.3. Parameter Sets Tested Along With Descriptions and Ranges to be Used.
Inversion Name Parameter Name Description Ranges Reference
UBC Fixed Trade Trade Off Trade-off value 0.5 - 3

Farquharson and 
Oldenburg, 2004

All UBC Inversions Decrease Greatest allowed decrease in the trade-
off parameter per iteration

0.011 - 1

UBC Line Search Chifact Trade off value 0.5 - 10
LCI Smooth Later/Vertical 

Constraints
Amount that neighbouring constraints 
can change. A higher numerical allows 
more change and vice versa.

Lateral: 1 – 3, 
Vertical: 1.5 - 3

Auken et al., 2005

LCI Sharp Sharp Numeric Vertical and horizontal sharpness of 
the model

Vertical: 1 – 100, 
Horizontal: 1.5 - 150

Vignoli et al., 2015

Note. UBC = University of British Columbia; LCI = laterally constrained inversion.

Initial upper and lower bounds for inversion parameter settings were decided on practical 
criteria such as inversion stability, observing data misfit and previously used values in 
published literature (Bedrosian et al., 2016; Gunnink et al., 2012).

2.3.4 Removing Inversions Results From Further Analysis
Out of the initial ~70 inversion runs, a subset of ~25 was selected for further analysis. 
Inversions were removed for one of three reasons: (1) a noticeable change in the inversion 
outcomes was not observed (i.e., adjusting the inversion input parameter resulted in almost 
no difference compared to the next inversion and therefore, for practical reasons, was not 
included in the analysis); (2) results showed apparent instability, and (3) the inversion did 
not converge to within the 5% misfit threshold and therefore was excluded as a potential 
candidate of the subsurface. Figure 2.5 shows observed and predicted data for a LCI smooth 
inversion result, where misfits are in the 1–3% range; misfit plots for the other three inversions 
are available as supporting information.
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Figure 2.5: LCI smooth inversion results, lateral and vertical constraints input as 1.3 and 3, respectively. Predicted 
(dashed lines) and observed (as error bars as 5% of data magnitude) for in-phase (a) and quadrature (b) components. 
Misfi t (c) shown as solid black line as relative % error, and instrument altitude as gray dashed line. LCI = laterally 
constrained inversion.

Out of the four UBC trade-off  options, the Fixed Trade-Off  inversion was consistently more 
stable and converged successfully. It was therefore decided to only use the UBC Fixed-Trade 
method for further analysis; however, the GCV was useful at suggesting an appropriate 
inversion input parameter. Th e 9 layers used in the LCI few layer approach were discarded 
despite successfully converging, as conceptually there are between 5–10 degrees of freedom 
within the data space (encompassing both in-phase and quadrature components) and 18 
parameters in the inversion. Th erefore, without prior constraints, the inversion could not be 
trusted.

As a result of removing inversions based on the criteria above, four methods remain: (1) 
20-layer LCI smooth, (2) 20-layer LCI sharp, (3) LCI fi ve layers, and (4) 20-layer UBC fi xed 
trade-off .

2.3.5 Testing Regularization Terms
In order to the assess the robustness of the remaining four inversion methods with diff erent 
regularization parameters, 2-D sections of inversion results with standard deviations of 
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conductivity were plotted for each of the regularization parameter sets, along with misfits. The 
variance plots illustrate areas in the inversion result that showed the largest (or least) change 
in the inversion outcome by changing the regularization term (or inversion input parameter) 
between the bounds shown in Table 2.3. Figure 2.6 illustrates two examples of this, one from 
the UBC Fixed Trade parameter and another from the LCI smooth lateral/vertical constraint 
options. These are plotted with a single inversion result each to assess the overall structure of 
each model.

Figure 2.6: Variance plots testing inversion robustness based on regularization parameters with misfit to observed 
data. (a) LCI inversion, lateral/vertical constraints variance with inversion result. (b): UBC Fixed Trade variance with 
inversion plot (Fixed Trade-Off parameter = 2). Misfit is represented relative difference as percentage. The blanked out 
area is the result of applying the DOI calculation from the LCI smooth result. LCI = laterally constrained inversion; DOI 
= depth of investigation.

2.3.6 Selecting Inversion Parameters for Each Code
As observed in the variance plots (Figure 2.6), predictably the inversion parameter settings 
for each inversion type resulted in easily observable differences, with standard deviations 
observed at just over 0.1 S/m in some areas. This effect was more prevalent in three groupings: 
(1) shallow, highly conductive regions on either end of the profile, (2) intermediate zones 
with distinct linear characteristics, and (3) deeper areas, often at the base of the DOI toward 
the north-west. For these reasons, final input parameters were selected based on an unbiased 
quantitative means. This was done by comparing all inversion results to nearby ECPT data. 
Searching to a maximum distance of 150 m to the test line, three ECPT measurements were 
used for this purpose (labeled A–C in Figure 2.1), whereby the 10 nearest 1-D inversion 
models were averaged for each ECPT location to smooth out single anomalous inversion 
results. Finally, these were compared directly with one another, where absolute differences 
were calculated by subtracting ECPT data with each inversion result. To demonstrate the 
method, results from the LCI smooth parameter (lateral/vertical constraints) set are illustrated 
in Figure 2.7.



Quantifying Geophysical Inversion Uncertainty

39

Figure 2.7: An example vertical section of LCI lateral/vertical constraints input versus ECPT C (ECPT locations 
illustrated in Figure 2.1), parameter set (V: 1.3 H:3; see Table 2.3 for an explanation of these parameters) that resulted 
in a closest match is highlighted in black. (bottom) Mean fit between inversion model EC and ECPT data, final choice 
highlighted by the black box. Misfit is based on average absolute value mismatch in Siemens per meter. LCI = laterally 
constrained inversion; ECPT = Electric Cone Penetration Test; EC = electrical conductivity.

To reduce ambiguity and bias, misfit to each individual ECPT was not analyzed in detail. 
Rather, the best fitting parameters were selected based on an overall best fit, which is the 
average difference of each of the three ECPTs. The inversion types and corresponding best 
fitting regularization parameters for each of the finally selected inversion method are listed 
in Table 2.4. On the assumption that these parameters would be best suited for the entire 
area, these were chosen for further analysis and inversion of the entire data set. The best 
regularization results from the LCI multilayer inversions were also applied to the few layer 
inversion.

Table 2.4. Final Regularization Parameter Choices Based on a Quantitative Match to ECPT Data on Flightline 9.9.

Final Inversion 
Parameters

Trade Off Decrease Chifact Lateral & Vertical 
Standard Deviation 

Power Law Vertical & Horizontal 
Sharp Numeric

UBC Fixed Trade 3 0.5 N/A N/A N/A N/A
LCI Smooth N/A N/A N/A L: 1.3, V: 3 1 N/A
LCI Sharp N/A N/A N/A L: 1.3, V: 2 1 V: 30, H: 15
LCI 5 Layer N/A N/A N/A L: 1.3, V: 3 1 N/A

Note. ECPT = Electric Cone Penetration Test; UBC = University of British Columbia; LCI = laterally constrained 
inversion.
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2.3.7 3-D Interpolation
Having a continuous 3-D distribution of properties permits the use of a versatile environment 
where properties can be analyzed in a 3-D GIS workspace, allowing the undertaking of a 
comprehensive analysis such as fresh groundwater volume estimates and fresh-brackish 
groundwater interface depths. This article’s focus is on quantitatively comparing inversion 
algorithms and parameters thereof, rather than interpolation methods. The interpolation 
method therefore needed to be simple, unambiguous, and consistent, while honoring the 
following minimum requirements: (1) conform exactly to data directly beneath sounding 
locations, avoiding excessive smoothing (except for resolution de-sampling); (2) layered 
nature of the inversions should be maintained with minimal smoothing; (3) resolution of 
the 3-D model should closely reflect the resolution of the HEM system, while maintaining 
a reasonably sized model that is not too bulky; and (4) lightweight enough that all four 
inversions can be practically interpolated and merged into one voxel model.

For these purposes, a method similar to that of Pryet et al. (2011) was selected where the 
conductivity distribution of each inversion layer is gridded using 2-D horizontal kriging. 
Using the depth information from starting models (and layer depths of few layer inversions), 
each 2-D conductivity grid could be filled vertically into a 3-D voxel. A 2-D ordinary kriging 
method as coded in Geosoft’s Oasis Montaj was used to interpolate conductivity values, 
where a spherical semivariogram model was used. A 50-m horizontal resolution was deemed 
appropriate considering the footprint of the HEM system and also conformed to the resolution 
of the GeoTOP model (i.e., the lithological model used for formation factor (FF) values; see 
section 3.8). The resulting grids were saved to a database for each inversion, where depth values 
for the smooth inversions were added from starting models. For the few layer inversions, the 
inverted depths were gridded using the same kriging method as above; the resulting grids 
were then sampled into their respective databases. Finally, the depth values for all inversions 
were corrected for terrain using AHN 25-m resolution data. With each inversion now saved 
into a database with XYZ coordinates at 50-m horizontal resolution, the data were translated 
into a 3-D volume. This was done in Paradigm’s Gocad, where a 50 × 50 × 0.5m resolution 
voxel was created over the study area. As the final layer for each inversion is assumed to be 
infinitely deep, these properties were filled to approximately twice the thickness of the layer 
before it. To take into account the penetration depth of the HEM system, the standard DOI 
result from the LCI smooth inversion was applied to the 3-D volume, where values below 
this depth were removed. For overall consistency, it was decided that the same DOI result 
was to be applied to all inversions; this includes removing data that were outside of Geotop’s 
geological model, that is, offshore.

The 3-D interpolation result was extensively validated where overall it was found to be 
appropriate for further analysis and adhered to the initial requirements. A detailed description 
of the method and validation results are available as supporting information.
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2.3.8 Translating the Conductivity Volume Into Salinity Distributions
In order to interpret the results with respect to groundwater quality, it is necessary to relate 
the conductivity distribution to that of EC groundwater, rather than simply the conductivity of 
saturated sediments, or bulk EC. To split the signal, bulk EC is multiplied by the FF, which relates 
to the lithology, and is primarily a function of pore space and pore connectedness (Archie, 1942). 
This method is further improved by taking into account factors such as surface conductivity as 
a result of clay particles (Revil and Glover, 1998). Given that this study examines inversion 
methods only and therefore does not aim to map salinity directly, it was decided that a simplistic 
approach was suitable for relative comparisons. An apparent formation factor is commonly 
used for this purpose, whereby the ratio between EC bulk and EC groundwater based on local 
observations is utilized (Siemon et al., 2009b). De Louw et al. (2011) collected information from 
seven different soil types over the Province of Zeeland, including measurements in Walcheren 
that were found to adequately represent the lithology of the study area. The resulting apparent 
FF values will be used for this study and are listed in Table 2.5.

Table 2.5. Apparent Formation Factor (FF) Values Used in This Paper, From De Louw et al. (2011)

Lithology Formation Factor (FF)
Peat 2.1
Clay 2.5
Sandy Clay/Clayey Sand 2.8
Fine Sand 3.2
Medium Coarse Sand 4
Coarse Sand 5
Sand with Gravel 6 -7

To determine lithology types within the 3-D model, TNO’s Geotop model was utilized 
(Stafleu et al., 2011), where each of the cells within the 3-D model area was assigned with an 
appropriate apparent FF based on available lithostratigraphic classifications. The FF within 
the DOI area of the 3-D model was then applied to each inversion result using FF values 
from individual voxel cells. Finally, using empirical relationships between salinity and EC, it is 
possible to subdivide the 3-D volumes of groundwater EC into fresh-brackish-saline regions, 
based on the published values listed in Table 2.6 (Paine and Minty, 2005). All EC values in the 
following refer to groundwater EC.

Table 2.6. Fresh, Saline, Brackish Classifications for Groundwater EC Used in This Paper, From Paine and Minty (2005).

Conductivities (S/m) or Resistivity (Ω⋅m) Classification

0 – 0.18 S/m, 0 – > 5.6 Ω⋅m Fresh

0.18 – 1.8 S/m, 5.6 – 0.56 Ω⋅m (0.54 S/m, 1.85 Ω⋅m brackish-saline interface) Slightly to Moderately Saline (Brackish)

> 1.8 S/m (< 0.56 Ω⋅m) Very Saline to Brine (Saline)

Note. EC = electrical conductivity.
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Figure 2.8 illustrates the 3-D result of the LCI smooth inversion, along with some outputs 
available for analysis.

Figure 2.8: The 3-D interpolation results for the LCI smooth inversion. (top left) EC groundwater (Siemens per meter) 
low conductivity (blue) and high conductivity (red). (top right) Fresh (blue, < 0.18 S/m), brackish (orange, 0.18–1.8 S/m), 
and saline (red, > 1.8 S/m) volumes. (bottom left) fresh-brackish (blue, 0.18 S/m), brackish-saline (orange, 0.54 S/m), 
and saline (red, 1.8 S/m) interfaces extracted as surfaces. Forty times vertical exaggeration. LCI = laterally constrained 
inversion; EC = electrical conductivity.

2.4 Results

With a 3-D volume of groundwater EC, as well as fresh-brackish-saline regions available for 
each inversion method, differences between the algorithms were analyzed in novel ways—with 
a practical and applied focus on some of the mapping requirements for a hydrogeophysical 
study. Given that the exact same process was explicitly completed for each inversion, and 
inversion parameter settings were chosen on a quantitative basis, the following assumes that 
relative differences noted between algorithms are from the inversion method itself. In regard 
to the use of direct ground measurements, the following should be noted: (1) these are bulk 
EC measurements and therefore represent the EC of both lithology and groundwater; (2) 
EC is sensitive to temperature (~2% increase per 1 °C), and (3) no two methods are exactly 
comparable—thus depending on the conditions of acquisition at the time and method used, 
EC values will vary. As a result, while the ground measurements are assumed to provide a more 
accurate (and more localized) measurement of groundwater EC, these are more quantitatively 
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useful as a relative comparison between inversion methods, rather than an exact depiction of 
a groundwater salinity distribution.

Here results will be presented as follows: (1) qualitative observations; (2) fresh, brackish, 
and saline groundwater volume estimates; (3) accuracy of salinity distributions; and (4) 
groundwater interface depth mapping.

2.4.1 Qualitative Observations
The 3-D model with representative cross sections is shown in Figure 2.9, comparing LCI 
smooth, LCI five-layer, and UBC Fixed Trade results to ECPT data. The cross section was 
designed as irregular in order to illustrate specific features such as creek ridges and to intersect 
ground constraints.



Chapter 2

44

Figure 2.9: A qualitative view of general inversion result observations. (top) LCI smooth 3-D model with 2-D section 
locations. (bottom) Results of LCI smooth, LCI fi ve-layer, and UBC Fixed Trade inversions. Forty times vertical 
exaggeration. Colored by conductivity in Siemens per meter, same color legend for both 3-D models and 2-D profi les. 
ECPT data highlighted with black outlines. LCI = laterally constrained inversion; ECPT = Electric Cone Penetration 
Test; UBC = University of British Columbia.

Qualitative comparisons suggest the following: (1) inversions results agreed with each other 
about the general conductivity distributions, (2) EC contrasts were consistently mapped at 
around the correct depths, (3) the few layer inversions tended to map a thin resistive layer at 
the surface, this was less apparent in smooth results, and (4) subtle diff erences in the amount 
of structure resolved were observed between the smooth 20-layer results—this is particularly 
noticeable between the EM1DFM and LCI inversions.
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2.4.2 Volume Estimates
Fresh-brackish-saline volume calculations were completed for each inversion, and the results 
of which are illustrated in Figure 2.10. All groundwater volume estimates were calculated 
as volumes between the AHN25 terrain surface and the base of the DOI. Given that the 
diff erences between the terrain surface and the groundwater table are known to be small 
(Van Baaren et al., 2018), it was decided that using the terrain as an upper boundary was 
suitable and allowed a straightforward and unambiguous way to compare inversions. As an 
exact (ideal) 3-D model of the fresh-saline distribution over the study area is unavailable, this 
quantitative step is useful as a relative comparison only.

Figure 2.10: Volume estimates for each inversion. Red (saline, ≥ 1.8 S/m), orange (brackish, 0.18–1.8 S/m), and blue 
(fresh, ≤ 0.18 S/m). LCI = laterally constrained inversion; UBC = University of British Columbia.

Each inversion consistently estimated saline volumes, with a maximum diff erence of ~4% 
observed, where salinity volumes were all in the 40% range. Larger diff erences were noted 
between fresh and brackish estimates, where the LCI fi ve-layer inversion estimated higher 
freshwater volumes at ~20%, a diff erence of ~6.5% when compared with the lowest estimate 
from the LCI smooth (20 layers) result. Quantitatively, out of a total model volume of 2.8 
billion m3, a freshwater estimate diff erence of ~178 million m3 was observed in an area of 
20 km × 20 km × ~50 m between the methods. Th e few layer LCI and LCI sharp inversions 
favored resolving a smaller brackish (and larger fresh) volume.

2.4.3 Overall Accuracy of Groundwater Distributions
By transferring the 3-D model EC values to the locations of the ECPT and borehole data, each 
result could be directly and quantitatively compared. Th is was achieved by plotting the EC 
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from borehole and ECPT data against the inversions and calculating correlation coeffi  cients 
for each (Figure 2.11).

Figure 2.11: Correlation coeffi  cients based on XY plots of each inversion versus ECPT data. (left ) Borehole correlation. 
(right) ECPT correlation. ECPT = Electric Cone Penetration Test; LCI = laterally constrained inversion; UBC = 
University of British Columbia.

Smoother, multilayer results were consistently closer against both ECPT and borehole 
measurements. Th e LCI fi ve-layer inversion correlated the least, compared to LCI smooth 
that was shown to be overall closer. Th ese are compared in Figure 2.12.

Figure 2.12: Illustrative XY plots based on inversion results versus ECPT data. (left ) LCI smooth inversion result. (right) 
LCI fi ve-layer inversion result. ECPT = Electric Cone Penetration Test; LCI = laterally constrained inversion.

Th e cross-plot distributions show that most of the diff erences are related to the layered nature 
of the inversions versus the smoothly varying ECPT and borehole data, as observed in Figure 
2.12 by the vertical/horizontal patterns in the LCI fi ve-layer plot.
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2.4.4 Interface Depth Accuracy
Interfaces between fresh-brackish, brackish-saline, and the center of the brackish groundwater 
zone were extracted from each of the inversion results as isosurfaces, as well as corresponding 
fresh-brackish-saline interface depths from ECPT and borehole measurements using 
groundwater EC values. Figure 2.13 illustrates the depth to the brackish zone from the LCI 
smooth result, as well as the 3-D surface with extracted ECPT point values for the brackish 
interval. For consistency interfaces are presented as fresh-brackish (0.18 S/m), center of 
brackish (0.54 S/m), and brackish-saline (1.8 S/m), which are based on values listed in Table 6.

Figure 2.13: LCI smooth interface mapping result of the brackish interface (0.54 S/m). Black stars (ECPT misfit, meters), 
black triangles (borehole misfit, meters); misfit is presented as ± values. Background image is colored in depth to the 
interface with linear color stretch. The black dotted plane is the location of the 3-D inset (a), here red and blue dots show 
the interface depth extracted from ECPT and borehole data, respectively. ECPT = Electric Cone Penetration Test; LCI = 
laterally constrained inversion; UBC = University of British Columbia.

Distances from the ECPT and borehole point data to the corresponding 3-D surfaces were 
calculated as a vertical misfit as both absolute (Figure 2.14) and ± values (Figure 2.15); negative 
values correspond to inversions that were deeper than ground data and vice-versa. As the 
borehole measurements were often deeper than the ECPT, the two are plotted separately.
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Figure 2.14: Vertical mismatch (mean absolute differences between observed data) of inversion results to extracted 
interfaces in meters. Red (saline misfit, 1.8 S/m), orange (brackish misfit, 0.54 S/m), and blue (fresh misfit, 0.18 S/m). 
ECPT = Electric Cone Penetration Test; LCI = laterally constrained inversion; UBC = University of British Columbia.

Figure 2.15: Vertical mismatch (mean ± differences between observed data) of inversion results to extracted interfaces in 
meters. Red (saline misfit, 1.8 S/m), orange (brackish misfit, 0.54 S/m), and blue (fresh misfit, 0.18 S/m). ECPT = Electric 
Cone Penetration Test; LCI = laterally constrained inversion; UBC = University of British Columbia.

From the absolute value misfits in Figure 2.14, it follows that all methods consistently mapped 
interfaces within an accuracy range of around 3–4 m against both ECPT and borehole 
measurements. Furthermore, both comparisons suggest that all inversions were better at 
resolving the center of the brackish zone (0.54 S/m). Overall, smoother, multilayer inversions 
were consistent with one another compared with ECPT data. A distinction between the 
methods is noted in the ECPT misfit, where the fresh-brackish groundwater interface was 
mapped with greater accuracy by the few layer LCI, multilayer LCI sharp, and UBC Fixed 
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Trade inversions. This is a mapping error difference of just over 2 m between the inversions. 
Overall, ECPT misfit suggests that fresh groundwater interface mapping in Zeeland area favors 
sharper techniques; however, less distinction is noted when trying to resolve the center of the 
brackish zone or the brackish-saline groundwater interface. In contrast to ECPT differences, 
the deeper borehole measurements suggest that the few layer inversion was less effective at 
resolving the fresh-brackish groundwater interface, however slightly more accurate in terms 
of mapping the center of the brackish zone overall.

In order to quantify vertical offset between interfaces and ground data, the above misfits are 
illustrated as ± values in Figure 2.15.

Similar patterns are observed in Figure 2.14, where ECPT data show that the brackish 
interface was seen to be the most consistently mapped (~ + 2 m ± 2 m), although borehole 
data suggest that the saline interface was most accurately resolved at the correct offset (~ + 
0.5 m ± 4 m). The few layer method more accurately resolved the offset of the fresh-brackish 
interface compared with the ECPT (~1–2 ± 2 m) and the center of the brackish zone with the 
deeper boreholes (−1 m to −2 ± 4 m). A constant offset was observed against the ECPT data, 
whereby inversion results were all around 2 m shallower than predicted. In the borehole data 
little offset is observed with the saline interface, although both brackish and fresh interface 
results suggest that inversions were generally deeper.

2.5 Discussion

Based on the qualitative results presented in Figure 2.9, all inversion results are roughly 
consistent and visually honor the ground data in terms of groundwater EC distributions and 
locations of major conductivity contrasts. As expected, more obvious differences are observed 
between few layer and smooth, multilayer methods. Other aspects are more subtle and thus 
will be discussed here in the same order as section 4. Observations from the variance plots 
(Figure 2.6) showed that shallow, highly conductive features were mapped with greater 
stability by the LCI algorithm. Here a feature between 4 and 5 km showed much greater 
variability in regard to misfit and resolved features. This is likely because the LCI algorithm 
was improved to handle high-frequency data found on the Resolve HEM system (Siemon, 
2012). It should be noted in the following that the effect of geology in the study area was 
observed to be relatively insignificant, whereby an obvious and consistent long-wavelength 
conductivity contrast dominated the area and relates easily to groundwater salinity. This 
effect is of course site specific. Furthermore, as available ground data are mostly present in or 
around creek ridges and dunes, which are typical freshwater lens features, it should be further 
noted that there is a bias on techniques that resolve features well under resistive cover.
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2.5.1 Volume Estimates
Fresh-brackish-saline volume estimates primarily illustrate the effect of model smoothness 
and mapping results. Here it is observed that in the study area, freshwater volume estimates 
differ by up to 6.5%, or 178 million m3, between the sharpest LCI five-layer and the smoothest 
LCI smooth results. This effect is primarily caused by the preservation of inversion layers 
from the 3-D interpolation, resulting in very sharp boundaries (spread over five layers for the 
few layer inversion) and therefore results in a small brackish zone. As the transition between 
the fresh-brackish-saline groundwater distributions is naturally smoother (van Baaren et 
al., 2018), results suggest that for volume estimates it is preferable to use smooth, multilayer 
inversions. Furthermore, brackish zone estimates between the LCI sharp and LCI smooth 
results differed by around 3% or a volume of 82 million m3. It is therefore shown that by using 
a multilayer (≥ 20 layers) inversion and carefully selecting the regularization term based on 
prior knowledge, this smoothing effect can be controlled according to known conditions. This 
is therefore the recommended approach for volume mapping.

2.5.2 Accuracy of Salinity Distributions
By plotting inversion results with ECPT and borehole data (Figures 2.11 and 2.12), results 
suggest that LCI smooth and LCI sharp multilayer methods were the most successful 
at honoring ground data. Predictably, it is shown that sharp interfaces from the few layer 
inversions, due to having few layers, result in larger misfits. As the ECPT and borehole data 
are measured every 0.5 and 5 cm, respectively, and the inversions are layered, it is expected 
that a good match to salinity distribution mapping favors smoother results. Results therefore 
do not mean that few layer methods are worse—rather for the purposes of mapping smoothly 
varying groundwater salinities, they were less successful. Results would likely be different if 
ECPT and borehole data were averaged for each layer of the inversion; however, the smooth 
distribution of salinity is a common mapping objective—thus, it was decided that a direct 
comparison was appropriate. Furthermore, given that the province of Zeeland was flooded 
with saline water relatively recently, and subsequently recharged with fresh groundwater 
(Berendsen, 2005), the brackish zone is expected to be sharper (or thinner) than many typical 
hydrological situations—further highlighting the fact that smoother techniques are more 
suitable in general.

2.5.3 Interface Mapping
Absolute value results (Figure 2.14) suggest that interface mapping was remarkably consistent 
across all inversions, with an average accuracy of around 3 m (± 3 m). This could be the 
result of bias, whereby the regularization term was selected based on the same ECPT data, or 
additionally it could be an effect of the interpolation method or airborne acquisition system 
itself. However, given that this consistency is also observed across both ECPT and borehole 
data, it is unlikely that this error can be attributed to the ground constraints. Overall, the center 
of the brackish zone interface of 0.54 S/m was resolved better. This is more obvious in the ECPT 



Quantifying Geophysical Inversion Uncertainty

51

data, where misfits were observed at between 2.5 and 3 m, compared to the brackish-saline 
(1.8 S/m) groundwater interface, where these were between 3 and 4.5 m. In terms of resolving 
the fresh-brackish (0.18 S/m) interface, the ECPT data suggest that few layer and LCI sharp 
inversions were more successful at a misfit of ~3 m, in contrast to ~4 m from the LCI smooth 
method. However, borehole data suggest that smoother results from the multilayer inversions 
worked better. The most likely explanation for this contrasting result may be the fact that the 
borehole data are located in the dune areas and are deeper. Here the deeper DOI in the dune 
areas has resulted in thickening of the layers where there are small conductivity contrasts, 
therefore picking specific interfaces at depth without significant conductivity contrasts 
becomes more arbitrary for few layer methods. Interestingly, the few layer results are more 
accurate at resolving the brackish interface in these deeper areas, at ~3 m for the LCI five-layer 
result. This would suggest that because the few layer inversion changed layer thickness and 
conductivity in the inversion process, in contrast to the (smoother at depth) 20-layer models, 
high conductivity contrasts are more likely to be mapped successfully in deeper areas by using 
few layer methods. As the boreholes are up to 50-m deep, and the multilayer inversion would 
have a layer thickness of around 10 m at these depths, an error of around ~5 m is expected. 
It is therefore suggested that unless a strong conductivity contrast is present, trying to map 
subtle features at greater depth using few layer methods is likely to be less successful. Given 
that geophysical methods favor strong physical property contrasts, and the dominant contrast 
in the study area is known to be caused by water salinity (Delsman et al., 2018), this result 
is therefore expected. In previous hydrogeophysical HEM studies in areas where minimal 
subsurface information was available, fresh-saline groundwater interfaces were commonly 
estimated using a conductivity value based on empirical relationships that relate conductivity 
to salinity (Siemon et al., 2009b). Our study suggests that selecting the strongest conductivity 
contrast is preferable over this method and should result in more accurate estimates, albeit 
with limited flexibility in regard to values (and therefore only a single interface) used. This 
was undertaken in De Louw et al. (2011) where the sharpest vertical conductivity ratio was 
used to indicate a mixing zone or the brackish groundwater interface as referred to in this 
study. Furthermore, using the same HEM data, Siemon et al. (2018) found that using this 
method resulted in a brackish zone mapping error of +0.1 m (± 1.7 m) compared to available 
ECPT data. Finally, the presence of a strong conductivity contrast is observed in the bimodal 
distribution of the inversion results, where EC values were grouped mostly between 0–0.3 
and > 0.7 S/m.

By using ± values (Figure 2.15), similar patterns were observed—however, most notably ECPT 
data suggested that inversion results were consistently too shallow at +2 m (±2 m). In contrast, 
borehole data showed that all inversions were either around 0 m (±2.5 m) for the saline interface 
or too deep at −1 to −6 m (± 3 m). This effect results from a number of factors, for example, (1) 
inherent differences between ground measurement methods, where HEM and direct current 
methods are more sensitive to horizontal and vertical resistivities, respectively (Siemon et al., 
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2009b), (2) localized effects on EC measurements such as temperature and lithology, or (3) highly 
localized features mapped by ground measurements could be smoothed by the HEM system or 
3-D interpolation—highlighting resolution differences between the methods. Consistent vertical 
offsets observed in all inversions highlight that while the ground data were a useful quantitative 
comparison for this study, further research is required to understand this occurrence.

2.6 Conclusions

Using an extensive amount of available data, the results of this study quantitatively highlight 
the effects of using different inversion techniques and regularization terms, based on the 
objectives of a typical hydrogeophysical study. Overall, the four inversion methods tested are 
generally consistent with one another and are shown to be effective at resolving a number of 
hydrological features. Differences between multilayer and few layer inversions are observed 
to be the most prominent, and their suitability depends on specific mapping objectives. To 
simply map a brackish (0.54 S/m) groundwater interface in shallow or deeper areas with 
minimal ground data, a few layer inversion type is suggested. Here the area with the sharpest 
conductivity contrast is likely to be an excellent proxy to this boundary, and no information 
about FFs is required. If both fresh-brackish (0.18 S/m) and brackish interfaces (0.54 S/m) are 
required, then a smooth, multilayer inversion is suggested, although it should be noted that 
due to thick layering at depth, the brackish zone will be less effectively mapped here than with 
the few layer approach. If the objective is to map a smoothly varying volume of conductivity 
(therefore salinity distributions), a multilayer inversion type is favored. Further, the choice of 
regularization terms and the type of multilayer inversion used are shown to affect the estimated 
brackish zone thickness. If ground data are available, then the smooth inversion regularization 
term could be chosen accordingly to better match the thickness of the brackish zone. Overall, 
inversion methods should be selected carefully according to mapping objectives—preferably 
based on a combination of experience and prior knowledge of the subsurface.
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3 
A practical quantification of error 
sources in regional-scale airborne 

groundwater salinity mapping.
Abstract
Hosting over 10% of the world’s population, low elevation (<10m above mean sea-level) 
coastal zones are susceptible to saline groundwater intrusion - making fresh groundwater an 
often scarce and threatened commodity. To inform suitable coastal groundwater management 
strategies, regional-scale mapping of fresh and salt groundwater occurrence is extremely 
beneficial. This mapping is usually based on conventional ground-based methods. However, 
these are not only slow and expensive, but result in localized and disconnected information 
which is uneconomical and impractical on the large scales required. Airborne electromagnetic 
(AEM) surveys have been proven a frugal and rapid way to overcome these shortcomings. 
Consequently, AEM methods are increasingly being used globally. Little is known about 
the effects of flightline spacing and additional ground-based data on the quality of mapping 
results, and in general the accuracy of AEM, other than validation against often sparse 
ground measurements. Understanding this is therefore invaluable as input to groundwater 
management strategies, survey planning and decision making. Here, we use a regional scale 
(900km2), high-resolution (50m x 50m x 0.5m) 3D synthetic model of electrical conductivity 
and geological properties, to investigate the effects of data availability on the accuracy of 
regional-scale groundwater salinity mapping. This was undertaken by simulating commonly 
used AEM parameters and realistic data acquisition methods. Two key data components are 
considered: (1) the AEM survey itself, and (2) geological information used to convert the AEM 
results into groundwater salinity. Spatially, different data-densities of these two components 
are quantitatively compared to highlight ideal geometrical configurations for given accuracy 
requirements. Our results indicate that in terms of optimising costs versus benefits, the value 
of additional lithological information is dependent on how well the initial distribution of 
electrical conductivity is resolved by the acquisition and inversion process.

Based on: King, J., Oude Essink, G., Karaoulis, M., Bierkens, M.F.P., 2020. A practical 
quantification of error sources in regional-scale airborne groundwater salinity mapping. 

Environ. Res. Lett. 15 https://doi.org/10.1088/1748-9326/ab7b23.
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3.1 Introduction

Despite comprising only ~2% of global land area, low elevation (≤10m above sea-level) coastal 
zones host ~10% of the world’s inhabitants, the majority of which are in developing countries 
(Neumann et al., 2015). Coastal aquifers are consequently a high-demand and over-stressed 
water source (Post, 2005). Unfortunately, these are susceptible to groundwater salinization 
(P. G B De Louw et al., 2011), a problem worsened by excessive groundwater extraction and 
land-subsidence (Minderhoud et al., 2017), which could be further aggravated by sea-level 
rise (Oude Essink et al., 2010). Properly informed and vigilant groundwater management 
strategies are therefore crucial; thus accurate mapping of the regional-scale occurrence of 
fresh and saline groundwater is needed.

This mapping is traditionally based on conventional ground-based methods, which are 
not only slow and expensive, but result in localized and disconnected information which is 
uneconomical and impractical on the large scales required. Airborne electromagnetic (AEM) 
surveys have been proven a frugal and rapid way to overcome these shortcomings since the 
1970s (Sengpiel, 1981) and have since been successfully applied to map the distribution of 
fresh, brackish or saline resources regional scales (Auken et al., 2008; Delsman et al, 2018; 
Faneca S̀anchez et al., 2012; Fitterman and Deszcz-Pan, 2001; Jørgensen et al., 2012; Meyer 
et al., 2019; Siemon et al., 2015; Sulzbacher et al., 2012). Primarily, two methods exist: time 
and frequency domain electromagnetics, referred to here as TEM and FEM respectively, 
and are discussed in detail and compared in Steuer et al., (2009). Both methods operate by 
transmitting and receiving electrical signals from an instrument towed beneath a helicopter. 
The signals produce secondary currents in the subsurface which are in turn measured by 
receivers. The suitability of the method for coastal groundwater salinity mapping relates to 
electrical conductivity (EC) contrasts in the subsurface in the form of pore water salinity and 
clay content of host sediments (McNeil, 1980). Surveys are typically flown in a grid pattern at 
specified flightline spacing, resulting in observations every few meters downline.

Observations are normally represented as physical properties using inversions (Auken et 
al., 2005; Brodie and Sambridge, 2006; Farquharson et al., 2003; Hansen and Minsley, 2019; 
Siemon et al., 2009a; Vignoli et al., 2015), where these are inverted to produce a subsurface 
distribution of bulk electrical conductivity (ECb) – or rather the combined EC from two 
sources: lithology and pore water. Although ECb distributions are useful and can be used as a 
proxy to groundwater salinity distributions – or even used to automatically estimate a fresh-
saline groundwater interface (Siemon et al., 2018) – practical groundwater management 
requires quantitative salinity information. For this, pore water conductivity is needed 
(ECw), which can subsequently be transformed into chloride concentrations using empirical 
relationships (e.g., De Louw et al., 2011). To acquire ECw from ECb from inversion results, 
formation factors (FF) are used (Archie, 1942b) which requires geological information.
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This is a serious source of uncertainty, as field measurements have shown that fresh 
groundwater in clay could have the same ECb values as brackish groundwater in sand (P. G 
B De Louw et al., 2011). Thus, along with undertaking an AEM survey, potentially expensive 
and intrusive geological information is required for accurate transformation into groundwater 
salinity. Unlike many AEM mineral exploration programmes which aim to discern discrete 
or anomalous features of interest, hydrogeophysical mapping programmes tend to treat the 
entirety of the survey area with equal value, and thus a large scale and potentially expensive 
geological model is required.

Relatively few AEM studies have attempted to quantify regional groundwater salinity in 3D 
using FFs (e.g. Faneca Sànchez et al., 2012, Delsman et al., 2018, Vandevelde et al., 2018). 
However, the recent success of hydrogeophysical groundwater investigations have resulted 
in increased attention to the method (Binley et al., 2015). Current large-scale examples 
include plans for a potential a country-wide AEM survey across the Netherlands, and at 
the time of writing an unprecedently large AEM survey is currently being undertaken in 
Australia for mineral and groundwater mapping purposes (Ley-cooper et al., 2018). In 2016 
an atlas of subsurface EC was compiled throughout Denmark using primarily time-domain 
electromagnetics and ground data (Barfod et al., 2016). Furthermore, recent methodological 
advances have allowed high-resolution provincial-scale 3D voxel models of groundwater 
salinity using probabilistic lithological and AEM derived ECb information (Delsman et al, 
2018). Consequently, it has become pertinent to better understand the groundwater salinity 
mapping error of AEM in general, as well as the effect of data density on mapping results. 
Although AEM has been tested and proven to be accurate and repeatable for both TEM 
(Foged et al., 2013) and FEM systems (Huang and Cogbill, 2006), currently little is known 
about the effects of flightline spacing and additional ground based data on the quality of 3D 
groundwater salinity mapping results. In general, model results are typically validated using 
1D ground measurements (e.g. Delsman et al, 2018; Faneca Sànchez et al., 2012), but relative 
to an entire 3D regional model this only encompasses a very small region of the model space. 
Furthermore, physical differences in measurement techniques and acquisition conditions 
(e.g. temperature) mean that ground data are often difficult to directly compare with AEM. 
A quantitative and practical overview of the relative sources of error is therefore essential 
to inform the typically intra-disciplinary teams involved in AEM survey planning, decision 
making and ultimately groundwater management.

Consequently, in this paper we investigate relative sources of error based on established 
salinity mapping techniques using AEM with 3D models. Two key data types and their spatial 
configurations are considered: (1) the AEM survey itself and allocated flightline spacing, 
and (2) lithological information in the form of FF values through intrusive, ground-based 
drilling. This is undertaken using a large-scale (900km2), high-resolution (50 x 50 x 0.5m) 
realistic synthetic model extending to 50m depth and comprising ~150 million model cells 
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and 90 separate model results. To the authors’ knowledge, a large-scale, fully 3D quantitative 
assessment of this nature is unique. We present the accuracy of results relating to three 
common mapping objectives: (1) error of the 3D model as a whole, (2) volume estimates and 
(3) fresh-saline interface depths. Results are presented in a practical manner as data densities 
per km2 and flightline spacing in meters apart and include current survey cost estimates to 
include economic considerations.

3.2 Methods

3.2.1. General approach
Our approach is summarized in six steps, and explained in order in sections 2.2 to 2.7: (1) 
synthetic data generation by transforming two existing 3D models (lithological and chloride) 
into an ECb volume; (2) simulate AEM acquisition using the ECb model (forward modelling) 
and subsequent inversion; (3) simulate lithological data collection from the 3D lithological 
model; (4) 3D interpolation of inversion results and lithological data; and (5) Conversion to 
ECw and chloride by transforming interpolated results into ECw, and finally into 3D chloride 
models; (6) Comparison with reference chloride model and error analysis: finally, the estimated 
chloride estimates are compared against the reference model. Steps 2-6 are performed for 
different flightline spacings and different densities of ground-based information (geological 
drillings), where results are presented in section 3. The process is illustrated in figure B.1. 
Hereafter, these steps are explained in more detail.

3.2.2. Step 1: Synthetic data generation
The synthetic data is based on two existing high-resolution 3D datasets from southwestern 
Netherlands (figure 3.1). The latitudinally oriented Zeeuws-Vlaanderen strip (Zeelandic 
Flanders in English) covers an area of ~60 x 15km and lies within the southern edge of the 
North Sea basin. The shallow subsurface (up to ~50m) consists of gently northward dipping 
Neogene and Quaternary sediments (Stafleu et al., 2011). Overall, lithologies comprise 
younger fine sands, clays and peats and deeper, gently dipping sands and silts (Vos, 2015). 
Along the North Sea coast sandy coastal barriers are marked by localized topographic highs. 
Holocene sea-level transgressions caused  extensive groundwater salinization (Delsman et al., 
2014) however subsequent land reclamation has allowed the formation of shallow freshwater 
lenses (Berendsen, 2005). Given these events are recent in geological terms, distinct zones 
of fresh and saline groundwater with a relatively thin brackish zone are present throughout 
(Delsman et al, 2018).

The chloride model used here (figure 3.1B) is the result of a provincial scale FEM survey that 
was flown in 2014/2015 in the Netherlands as a part of a research project called FRESHEM 
Zeeland (Delsman et al, 2018). The resulting 3D groundwater salinity model is publicly 
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available and has a resolution of 50m horizontal and 0.5m vertical, covering an area of ~2000 
km2. AEM surveys decrease in resolution at depth, therefore it should be noted that the 
0.5m resolution throughout the model is the result of a secondary interpolation step. In the 
study area the survey was flown at mostly 300m line spacing, in areas of interest spacing 
was decreased to 100m resulting in ~3000 line km of HEM data. Flightlines are shown in 
figure 3.1A. Flightline spacing is selected according to a compromise between target sizes and 
budget. Tie-lines are flown perpendicularly to these for data processing at a wider spacing.

A high-resolution 3D lithological voxel model (100 x 100 x 0.5m resolution, up to 50m depth 
from ground surface) of the area is available from the GeoTOP geological model as part of 
the Dutch national database of geological data (dinoloket.nl - accessed November 2016), and 
provided by the Geological Survey of the Netherlands (GSN-TNO). As well as a stratigraphic 
model, GSN-TNO’s GeoTOP model contains the probability of lithoclasses occurring at any 
voxel and is therefore a probabilistic heterogeneous style model (lithoclasses and formation 
factors outlined in table 3.1 and shown in figure 3.1C). A more detailed description of the model 
is available in (J. Stafleu, D. Maljers, J.L. Gunnink, 2011). Apparent FF values were assigned 
to these lithologies and are based on nearby field measurements (De Louw et al., 2011) (table 
3.1). We recognize that the EC of saturated sediment is complex, such as surface conductivity 
caused by clay particles (Revil and Glover, 1998), however for this work, we neglect the effect 
of the clay to surface conductivity since the exact values are heavily depended on the area of 
investigation (Revil et al., 2017). Previous research examines this effect (Delsman et al, 2018), 
but for this regional analysis we did not consider it an important factor.

Table 3.1. Lithological formation factor values used in this study, from De Louw et al., (2011).

Lithology Formation Factor (FF)
Peat 2.1
Clay 2.5
Sandy clay 2.8
Fine sand 3.2
Medium sand 4
Coarse sand 5

To forward model (and subsequently invert) an AEM survey, a synthetic ECb model (i.e. the 
combined effect of both groundwater and lithology) is required. Using a combination of the 
two existing 3D models, a realistic and heterogeneous-style ECb model was created, the result 
of which is shown in figure 3.1D. This was undertaken in two steps: (1) the 3D chloride model 
was transformed to ECw using an empirical linear relationship from field measurements 
(De Louw et al., 2011) and corrected back to a reference groundwater temperature of 11C° 
from an initial 25C°; (2) ECw was transformed into ECb by applying FF values based on the 
geological model. The resulting regional-scale 3D ECb synthetic model has a cell resolution 
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of 50m horizontal and 0.5m vertical, covering an extent of ~15 x 60km down to 50m depth 
from ground surface.

Figure 3.1. Data used to create the 3D synthetic model. 3.1A: flightlines and model area. 3.1B: 3D chloride model. 3.1C: 
lithological model. 1D: the resulting 3D ECb model used for forward modelling. 

3.2.3. Step 2: Simulate AEM acquisition
Given that the available 3D chloride reference model was completed using a FEM survey, it 
made sense to simulate this rather than the TEM method. To simulate a typical survey across 
the 3D model, a distribution of measurement locations was needed. These were taken from the 
same survey that produced the 3D salinity model (Delsman et al, 2018) in order to replicate 
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typical heliborne survey characteristics (figure 3.1A). In total ~800,000 measurements 
locations over 3000 line km were used from 361 flightlines, these were typically flown at 
between 100 – 300m flightline spacing depending on the area. To facilitate processing times, 
the measurements were decimated to one every ~40m from every ~4m (totalling ~100,000 
measurements) – this was found to be a good balance between respecting the FEM system’s 
~100m footprint (Yin et al., 2014) and hardware practicalities. Given that the signal measured 
by the AEM system is inherently 3D, and the forward modelling code used in this is paper is 
1D (Auken et al., 2005) – a pseudo-3D sampling technique was implemented. To achieve this, 
100m diameter circles were created around each measurement location to approximate the 
footprint of the FEM system (Yin et al., 2014). Within each circle ECb was averaged, this was 
repeated at 0.5m depth-slice intervals down to 50m depth (i.e. at vertical model resolution), 
resulting in 100,000 synthetically generated AEM acquisition points on flight lines, each with 
100 ECb values with depth (every 0.5 m until 50 m). Figure 3.2 illustrates the pseudo-3D 
sampling technique used, as well as an illustration of the resulting AEM coverage based on 
different flightline spacing.

 

Figure 3.2. The pseudo-3D sampling technique used to simulate the HEM system footprint. The effects of using different 
flightline spacing on coverage are illustrated.

The resulting data were forward modelled using AarhusINV (Auken et al., 2005). Source 
and receiver spacing and frequencies were selected based on the RESOLVE HEM system; 
orientation was selected based on typical and previously used hydrogeophysical applications 
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e.g. (Delsman et al, 2018; Gunnink et al., 2012; Steuer et al., 2009). Finally, 5% random gaussian 
noise was added to the forward response to approximate HEM noise levels (Farquharson et 
al., 2003; Green and Lane, 2013).

Table 3.2. Simulated AEM system, survey and inversion parameters.
Towed bird frequency domain system specifications
Frequencies 380, 1770, 8300, 41000 and 129500 Hz
Coil separation ~8m
Coil orientations 5 x horizontal coplanar
Measurement spacing ~40m downline
Footprint 100m
Survey Parameters
Bird height 40m
Noise 5% 
Inversion Parameters
Vertical Constraints 1.3
Lateral Constraints 3

The “acquired” data, were inverted using AarhusINV (Auken et al., 2005). Based on a 
commonly used inversion method (e.g. Auken et al., 2008; Chongo et al., 2015; Delsman et 
al, 2018) and corresponding input parameters that were found suitable for hydrogeophysical 
studies (King et al., 2018) (Table 3.1), a laterally constrained inversion (LCI) was used (Auken 
and Christiansen, 2004; Siemon et al., 2009a). The LCI method is a pseudo-2D method, 
whereby neighbouring model properties are constrained to produce laterally coherent 
inversion results along separate flightlines. The minimum-structure inversion style used here 
inverts for ECb values only, where layer thicknesses and depths remain constant, and has been 
found to accurately reproduce smoothly varying salinity distributions (Delsman et al, 2018; 
King et al., 2018). The inversion starting model consisted of 20 layers, the thickness of the top 
layer was set to 0.68m and subsequent layers increasing in thickness logarithmically until 50m. 
Below 50m the final layer is assumed to extend infinitely. A starting model conductivity of 1 
S/m was selected based on common knowledge that low-lying coastal zones are (electrically) 
conductive environments.

3.2.4. Step 3: Simulate lithological data collection
Simulating the acquisition of geological information, or indeed realistic quantities of existing 
data that may be available during hydrogeophysical mapping is not trivial. For example the 
GeoTOP model used to construct the synthetic geological model in this paper is the result of 
expertly interpreted boreholes and geophysical data, resulting in a large-scale 3D probabilistic 
model with different properties (Gunnink et al., 2012; Stafleu et al., 2011). For this reason, a 
practical approach based on the current distribution of publicly available borehole data was 
used. Here we sampled synthetic borehole locations and depths from existing borehole data in 
the area available on Dinoloket, the Dutch Geological Survey (TNO) data portal. It was found 
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that within the synthetic model area, cumulative vertical borehole depths totalled ~42,000m 
(or ~60 vertical metres/km2), with a depth distribution highlighted in figure 3.3. 

Figure 3.3. End-depth distribution of actual available lithological information on TNO’s Dinoloket data portal.

With this information, we used inverse transform sampling (ITS) with prescribed total vertical 
borehole depths and randomised borehole locations (random selection without replacement) 
to simulate a realistic data-distribution, where typically most available data is very shallow 
(<5m). Prescribed total drilling length was varied in following six classes as follows: 100m 
(0.13m/km2), 1000m (1.36m/km2), 5000m (6.80m/km2), 10000m (13.61m/km2), 20000m 
(27.23m/km2) and 42000m (57.19m/km2) – based on practical criteria up to the actual 
amount available. Five ITS realisations were used for each total length class to account for 
sampling bias and to quantify uncertainty due to placement location. Finally, FF values were 
taken from the lithology of the synthetic voxel model sampled by each randomly selected 
borehole at 0.5m vertical resolution till borehole depth. This resulted in 6x5=30 synthetic 
borehole datasets containing FF information. Here it is assumed that apparent FF information 
has been perfectly interpreted for each borehole.

3.2.5. Step 4: 3D interpolations of ECb inversion results and lithological data
In order to assess the effect of different flightline spacing on mapping results, the ECb 
inversions were subsequently split into three separate databases: (1) 300m spacing, 100m in 
specific areas (~3000 line km), (2) 600m flightline spacing (~1500 line km), and (3) 1200m 
spacing (~750 line km). The 100m line-spaced data was kept together with the 300m, as this 
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reflects a realistic data distribution and is the actual distribution of the original survey. This 
allows an analysis of the effects of a higher AEM data density in specific areas. Finally, each 
database was interpolated into 3D volumes of ECb using the method of King et al., (2018) 
and is based on 2D Kriging. We recognise that there are many other sophisticated methods to 
interpolate data, however this approach was found to accurately preserve the characteristics 
of inversion results between flightlines and offered a straightforward and recognised 
approach. The model base was assigned according to the DOI of the airborne system, which 
was calculated from the inversion output at each 1D model location (Christiansen & Auken, 
2012). Minimum-curvature gridding was then used to interpolate DOI estimates, data below 
these were removed from further analysis for all further models.

A statistically robust, simple and repeatable 3D interpolation method was utilised to 
interpolate the FF values at the borehole data throughout the synthetic model. For this 
an established technique called Sequential Indicator Simulation (SIS) was used (Gomez-
Hernandez and Strivastave, 1990), based on Indicator Kriging formulation. Using indicator 
semivariogram models fitted on the FF values of the boreholes (a separate semivariogram 
model with different horizontal and vertical ranges for each of the 30 borehole datasets), 10 
SIS realisations were run for all 30 FF spatial distributions. The median (or p50) of the 10 
simulated FF values at each model cell was used for further analysis. This resulted in 30 3D 
FF spatial distributions (for each of the six classes of specified total drilling length with five 
randomised locations for each).

3.2.6. Step 5: Conversion to ECw and chloride
Each of the 30 interpolated FF spatial distributions were multiplied by the three interpolated 
ECb inversion results to obtain 90 3D ECw spatial distributions (6x3=18 combinations of 
total borehole and flightline lengths with 5 random borehole sets per combination), which 
were then converted back to 3D chloride (as per figure B.1). 

3.2.7. Step 6: Comparison with reference chloride model and error analysis
With practical hydrogeophysical mapping considerations in mind, the resulting 90 3D ECw 
spatial distribution models were compared against the reference model in three ways. All 
evaluations were undertaken over the same domain, where values beneath the calculated 
DOI from inversion results were removed. First, mean absolute error (MAE) of groundwater 
salinity estimates as mg/l chloride were calculated as per the following:

𝑀𝑀𝑀𝑀𝑀𝑀 = 	
1
𝑛𝑛
(|𝑥𝑥+ − 𝑥𝑥|
-

+./

 

where xi is the prediction and x is the true value. Second, groundwater salinity volumes were 
calculated according to the chloride classifications set out by Stuyfzand (1986) and include the 
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following: (1) 0 -1000 mg/l, or “fresh”, (2) 1000 – 3000 mg/l, or “brackish”, and (3) >3000 mg/l, 
or “saline”. Finally, based on this classification, interface depths for the fresh-brackish-saline 
regions were extracted as 500, 1500 and 3000mg/l chloride respectively. Saline inversion was 
present in some areas (saline above fresh groundwater), therefore multiple interfaces were 
frequently encountered at the same horizontal location. As a result, only the shallowest, or 
first encountered interfaces were extracted as iso-surfaces for further analysis. 

3.3. Results

For clarity, geology refers to additional borehole information as vertical metres per km2; 
inversions refer to error as a result of the AEM acquisition and inversion process; and the 
reference model is the synthetic chloride model. In total all 90 3D chloride model properties of 
150 million cells each (thus in total ~13.5 billion data points) are compared in the following, 
relating to different geometrical data configurations of geological and AEM data. Volumes and 
interface error are calculated according to specified salinity classes, while MAE calculations 
focus on the entirety of the 3D models for an overview of error contributions. Uncertainty 
relating to borehole placement and 3D interpolation is shown as standard error.

3.3.1 MAE of salinity estimates
The mean absolute error (MAE) of mapped chloride is presented in figure 3.4, showing average 
error for all data configurations tested. To better isolate error per data-type, in figure B.2. we 
assumed a perfect inversion model and only adjusted the amount of lithological information.
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Figure 3.4. MAE of flightline spacing as meters apart vs. data density of borehole data as vertical meters drilled per km2. 
Yellow = 1200m spacing, grey = 600m spacing, orange = 300m spacing; the vertical black error bars represent uncertainty 
range over the five sampled borehole configurations per borehole density class;  the horizontal dashed lines are error due 
to AEM inversion only assuming perfect geological knowledge. 

Figure 3.4 illustrates that increasing borehole density to a value of more than ~10m/km2 
results in relatively little improvement of mapped chloride.  Geological data reduces mapping 
error by ~100 mg/l  chloride between the highest and lowest data densities for all flightline 
configurations and at maximum 150 mg/l chloride in case of perfect geological knowledge. 
Reducing flightline spacing consistently reduces error by ~70 mg/l chloride per 100m 
reduction. The reduction in salinity estimation error by adding geological information is 
significant if the AEM inversion is without error (figure B.2., the combined error is dominated 
by the error in AEM inversion. Thus, the most effective way of reducing the error in chloride 
concentration mapping is by decreasing flightline spacing.

3.3.2 Volumes
Calculations were undertaken based on the classifications outlined in section 2.6, where a 
porosity factor of 0.3 was applied based on a sandy aquifer (Abdallatif et al., 2009). The result 
is a total groundwater volume of ~5.71·106km3, with 3.13·106km3 (54%) fresh, 2.2·106km3 
(39%) salt and 3.82·105km3 (6.7%) brackish groundwater volumes within the reference 
model. The AEM data acquisition and inversion process alone (assuming perfect geological 



A practical quantification of error sources in  
regional-scale airborne groundwater salinity mapping

67

knowledge) results in a substantial thickening of the brackish zone, adding ~6.1·105 km3 to 
brackish zone volume estimates (figure B.4), underestimating the fresh and saline volume 
by ~3.27·105km3 and ~2.83·105km3 respectively. Figure 3.5 presents averaged volume 
differences against the reference model for each geological data density class with standard 
error (over the six borehole datasets per total borehole length class) and for a flightline 
distance of 300m. Total error for each estimate has been subtracted by those of the reference 
model – thus positive values represent an overestimation.

Figure 3.5. Differences in volume calculations against the reference model of fresh-brackish-saline groundwater regions 
using the 300m line spaced survey. Km3 calculations are based on applying geological information (FF) to the inverted 
model (300m line spacing). Blue = fresh, orange = brackish, red = saline. Borehole data density labelled as vertical 
metres/km2. Positive values represent an overestimation.

Results for 600m and 1200m flightline distances share a similar magnitude of error. Figure 
B.5. shows that if no AEM acquisition and inversion error is included, the reduction of errors 
in estimated volumes are notable. With fewer geological data a trend of overestimating the 
brackish zone at the expense of saline volumes is seen. Quantitatively, the addition of geological 
data reduces volume estimate error between the 0.13m/km2 and 57.19m/km2 borehole classes 
by ~8.0·103km3, ~4.0·104km3, and ~5.0·104km3 for the fresh, brackish and saline classes 
respectively. It is clear however in figure B.4, that that the inversion results in a significant 
overestimation of the brackish zone, therefore the addition of geological information reduces 
this error, but only marginally relative to the error introduced by the inversion.
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The analysis of errors in volume estimates show that the largest error comes from the AEM 
acquisition and inversion and that, contrary to errors in salinity concentration estimates, this 
error is not very sensitive to flightline spacing. Also, the reduction of the volume error from 
additional geological data is insignificant. Thus, if one is interested in estimating volumes 
of fresh, saline and brackish groundwater by airborne AEM, large flightline distances and 
little geological information is the most efficient option with the current methods of AEM 
acquisition and inversion.

3.3.3 Interfaces
When resolving the 500, 1500 and 3000 mg/l chloride interfaces, possible ECb values may 
range between 0.06 – 0.13 S/m, 0.11 - 0.25 S/m and 0.2 – 0.4 S/m respectively, in case the FF 
is unknown and between the values illustrated in figure B.6. The result is that there exists an 
interface depth uncertainty range of a specified vertical thickness if interfaces are obtained 
from ECb values. As volume estimates show (figure B.4.), there is a significant smoothing 
effect from the inversion process - thus it follows that this will affect the thickness of the 
FF uncertainty range. This effect is demonstrated in cross-section, where the uncertainty 
limits are presented in figure 3.6 for the reference model and for the 300m flightline spacing 
inversion model. 

Figure 3.6. Upper (0.11 S/m) and lower (0.25 S/m) 1500 mg/l interface depth uncertainty ranges (black) for the reference 
model and inverted model, illustrated as a cross-section. The actual location of the interface in red. 
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Figure 3.6 highlights how the vertical uncertainty range is narrow (~1.7m MAE) in the 
reference model, with substantial thickening (~2.9m MAE) in the inverted model. It is also 
apparent that the inversion has caused the interface to become shallower overall, which is the 
result of an overestimation of the brackish zone by the inversion. To understand magnitude of 
the contribution of fl ightline distance and borehole density on the error in interface estimation, 
the MAE of interface positions against the reference model for the 1500 mg/l chloride are 
shown in fi gure 3.7. Th e 500 and 3000 mg/l chloride plots are supplied as supplementary 
information (fi gures B.7. and B.8.). 

Figure 3.7. Absolute vertical error of the 1500 mg/l chloride interface for each fl ightline spacing class, as well as a 
comparison directly against the reference model.

Without the inversion, error margins are small (<0.5m) for all interfaces and the addition 
of geology adds little improvement (between 0.05 - 0.1m). Th e inversion and increasing 
fl ightline spacing however adds a more signifi cant error to the mapping results: ~3, 1.5 and 
1m for the 500, 1500 and 3000 mg/l chloride interfaces respectively. For every 300m reduction 
in fl ightline spacing, approximately 0.1, 0.25 and 0.4m of accuracy are added for 500, 1500 
and 3000 mg/l chloride interfaces respectively – indicating that decreasing fl ightline spacing 
is useful for the more accurate delineation of deeper interfaces. However, the addition of 
geological information does little to help improve error and may even worsen it (for the 500 
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and 1500 S/m interfaces). This contra-intuitive effect may be caused by the relatively large 
number of shallower boreholes which pickup more of the clay lithologies that are predominant 
close to the surface and therefore over-sampled. The relative increase in clay textures and 
higher FFs results in more fresh groundwater to the unjustifiably classified as brackish and 
enhances the shallow bias in the 500 and 1000 S/m interface depths.

3.4. Discussion and conclusions

We present a large-scale, quantitative study of groundwater salinity mapping accuracy using 
AEM. This was undertaken using a high-resolution, 150 million cell synthetic 3D voxel 
model. We compared 90 possible 3D models, each of which was based on different data 
configurations of either geological data in the form of lithological logging, and as AEM in 
the form of flightline spacing. Commonly used and realistic data collection methods were 
simulated and interpolated into 3D groundwater salinity volumes; these were then compared 
to the reference model to understand sources and quantities of error. The results are practical 
and useful as input to regional groundwater management strategies in coastal areas. 

It was successfully demonstrated that a careful and systematic handling of the AEM acquisition 
and inversion process is the most important and cost-effective approach for accurate 3D 
groundwater salinity mapping using AEM. This supports the findings of Delsman et al., (2018) 
where the inversion process was the biggest uncertainty contributor to a 3D salinity model. 
The addition of ground-based geological information will help reduce error, but relatively 
insignificantly if the inversion process - and therefore the initial distribution of ECb - requires 
improvement. 

As inversions are mathematically ill-posed, countless models can fit the observed data, 
thus selecting a single inversion that fits the data is not recommended, as demonstrated by 
Minsley (2011). Inversion error of groundwater salinity mapping was quantified by King et 
al., (2018), where similar smoothing effects appeared to thicken the brackish zone – resulting 
in comparable fresh-saline interface mapping errors of ~3m. In this study ~13.5 billion data 
points across 90 different 3D models were processed, therefore for practical reasons we used 
a single commonly used inversion method and parameters thereof. For the same reason we 
used a single interpolation method on the inversion results (King et al., 2018), furthermore 
we found this suitable as it accurately preserved the thickness of the brackish zone between 
flightlines. Although testing different inversions and parameters would be interesting, this has 
been undertaken in a practical manner (Hodges and Siemon, 2008; King et al., 2018), and we 
feel that this study highlighted the importance of using inversion models carefully in general. 
Considering this, a number of methodological improvements could be suggested to constrain 
the thickness of the brackish zone; the simplest of which is to compare inversion methods and 
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input parameters with accurate and direct ground-based ECb measurements. For example if 
we know a narrow brackish zone exists from prior knowledge, the LCI sharp method (Vignoli 
et al., 2015) could be used to try and match this characteristic. Hansen & Minsley, (2019) 
offer a statistical approach that avoids the use of smoothing regularization constraints – such 
as the one that caused the thickening of the brackish zone in this study – and would allow the 
inclusion of explicit a-priori information.

Reducing flightline spacing reliably improved mapping results, particularly for salinity 
concentration mapping and mapping of salinity interfaces, and seemed to be the most efficient 
way of trading costs vs. accuracy. The economics involved in AEM surveys however are not 
straightforward and should be approximated with caution - for example, mobilisation and 
demobilisation costs mean that the price per line-km is non-linear and highly site-specific. For 
the sake of discussion however, as a coarse current estimate we could approximate €50,000 for 
mobilisation and €200 per line-km flown, including inverse modelling and full interpretation 
(Deltares, personal communication, September 2019). As a result, using these rough metrics 
the 300, 600 and 1200m line spacing (or ~3000, ~1500, ~750 line-km) survey results could 
total ~€650k, ~€350k, and ~€200k respectively. 

To conclude, we showed that when mapping groundwater salinity using airborne EM 
(AEM) and ground based geological data, the error from AEM inversions far exceed that 
from errors in estimated formations factors (FF) obtained from lithological mapping. As a 
result, and given the estimated costs of AEM and geological drilling, decreasing flightline 
distances and producing high-quality inversion results are the most effective and efficient way 
of increasing the accuracy of groundwater salinity mapping, in particular when estimating 
salinity concentrations and the depth of interfaces between fresh and brackish groundwater. 
Volume estimates of the entire study area are however less sensitive to flightline distance. 
Overall results presented here allow a quantitative understanding of mapping error in large 
scale groundwater salinity mapping campaigns. This information is useful for the planning 
of regional groundwater mapping programmes using AEM in general. The scale and realistic 
nature of the synthetic model mean that the results are relevant over a broad range of 
hydrogeological terranes.
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Controlling the smoothness of airborne 

geophysical inversions to improve 
the accuracy of regional groundwater 

salinity mapping
Abstract
The ongoing threat of saltwater intrusion into low-lying, coastal aquifers, necessitates a 
good regional understanding of this phenomenon. In these areas, airborne electromagnetic 
(AEM) surveys are increasingly used to create maps of fresh-saline groundwater distributions 
– a process that is essential for effective groundwater management. To be used practically, 
AEM data needs to be converted from observations to a subsurface distribution of electrical 
conductivity (EC), where finally petrophysical relationships are used to convert EC into 
groundwater salinity. This is undertaken using a process called inversion, where AEM 
observations are typically modelled iteratively until a subsurface distribution of EC is 
matched to AEM observations to an acceptable fit. Unfortunately, this procedure comes 
with great uncertainty as an infinite number of models can explain the data. Furthermore, 
recent research has highlighted that commonly used inversion methods tend to produce 
overly thick brackish zones in some environments – resulting in inaccuracies, particularly 
regarding the vertical positions of fresh-brackish-saline interfaces. As a result, in this research 
we developed an inversion approach to resolve the distributions of fresh, brackish and saline 
groundwater more accurately by using additional, cheaply available ground data and existing 
inversion methods. Using in-built inversion parameters of a layered earth inversion method 
and a customised script, a regularisation term (or penalisation) can be set to favour either 
the default inversion parameters, or the observed thickness of the brackish zone from in-
situ data. The method was tested using the commonly implemented laterally constrained 
inversion from AarhusINV, using both synthetic and real data from the Netherlands. Results 
highlight some improved accuracies regarding the mapped location of fresh-brackish-saline 
interfaces; however, it was found that further development is required for meaningful results.  
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4.1. Introduction

Airborne electromagnetics methods (AEM) have been used since the late 1970’s to map 
groundwater salinity (Fraser, 1978). Given the increasingly understood risks to the availability 
of fresh groundwater from salt water intrusion (Barlow and Reichard, 2009; Bocanegra et al., 
2009; Custodio, 2009; Oude Essink et al., 2010; Post et al., 2018; Werner, 2009; Werner et al., 
2013), the method has since been applied successfully to map this phenomenon in many parts 
of the world (e.g., Auken et al., 2008; Chongo et al., 2015; Delsman et al, 2018; Fitterman and 
Deszcz-Pan, 2001; Ley-Cooper et al., 2018; Siemon et al., 2015). The sustained popularity 
of AEM relates to the ability of the method to rapidly and cost-effectively map regional-
scale groundwater salinity (King et al., 2020). Furthermore, compared to the use of in-situ 
(ground-based monitoring), AEM surveys generally result in a continuous, 3D salinity model 
of the subsurface – allowing an effective regional understanding of groundwater salinisation. 

AEM surveys are sensitive to electrical conductivity (EC) contrasts caused by both clay 
content of the host sediments and the salinity of pore water (Revil and Glover, 1998), and as 
such are also used to map the structure of aquifers (e.g. Auken et al., 2008; Gunnink et al., 
2012) alongside groundwater salinity distributions (e.g. Delsman et al., 2018; Vandevelde et 
al., 2018). A comparison of available AEM methods for groundwater mapping purposes is 
described in Steuer et al. (2009). These include frequency and time-domain electromagnetic 
methods (referred to here as FEM and TEM respectively). As we are using acquired FEM 
data in this study, in the following we will refer exclusively to this method and application 
only, however the results presented here are applicable to both. For an overview of applied 
groundwater mapping using AEM in general, including survey characteristics and data 
processing, refer to Siemon et al. (2009). 

FEM surveys transmit electrical signals from a towed instrument, referred to as the primary 
field. These signals produce secondary currents which are in turn recorded by receivers as 
parts per million relative to the primary field. To extract useful information from AEM 
measurements, it is converted into a usable EC distribution – or specifically bulk EC (ECb), 
which comprises signal from the host sediment and pore-water. In this procedure ECb is 
modelled using the secondary field data, a process referred to inversion which is typically 
approached using 1D layered earth models (e.g.  Auken and Christiansen, 2004; Brodie 
and Sambridge, 2006; Farquharson et al., 2003; Siemon et al., 2009a; Viezzoli et al., 2008; 
Minsley, 2011; Vignoli et al., 2015). For an overview of available AEM inversion methods 
and a quantitative understanding of accuracies in relation to groundwater salinity mapping, 
we refer to King et al. (2018). Inversion results are then translated into groundwater salinity 
using petrophysical relationships (e.g. De Louw et al., 2011). For brevity, in the following we 
refer to groundwater salinity as chloride – as this is the dominant conservative anion found 
in coastal saline groundwater. 
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Inversions suffer from non-uniqueness, meaning an infinite number of models can fit the data. 
As a result, these methods need stabilisation, reducing the degrees of freedom – otherwise 
known as regularisation (Constable, 1987; Marquardt, 1963). In general, a result of this is 
that the user will need to parameterise the inversion such that a balance is found between 
fitting the data and a regularisation term that imposes a degree of simplicity or smoothness 
to the inversion result. In practical terms, inversion results could either be too smooth 
(favours the regularisation too strongly) or contain noise present from the acquisition process 
(it is constrained too weakly). In the case of chloride mapping, fresh groundwater volume 
estimates could deviate by over 5% depending on parameterisation (King et al., 2018). Using 
synthetic modelling, King et al. (2020) showed that by using default inversion parameters 
of a commonly used inversion method, the fresh-saline interface appeared on average 
almost 3m too shallow. This error has potentially significant consequences for quantitative 
groundwater management policies. For instance, in the Province of Zeeland, The Netherlands 
concentrations of 0-300, 300-3000, > 3000mg/l chloride are commonly used to classify fresh, 
brackish, and saline respectively (Van Baaren et al., 2016), and this classification determines 
greatly determines the utility and application of water resources. Naturally, it follows that 
the correctly parameterising inversions are highly important for quantitative groundwater 
management. 

In light of the above, we developed a novel method that uses readily available in-situ data 
to carefully balance smoothness vs. noise present in inversions. Our approach uses the 
simple idea that inversion smoothness affects the thickness of the brackish zone and by 
extension this feature is a good proxy for appropriately parameterised inversions. Given that 
relatively cheap in-situ information is readily available in low-lying coastal areas, it serves an 
economical constraint that is likely to be available even in data-poor areas. The amount of 
noise present is controlled by penalising inversions that are parameterised differently from 
default parameters. The penalisation, or regularisation term, can be set to favour either the 
default parameters or the observed thickness of the brackish zone in the in-situ observations. 
For brevity we refer to traditional (or in-built) inversion parameters as parameters, and our 
additional regularisation as penalisation. The method was first tested using a synthetic model 
in order to find the optimal weighting between regularisation and data-fit and then applied to 
a real case using data from the Province of Zeeland, the Netherlands. 

In the following, Section 4.2 provides details of our methods - including a summary of our 
approach in section 4.1 followed by a description of how the synthetic model was created in 
section 4.2. Sections 4.3 to 4.5 outline technical details of the optimisation method and 4.6 to 
4.7 describe applications to the synthetic and real cases respectively. The results are presented 
in section 4, where 4.1 and 4.2 describe results of the synthetic and real cases respectively. 
Finally, a discussion and concluding statements are described in section 4.4. 
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4.2. Methods

4.2.1 Summary of approach
To find an appropriate balance between sharp and smooth inversion models using additional 
in-situ data, a customised regularisation strategy was developed. This strategy is based on a 
minimization criterion that penalizes both the deviation from an initial inversion (without 
additional in-situ data) and the deviation from in-situ observations. In effect, the approach 
allows the use of simple information – in this case an estimate of the brackish zone thickness 
– to parameterise an inversion while still allowing a control on the introduction of noise 
because of an overly sharp inversion result. The method was adapted to a commonly used 
layered-earth, deterministic inversion method, but could feasibly be adapted to other 
inversion methods. 

The procedure was first tested using a synthetic model to obtain a quantitative idea of 
the correct balance between fitting the inversion to default parameters or to in-situ data 
constraints. Information from the synthetic test was then used as a guide to test the method 
using real AEM data and known brackish zone thicknesses. The approach is illustrated in 
figure 4.1, where the both the synthetic study and the real case are shown.

In general, an iterative process runs an inversion, starting with purposefully overly smooth 
constraints. The estimated thickness of the brackish zone is then extracted and compared 
against the in-situ estimates and those of the default inversion parameters. The regularisation 
process then calculates a value of the criterion (say J) that is based on weighting (using a 
weighting parameter λ), that penalizes either a deviation from the initial inversion using 
the default (smoother) parameters (λ) or a deviation from the in-situ data (1- λ) leading 
to generally sharper inversions. The procedure then restarts and applies a pre-factor to the 
inversion parameters, essentially running the inversion again (as above), but with a slightly 
sharper model. The process iterates until a given maximum sharpness is reached, which means 
that the criterion J is minimalized for the given value of λ to extract the optimal inversion 
parameter. This process thus quantitatively guides the user to select inversion parameters 
based on a desire to either obtain a sharper or smoother model. We used a realistic synthetic 
case to determine which value of λ leads to the optimal weighting between smoothness and 
fit to the in-situ data. The synthetic case was also used to ascertain how much in-situ data is 
needed to obtain robust results. The resulting value for λ was then used to test the method 
on a real case, where extensively available ground and airborne data was used to validate the 
method in general, as well as the appropriateness of the given λ from the synthetic result. 
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Figure 4.1. Th e method outline. Red areas denote additional steps relating the synthetic case, for the real case only steps 
in black are shown. λ is a weight between deviation from the initial inversion and the in-situ data. 

Th e process is described in more detail in the following order: a) the synthetic model creation, 
b) the inversion method, c) the minimization criterion and d) an application to a real case. 

4.2.2 Creating the synthetic case
Th e synthetic model was created from an existing AEM based 3D salinity model to preserve 
realistic site characteristics. A detailed description of the model, the AEM survey, and 
subsurface characteristics of the area are described in Delsman et al. (2018). From this survey, 
we selected a fl ightline (and subsurface data thereof) that hosted characteristic features of 
coastal groundwater mapping – such as both shallow and deep freshwater lenses – as well as 
an area with saline groundwater at the surface. Th e synthetic model is shown in fi gure 4.2A. 
To simulate an AEM survey, the synthetic model was fi rst converted from chloride to ECb 
using a petrophysical transformation with a procedure described in King et al. (2020). Th e 
resulting 2D section of ECb values were then forward modelled using AarhusINV inversion 
soft ware (Auken and Christiansen, 2004), which is based on the Fugro Resolve frequency 
domain AEM system used for the real survey. To help simulate realistic survey conditions, 
fl ight altitude was variable and taken from the original survey. Finally, 5% gaussian noise was 
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added to forward modelled data, based on known estimates of acquisition errors (Farquharson 
et al., 2003). 

4.2.3 The inversion method
The commonly used Laterally Constrained Inversion (LCI) was selected for this study (Auken 
et al., 2015a). The method is a deterministic style, layered earth inversion method and is 
suitable for the laterally continuous conductivity contrasts found in low-lying coastal areas. 
Besides site-suitability, the method was selected purposefully as previous research found 
that these inversions can cause an overly thick estimated brackish zone when incorrectly 
parameterised (King et al., 2020). 

The inversion was discretised using a 20-layer model, with each consecutive layer 
logarithmically increasing with thickness from surface until 50 m depth. Each layer was 
assigned a starting conductivity of 1 S/m owing to the highly saline environment of our 
study area. Data beneath an estimated depth of investigation (DOI) was removed based on 
the method by Christiansen and Auken. (2012). The inversions were run using AarhusINV 
executables (Auken and Christiansen, 2004) and a customised script. The inverted synthetic 
model is illustrated in figure 4.2B, where default inversion parameters were used. 

4.2.4 The minimization criterion
To extract optimal inversion parameters the following minimization criterion was used 
(Equation 4.1): 
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Where Dit,i is the estimated brackish zone thickness at the location of the in-situ data and 
Dit (xj) at the location xj along the flight line as obtained from a given iteration, nin-situ the 
number of in-situ data, nx the number of vertical salinity estimates (and brackish zone 
thickness estimates) along a flight line, Dobs,i is the observed brackish zone thickness from 
in-situ observation i and Ddef (xj) the calculated thickness at location xj for default inversion 
parameters. Data were normalised using standard deviations of estimated errors in-situ (σobs), 
or default (σdef) estimates of brackish zone thickness. The second term in this criterion is 
the regularization term and its strength is determined by the value of λ changing between 0 
(favouring the in-situ data) to 1 (favouring the default inversion parameters). 

4.2.5 Details of inversion and minimization procedure
To calculate J for different inversion parameters and λ values, an iterative process was 
developed in Python. First, an inversion is run with an initial set of parameters. The resulting 
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inversion (in ECb) is then transformed into the electrical conductivity of groundwater (ECw) 
using petrophysical relationships in the form of formation factors (FF) (Archie, 1942). For 
this we used an approximation of 3.13, which is the known value for sandy clay in the local 
area (De Louw et al., 2011) and the same used in King et al., (2018). To estimate the area of 
the inversion that represented the brackish zone, we used groundwater salinity classifications 
set out by Paine and Minty (2005): 0–0.18 S/m (fresh), 0.18–1.8 S/m (brackish) and > 1.8 S/m 
(saline). Unfortunately, a full brackish range was not present at many AEM measurement 
locations (e.g., a vertical profile may comprise only 0.18 – 1.2 S/m) – this was particularly the 
case after applying a depth cut-off based on DOI estimates of the AEM inversion results. As 
only full sequences of brackish data were permitted in the procedure, the resulting removal of 
useful data was potentially problematic. We therefore instead used a portion of the brackish 
range as proxy for a brackish thickness, given by 0.18 – 0.54 S/m. This was found to greatly 
increase the amount of available data from inversion results, while still being sensitive to 
inversion parameterisation. The in-situ ECb data for both synthetic and real applications were 
processed as above to obtain brackish zone thickness estimates. The process then calculates 
the difference in brackish zone thicknesses between nearby in-situ data and the default 
inversion parameters. 

Results are then appended and the iterator repeats using updated inversion parameters 
(using a simple grid search) until J is minimized. The inversion parameters are changed at 
each iteration using the given pre-factor, here inversions are purposefully run from overly 
smooth to overly sharp to obtain a full range of values based on the given λ. The LCI inversion 
parameterisation comprise horizontal and vertical constraints that control the smoothness of 
respective dimensions, for a more detailed explanation refer to Auken et al. (2005). For brevity 
we will refer to horizontal and vertical constraints as HCON and VCON respectively. For this 
study, HCON and VCON constraints were not changed individually, but rather linked by 
changing the values by the same pre-factor, as per published advice in an AarhusINV manual 
(Aarhus HydroGeophysics Group, 2018). 

For the synthetic case, the minimization of J as described above is repeated for different λ 
using equation 1, with λ ranging from 0 to 1 in 0.1 increments. 

4.2.6 Application to the synthetic case
Our approach was applied to a synthetic case by first extracting brackish thicknesses 
along a salinity profile from an existing AEM estimated salinity distribution, as described 
in subsection 2.5 The resulting thickness estimates were then used to simulate in-situ data 
collection (Dobs), where 100 measurements were extracted. An inversion was run with default 
parameters (HCON = 1.3, VCON = 3) using the forward modelling data; the results were 
used to extract default inversion brackish zone thicknesses (Ddef). The procedure was then 
run iteratively, starting with HCON = 1.075, VCON = 1.75, then using a pre-factor of 1.05 per 
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iteration until VCON became greater than 50. At the end of each iteration J was calculated 
for every combination of Dobs (n=2,3….,100) and λ (n=0,0.1,….,1). In total 120 different 
inversions were run, each with different parameters, taking about 4 hours to complete on a 
standard quad-core desktop PC. Three resulting inversions are illustrated in figure 4.2, where 
a smoother, default setting and sharper inversion are illustrated. 

Figure 4.2. The uninverted, synthetic model (A), the synthetic model inverted with smoother parameters (B) (HCON = 1.08, 
VCON = 1.5), default parameters (C) (HCON = 1.3, VCON = 3) and sharper parameters (D) (HCON = 1.5, VCON = 10). 
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4.2.7 Application to a real case
The real case was tested in an area of the Province of Zeeland, the Netherlands – in an area 
of around 270 km2. Available data comprise 50 flightlines of raw, uninverted AEM data 
totalling ~1000-line kilometres, and AEM measurements were taken every ~4m. Available 
in-situ (Dobs) data comprise 29 vertical Electrical Cone Penetration Tests (ECPT) profiles 
of observed ECb, measuring to an average depth of ~25 m below surface and were sampled 
at a vertically resolution of 0.5 cm. Locations and characteristics of the data are shown and 
described in detail in King et al. (2018). Out of the 29 available ECPT profiles, five were kept 
apart solely for validation purposes, the remaining 24 were used to extract brackish zone 
thickness estimates (Dobs) for the inversion and minimization of Eq. 1. Using the optimal 
value of λ found in the synthetic case, inversions were first run using default parameters and 
converted to ECw (as described above) to obtain default inversion brackish zone thickness 
for all flightlines (Ddef). The described procedure was then run iteratively for every flightline, 
starting with HCON = 0.08, VCON = 0.53 and using pre-factor of 1.3 until VCON became 
greater than 50, – resulting in 18 separate inversions for each flightline. At the end of each 
inversion, all in-situ data < 500m radius from the flightline was assigned to the nearest AEM 
measurement and used as input for Dobs in Eq 1. As 500m is the upper estimate for the 
AEM systems footprint (Yin et al., 2014), data collected within this radius should be spatially 
consistent with the inversions. The process was repeated for all 50 flightlines, totalling 1000 
inversions (20 inversions per each flightline), taking a total of ~18 hours to complete on a 
standard quad-core desktop PC. 

Finally, to quantitatively test differences against the validation set of five ECPT data, the default 
and resulting minimised inversions were then interpolated into a 3D volume of ECb. This was 
undertaken using 2D ordinary Kriging of each of the 20 inversion layers, as per the method 
of King et al. (2018). Data below the calculated DOI was removed from further analysis. The 
resulting 3D estimates of groundwater salinity (after conversion using formation factors) was 
then compared to the observed salinities in the 5 ECPT profiles kept apart for validation. 

4.3. Results

As results from the synthetic model are used to inform the real case, the synthetic model will 
be presented first (section 3.1), followed an application of the method to real data (section 3.2). 

4.3.1. Synthetic model results
Figure 4.3 shows results from extracting the inversion result that resulted in a minimum J for 
each number of available in-situ data and for different values of λ. Each point represents a fit 
to the synthetic model in ECw (S/m) for a combination of λ and number of in-situ of data 
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used. For each inversion, the resulting mean absolute error (MAE) in estimated ECw (S/m) 
with respect to the synthetic reality is plotted.

Figure 4.3. MAE of inversion results against the synthetic reality, represented as S/m diff erence of ECw vs. number of 
in-situ data as a result of the favoured inversion sharpness returned by J. 

Here it is observed that inversions that more strongly favoured the in-situ data (~λ 0 to 0.4) 
displayed a greater degree of uncertainty in fi nding the optimal inversion result, as they are 
too noisy. Naturally, inversions that favoured the default parameters were more consistent, 
with a mean synthetic model error of 0.093 S/m against ECw estimates. Th e middle to upper λ 
values (0.6 to 0.8) showed a good balance between obtaining consistent results and achieving 
a better fi t against the synthetic model. Within these ranges, it was also observed that a 
relatively small quantity of in-situ data is required for reliable results, in the range of two to 
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fi ve measurements. Although results in this range are somewhat noisy, further improvements 
using more in-situ data is limited as shown by the regression lines. Figure 4.4. shows the 
results for each value of λ as averaged over all amounts of in-situ data. Th e average MAE 
shows that a λ of 0.6 performed the best overall. 

Figure 4.4. Fit of inversion results vs. the synthetic model as MAE in S/m of ECw for each value of λ averaged over all 
amounts of in-situ data used.

From the synthetic model results, it follows that the inversion parameters that relate to λ = 0.6 
resulted in the best fi tting inversion, and that around two or more estimates of available in-
situ measurements of brackish zone thicknesses is required to fi nd the corresponding optimal 
inversion parameters in a real case.

4.3.2. Real case results
Out of 50 available fl ightlines, nine were within 500m of in-situ data. For these nine fl ightlines, 
the procedure outlined in section 2 with λ = 0.6 was performed. Table 4.1 shows for each of the 
selected fl ightlines the MAE (of ECb in S/m) from the default inversion for the inversion with 
the minimum value of criterion (eq. 1) and the related inversion parameters. Out of these, 
fi ve favoured the default parameters and four suggested that sharper inversions were more 
optimal. Th e availability of in-situ data ranged from two to six for each fl ightline. Figure 4.5 
shows results of the procedure for a single fl ightline that preferred sharper constraints than 
defaults, where the balance between fi tting in-situ data and default parameters is illustrated.
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Table 4.1. Summary of results from λ = 0.6 is applied to all available in-situ and airborne data. Results are listed 
individually for each fl ightline.
Error in-Situ (in metres of 
brackish zone thickness)

MAE from default (as ECb 
in S/m)

No. in-Situ HCON VCON Flightline

0.673145416 0 6 1.3 3 L10
1.460649195 0.138962 6 1.389 3.601 L11
3.087383168 0 4 1.3 3 L12
3.000744495 0 2 1.3 3 L13
9.024223901 0.672868 2 1.506 4.381 L6
2.736390154 0 4 1.3 3 L8
0.809435049 0.497443 4 1.506 4.381 L9
2.845341124 0 3 1.3 3 T109
3.674896976 0.856185 3 1.658 5.395 T111

Figure 4.5. Example of output from minimisation procedure for a single fl ightline (L11), using λ = 0.6 and six nearby 
in-situ data for the calculation. Th e x-axis shows constraints ranging from smoothest to sharpest. Extracted minima and 
corresponding constraints are highlighted. Th e y-axis shows brackish-zone thickness diff erences in metres against in-situ 
data and the default inversion. 

Using the mean of inversion parameters shown in table 4.1., applying λ = 0.6 resulted in 
preferred inversion parameters of VCON = 1.4 and HCON = 3.64, slightly higher than that 
of the defaults. As a result, inversions using these parameters were run on all 50 fl ightlines. 
Th e upper most estimate of inversion parameters from a single fl ightline, as noted in fl ightline 
T111 in table 4.1 with VCON = 1.658 and HCON = 5.395, were also extracted for further 
analysis for a complete comparison. In the following we refer to the mean (VCON = 1.40 and 
HCON = 3.64) and upper (VCON = 1.658 and HCON = 5.395) estimated parameters as the 
“averaged” and “upper estimates” respectively. 
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4.3.2.a. Comparing Inversions: 2D Sections
Results of these inversions are qualitatively compared in figure 4.6 for a single flightline against 
default parameters. All flightlines displayed similar qualitative characteristics, therefore only 
a single flightline is shown for brevity. 

Figure 4.6. A: Inversion result along a flightline from using default parameters; B: inversion result from averaged 
minimised parameters; C: inversion result from upper minimised parameters; D: the absolute difference between A and 
B; and E: the absolute difference between A and C.

Initial observation shows there is little obvious difference between default parameters (figure 
4.6A) and the new inversions from the averaged optimisation (figure 4.6B) and the upper 
estimate (figure 4.5C). Comparing optimised parameters against defaults (figure 4.6D and 
4.6E), it is noted that differences occur mostly in the brackish zone, as expected – these 
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are mostly in the range of 0.05 to 0.1 S/m for average parameters and up to 0.5 S/m for the 
upper estimate. Th e diff erence between the upper estimated inversion parameters and the 
defaults are more noticeable in magnitude, though both share similar spatial distributions. 
Th e MAE against default parameters for both averaged and upper estimates are 0.02 and 0.06 
S/m respectively. In general results show that the fresh-saline transition, and therefore likely 
the locations of fresh-brackish-saline interface, are diff erent between default and minimised 
inversion parameters, tending towards more fresh groundwater at shallower depths, i.e., a 
deeper fresh-brackish interface. 

4.3.2.b. Comparing Inversions: Volume Estimates
As the method presented here focusses on the use of brackish-zone thicknesses to improve 
inversions, we used the 3D interpolated results to compare the total volume of fresh-brackish-
saline regions for each. For this we used volumes of ECw, and the classifi cations set out in 
section 2. Results of these estimates are presented in fi gure 4.7.

Figure 4.7. Volume estimates for each inversion. Red (saline, > 1.8 S/m), orange (brackish, 0.18–1.8 S/m), and blue 
(fresh, ≤ 0.18 S/m).

Here it was observed that fresh-water volume estimates were smallest for the default 
parameters and largest for the optimised upper estimates at 12% and 14% of total model 
volumes respectively. Th e estimated brackish zone varied in volume from 46%, 45% and 44% 
for the default, optimised mean and optimised upper inversions respectively. Saline volume 
estimates were consistent for all inversions, occupying about 42% of the total model volume. 
Th is confi rms the slightly deeper fresh-brackish interface that was shown in the fl ightline with 
diff erent parameters in fi gure 4.6 (previous section). 
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4.3.2.c. Comparisons against validation data: Direct Comparisons
The MAE of each inversion against the five in-situ (ECPT) data are shown in table 4.2. Results 
from using the 3D interpolated model as well as simply fetching the nearest ECPT data to a 
flightline are shown to quantify potential error as a result of the interpolation process.

Table 4.2. MAE of inversion results vs. available in-situ data in S/m of ECb.
Default Optimised Mean Optimised Upper

Error against ECPT, 3D interpolation 0.557 0.567 0.578
Error against ECPT, direct comparison 0.509 0.521 0.527

From table 4.2 it follows that although the optimised inversions reduced the total volume 
of the brackish zone, the MAE of the evaluation against ECPT data were slightly better for 
the default parameters. Error estimates are lower for the direct comparisons than the 3D 
interpolated results – most likely due to resolution downsampling to 50 x 0.5m (from a 
downline measurement spacing of ~4m). However, they are considered close enough and 
share the same magnitude in error difference between each inversion. As a result, further 
comparisons using the 3D interpolation results are considered valid. Figure 4.8 demonstrates 
two direct (i.e., not from the 3D interpolation) in-situ data comparisons against the inversion 
results. 
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Figure 4.8. Comparisons between inversion results and two available in-situ data. 
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In fi gure 4.8A it is observed that the optimised inversions in general perform slightly worse 
than the default inversion, generally overestimating ECb, however subtle improvements over 
the defaults are also noted in the shallow (1 to 3 m depths) area. In fi gure 4.8B the optimised 
inversions appear to match in-situ data better in the fresh-saline transition zone (5 to 12m), 
with no noticeable diff erences at greater depths. 

4.3.2.d. Comparisons against validation data: Interface Mapping Accuracy
3D iso-surfaces of fresh (0.18 S/m), centre of brackish (0.54 S/m) and saline (1.8 S/m) 
groundwater interfaces were extracted from the 3D model for all inversion results, according to 
the classifi cation set out in section 2. Likewise, corresponding point data were extracted from 
the available ECPT validation data. Vertical location error statistics between the 3D interfaces 
and validation data was then calculated. Error statistics are presented as MAE to obtain overall 
error, and as ± values to determine if estimates were either too shallow or too deep - positive 
values correspond to inversion estimates that are shallower than the validation data. 

Figure 4.9. Vertical error of extracted interfaces from inversion results against validation data. Red (saline interface 
error, 1.8 S/m), orange (brackish interface error, 0.54 S/m), and blue (fresh interface error, 0.18 S/m). 

In fi gure 4.9, it is observed that MAE and ± error are practically identical, highlighting that 
interface mapping was consistently too shallow for all classifi cations. Th e brackish interface 
was the most accurately mapped, with an error of ~2.3m for all inversions. Th e optimised 
inversions more accurately resolved the fresh interface, with an error of ~3 and 2.5m for the 
optimised mean and optimised upper, respectively – against a value of ~3.7m for the default 
inversion. In contrast, the default parameters mapped the saline interface with an accuracy of 
~3m, against values of 3.5 and 3.8m for the optimised mean and optimised upper inversions. 
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4.4. Discussion & Conclusions

In general, while the results from the real case showed some improvements and highlighted 
the potential usefulness of cheap in-situ data, these were not as drastic as hoped for the 
problem at hand – despite the robustness of the developed method. As a result, we will 
examine possible reasons for this, and finally suggest further research needed to build upon 
and improve the approach discussed here. In the following we will first discuss the results of 
the synthetic model and the resulting implications for the study in general, followed by an 
analysis of results obtained in the real case. 

Results from the synthetic model suggested that overall, a better fitting inversion could 
be achieved by sharpening the inversion parameters over default values. This result was 
based on the observation that a better fit to the known synthetic reality was achieved over 
the default inversion for λ values between 0.5 to 0.9 (1 being the default). Given that the 
in-built regularisation constraints used by the LCI inversions are designed to smooth out 
structure mapped from noise, this conclusion assumes that our estimate of noise (5% in this 
case) was accurate. A noise estimate that is too high or too low, would result in the synthetic 
case selecting inversions parameters that are too smooth or too sharp (or noisy) respectively. 
As the 5% noise threshold selected for this study is considered an upper estimate in actual 
surveys (Farquharson et al., 2003), in our real case this may lead to selecting inversions that 
are too smooth – or indeed simply not different enough to those achieved from using default 
parameters. A further consideration is that the synthetic model was based on inversions itself, 
and thus the optimised inversion parameters could have favoured those that were used to 
create it in the first place. As this model was probabilistic (Delsman et al, 2018), it was based 
on the results of three different inversions. Furthermore, the resulting 3D chloride model 
was then post processed, whereby chloride values were reclassified – ultimately resulting in a 
sharper model than the inversions would’ve created. As a result, we consider that using this 
synthetic model would not have biased the results of this study. 

In the real case, after running the optimisation on all 50 flightlines and available in-situ data 
using λ = 0.6, it was found that on half the flightlines that were close to in-situ data, the 
procedure selected default parameters. By averaging the resulting optimised estimates, a 
slightly sharper inversion was suggested (using VCON = 1.4, HCON = 3.64) – which in this 
case was only one parameter set higher from the defaults based on the pre-factor method used. 
Out of these results, we included the upper most estimate (i.e., sharpest suggested inversion) 
to quantify whether a sharper inversion would be preferable – and potentially highlight if the 
5% noise added to the synthetic model was too high – and therefore if a λ of > 0.6 would have 
been more appropriate. Overall, relatively subtle differences between the default and optimised 
inversions were observed – both with qualitative observations comparing 2D sections, as well 
as a quantitative fit to in-situ data. However, MAE against in-situ data between the default 
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(0.56 S/m ECw) and optimised (0.57 S/m ECw) showed an increasing trend with sharpness. 
As similar observations were observed between the 3D interpolated and directly compared 
inversions - ostensibly, this points to towards the sharper inversions introducing unwanted 
structure from noise and is unrelated to 3D interpolation artefacts. It also indicates that the 
noise estimate of 5% used in the synthetic case was not too high. However, comparing volumes 
estimates in section 3, the optimised inversion resulted in a larger volume of mapped fresh 
groundwater at the cost of a smaller volume of saline groundwater. This seemed to correlate 
with the optimised inversions also mapping the location of the fresh-brackish interface with 
greater accuracy (section 3), while most improvement in this regard was seen using the 
optimised inversion from the upper estimate – suggesting that the greater fresh groundwater 
volume estimate was valid. This improvement, however, came at the cost of reduced accuracy 
when resolving the brackish-saline interface, which indicates that spatially, this area is the 
largest source of error. 

These results are similar to those by King et al., (2018), where four different inversion methods 
(Vignoli et al., 2015; Farquharson et al., 2003) were compared (i.e., not different parameters of 
the same inversion) using the same data as this study. King et al. (2018) found that the sharper 
style inversion methods mapped a greater volume of fresh groundwater, along with improved 
fresh-brackish interface mapping accuracy, at the cost of performing less favourably, overall 
compared to the LCI default inversion, when mapping the brackish-saline interface. This 
feature was noted for few-layer LCI inversions (where layer thicknesses as well as resistivities 
are permitted to change), LCI sharp (Vignoli et al., 2015) and the EM1DF (Farquharson et al., 
2003) inversions method. 

The results of this study indicate that to preserve the smoothly varying nature of fresh-
brackish-saline gradients, while at the same time accurately mapping respective interfaces, 
other inversion methods should be considered. This could include coupled hydrogeophysical 
inversion (e.g. Herckenrath et al., 2013; Hinnell et al., 2010), where a groundwater simulation 
is forward modelled against AEM observations until a suitable fit is found – potentially 
preserving more realistic groundwater characteristics. This approach could be further 
developed to jointly match the in-situ brackish zone thickness and AEM data using inverse 
modelling. However, this process does suffer from uncertainty relating to petrophysical 
transformations and heterogeneity, which has unfortunately been shown to potentially affect 
the predicted thickness of the brackish zone (González-Quirós and Comte, 2020). Other 
possible approaches to use are those that include probabilistic inversion (Minsley et al., 2020), 
where not only an estimate of uncertainty can be obtained within the brackish zone, but 
also prior information can be included – such as cheaply available brackish zone thickness 
estimates. 
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Abstract
Freshwater aquifers in low elevation coastal zones are known to be threatened by saltwater 
intrusion (SWI). As these areas host a significant share of the world’s population, an excellent 
understanding of this phenomenon is required to effectively manage the availability of 
freshwater. SWI is a dynamic process, therefore saline groundwater distributions can change 
quickly over time – particularly in stressed areas with anthropogenic drivers. To model 
these changes, regional 3D variable-density groundwater (3D-VDG) flow and coupled salt 
transport models are often used to estimate the current (and future distributions) of saline 
groundwater. Unfortunately, parameterising 3D-VDG models is a challenging task with many 
uncertainties. Generally, uncertainty is reduced through the addition of observational data 
– such as Airborne Electromagnetic (AEM) surveys or ground-based information – that 
offer information about parameters such as salinity and hydraulic head. Recent research has 
shown the ability of AEM surveys to provide accurate 3D groundwater salinity models across 
regional scales, as well as highlighting the potential for good survey repeatability. To this 
end we investigated the novel approach of using repeat AEM surveys (flown over the same 
area at different points in time) and 3D-VDG models to jointly improve the parameterisation 
of 3D-VDG models - while simultaneously providing a detailed 3D map of groundwater 
salinity distributions. Using detailed 3D synthetic models, the results of this study 
quantitatively highlight the usefulness of this approach, while offering practical information 
on implementation and further research. 

Based on: King, J., Mulder, T., Oude Essink, G., Bierkens, M.F.P., 2022. Joint estimation of 
groundwater salinity and hydrogeological parameters using variable-density groundwater 

flow, salt transport modelling and airborne electromagnetic surveys. Adv. Water Resour. 160, 
104118. https://doi.org/10.1016/J.ADVWATRES.2021.104118
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5.1. Introduction

3D variable-density groundwater flow and coupled salt transport models – referred to in the 
following as 3D-VDG models – are proven and commonly used tools to simulate current 
and future distributions of saline groundwater (e.g. Faneca S̀anchez et al., 2012; Meyer et al., 
2019;  Van Engelen et al., 2019). The usefulness of 3D-VDG models is particularly clear in 
highly populated low elevation coastal zones, where saltwater intrusion (SWI) into freshwater 
groundwater systems poses a significant risk to the availability of fresh water for agricultural, 
industrial and household uses (Gomaa et al., 2021; Oude Essink et al., 2010; Simmons et 
al., 2010; Werner et al., 2013). As a result, 3D-VDG models are extensively used to inform 
groundwater policies in these areas.

The parameterization of 3D-VDG models, i.e., finding values for ground water flow (e.g., 
hydraulic conductivity, storage coefficients) and salt transport (e.g., porosity, dispersivities) 
parameters is a daunting task. Particularly as these parameters can be very heterogeneous 
in space. Typically, the parameterization process starts with a hypothesis about parameter 
heterogeneity. This is followed by creating a spatial regionalization (e.g., zonation, geostatistical 
simulation) which reduces the number of free (unknown) parameters. Next, following an 
initial guess, the free parameters are estimated through model calibration. Calibration is 
often approached as an inverse problem, where model parameters are iteratively adjusted 
until the model response fits to observations of models states or outputs. For an overview of 
calibration approaches we refer to Zhou et al. (2014) and Doherty (2010), for an example of 
an application to 3D-VDG models refer to Carrera et al. (2010). Typically, 3D-VDG models 
are calibrated using in-situ head and salinity observations which are often sparse. Adjusted 
3D-VDG parameters include, for example, hydraulic conductivity, porosity, dispersivity and 
recharge. However, 3D-VDG parameterization is prone to uncertainty. First, the large spatial 
heterogeneity of underground lithology creates errors during the spatial regionalization step. 
Second, calibration being an inverse problem usually suffers from non-uniqueness as a result 
of parameter correlation (Carrera et al., 2005), which arises from the sparseness of the in-situ 
observation used.

Naturally, one way to reduce uncertainty is the addition of more observational data that 
relate to observing 3D-VDG states (head, salinity) or outputs (e.g., stream discharge and 
concentration). Data sources are often ground-based, such as wells that monitor salinity and 
hydraulic head, or indirect geophysical methods such as Electrical Resistivity Tomography that 
measure electrical conductivity (EC) (Beaujean et al., 2014) which is converted to groundwater 
salinity estimates using petrophysical relationships. For regional 3D-VDG modelling, often 
extending across 100’s of kms (e.g. Cobaner et al., 2012; Gossel et al., 2010; Mabrouk et al., 
2019; Michael et al., 2009; Nocchi and Salleolini, 2013; Oude Essink et al., 2010; Van Engelen 
et al., 2019), 1D or 2D ground measurements are considered expensive – offering localized 
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and disconnected information (King et al., 2020b). Airborne Electromagnetics (AEM) offer 
an indirect, but fast and economical data source to overcome these shortcomings. 

The AEM method is sensitive to both lithology and groundwater, where primarily clay content 
and groundwater salinity offer electrical conductivity (EC) contrasts (Revil and Glover, 
1998). As a result, the use of AEM to resolve state variables, such as groundwater salinity, 
and parameters has proliferated in recent years. AEM methods have been used successfully 
to map structure such as clay content or lithological units (Auken et al., 2008; Foged et al., 
2014; Gunnink et al., 2012; Høyer et al., 2015) and such could be used to help parameterize 
3D-VDG models with additional lithological information. In more saline environments 
however, mapping structure (which can relate to parameters such as hydraulic conductivity) 
is more challenging because signals are dominated by the strong EC contrasts found at fresh-
saline interfaces (King et al., 2020b). Naturally, this makes it highly suitable for mapping 
salinity instead, where in these environments the method has seen continued success for 
decades (Delsman et al., 2018; Faneca S̀anchez et al., 2012; Fitterman and Deszcz-Pan, 2001; 
Jørgensen et al., 2012; Rahman et al., 2021; Vandevelde et al., 2018).  

Conceptually, calibrating a 3D-VDG model with state variables obtained from geophysical 
data can be approached using sequential or coupled hydrogeophysical inversion (Herckenrath 
et al., 2013; A. C. Hinnell et al., 2010). For an overview and history of hydrogeophysical 
methods see Binley et al. (2015). In sequential methods a deterministic geophysical inversion 
is traditionally run first, and then translated into groundwater salinity using petrophysical 
relationships – allowing model calibration (e.g. Faneca S̀anchez et al., 2012). Coupled 
hydrogeophysical inversion involves the transformation of 3D-VDG state variables into 
a physical property which can then be forward modelled and compared to geophysical 
observations (e.g. Bauer-gottwein et al., 2010; González-Quirós and Comte, 2021; Steklova 
and Haber, 2015). As a result, coupled models do not rely on a geophysical inversion. The 
3D-VDG model can then be run iteratively until a misfit against geophysical observations are 
appropriately small. 

In the following we present a method that exploits the ability of AEM to map groundwater 
salinity to improve the parameterization of 3D-VDG model properties, while at the same time 
providing improved 3D-VDG predictions of groundwater salinity. We use the idea that the 
distribution of saline and fresh groundwater changes over time and the resulting movement 
of EC contrasts between fresh and saline groundwater can be resolved by AEM if measured 
repeatedly at the same location. Furthermore, previous research suggests that if repeated 
flightline paths are spatially consistent and that inverted data are compared, rather than the 
electromagnetic response itself, then the AEM method offers good repeatability (Huang and 
Cogbill, 2006). 
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Thus, using a similar idea to traditional inverse calibration, where a model is run from the 
past to match observations at the present, we explore the possibility of using two separate 
AEM surveys flown at the same location at two different periods in time. Similar to time-
lapse inversion that has been used extensively in reservoir engineering (Johnston, 2013) and 
hydrology (e.g. Karaoulis et al., 2011), we investigate the idea that the observed changes in 
salinity distributions can infer model 3D-VDG parameters. If a 3D-VDG model with initial 
groundwater salinity distributions obtained from the first survey, say at t0, it should be able to 
predict the groundwater salinity distribution at the time of the second AEM survey (say t1). 

Given that groundwater in the Netherlands is generally a mixture of seawater and freshwater, 
chloride is the dominant conservative anion, therefore for consistency we will refer to a 
distribution of groundwater salinity as the chloride distribution. To test the idea and to see 
if such inverse estimation would be feasible in theory, we created a highly detailed synthetic 
reality (3D lithology and chloride distribution over time between t0 and t1) based on real 
AEM data (Delsman et al., 2018), a detailed lithological model (Stafleu et al., 2011) and 
3D-VDG modelling with the computer code SEAWAT (Langevin et al., 2007; Verkaik et al., 
2021) and a given set of “real” parameters. We then used a geophysical modelling approach 
(King et al., 2020b) to simulate an AEM survey at the start and end of the 3D-VDG model 
run. We subsequently tested an optimization strategy that iteratively runs the 3D-VDG 
model with unknown parameters between t0 and t1 while comparing this “modelled” 
chloride distribution with the AEM survey at t1 and adjust the unknown 3D-VDG model 
hydrogeological parameters to minimize the difference. Using this approach, it was tested if 
the original “real” parameters could be re-estimated correctly.

In the following we provide a summary of our approach in section 3.1. Section 3.2 describes 
how the synthetic model was created including the study area it was based on, followed by 
the 3D-VDG model set up and parameterization in 3.3 and the optimization method in 3.4. 
Section 4 outlines the results of the optimization, which are followed a discussion and finally 
concluding remarks in 5 and 6 respectively.

5.2. Methods

5.2.1 General approach
Our approach to estimate hydrogeological parameters is based on performing two sequentially 
processed AEM surveys, one at time t0 and one at time t1, that are sufficiently spaced apart 
to detect real changes in the chloride distribution of a groundwater body. This means that the 
approach is limited to groundwater systems where due to external forcing (extraction fresh 
groundwater, injecting fresh water, sea-level rise) the chloride distribution changes relatively 
rapidly. The estimated chloride distribution obtained from the survey at time t0 is used as initial 
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condition by a 3D-VDG model that is subsequently used to simulate the chloride distribution 
at time t1. This simulation is first done with an initial estimate of the unknown hydrogeological 
parameters. We then perform a simulated AEM survey on the 3D-VDG model simulated 
chloride distribution to obtain an AEM chloride distribution at the same (lower) spatial 
footprint as the actual AEM survey at t1 (see Figure 5.2). The differences between the actual 
and simulated AEM chloride distributions are then used to drive an optimization framework, 
as outlined in Figure 5.1. Here, the unknown hydrogeological parameters are adjusted. The 
3D-VDG model and AEM simulation and parameter estimation steps are repeated iteratively 
while minimizing the differences between the actual and simulated AEM at t1. In effect, we 
are applying a coupled, optimization driven time-lapse hydrogeophysical inversion. The result 
of this approach are optimized estimates of the unknown hydrogeological parameters and 
an optimized estimate of the chloride distribution at the resolution of the 3D-VDG model 
(generally higher than that of an AEM survey) which is also consistent with physical laws. 

Figure 5.1. Method outline. Dark blue region (left): creating the synthetic reality, light blue region (right): iterating 
over simulated models with given parameters, yellow region (centre): estimating subsurface parameters. White squares: 
‘real’ 3D chloride distributions in time, orange squares: geophysical simulations of ‘real’ 3D chloride distributions, blue 
squares: 3D-VDG model run with given parameters, red square: parameterization update (driven by optimization 
strategy). Dashed lines indicate a petrophysical transformation from inverted ECb to chloride.

At the moment, to our knowledge, regional-scale time-lapse AEM surveys are non-existent, 
but to be expected in the near future. Thus, to demonstrate the methodology, we used a so-
called twin-experiment where we use a realistic synthetic reality and simulated AEM surveys. 
The complete setup of the twin experiment is shown in Figure 5.1: a) the synthetic reality 
which consists of a realistic chloride distribution at t0 and t1 simulated with the 3D-VDG 
model using the “real hydrogeological parameters” and two simulated AEM surveys (in blue); 
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b) the model simulation (also using the 3D-VDG model) and 3D-VDG model based AEM 
survey used in the optimization (light blue); and c) the optimization algorithm (orange). We 
note that the simulated AEM surveys include realistic observation noise and degrading of 
resolution conform the AEM footprints (King et al., 2020). Using the same 3D-VDG model 
for reality and model simulation means that we ignore model structural errors.

In the following we describe in more detail: a) the synthetic case, including the simulated AEM 
in section 5.2.2; b) the model simulation and initial hydrogeological parameter estimates in 
section 5.2.3; c) optimization routine in section 5.2.4.

5.2.2 Creating a synthetic case
The synthetic case was generated from 3D estimates from an existing AEM survey from the 
Province of Zeeland in The Netherlands (Delsman et al., 2018). Within this region, data was 
extracted from an area called Zeeuws-Vlaanderen (or Zeelandic Flanders in English), in 
southern Zeeland. This east-west oriented strip (~60 x 15 km) is bordered to the North by 
the Scheldt River estuary and to the south by the Belgian border. At the centre of Zeeuws-
Vlaanderen, around the town of Terneuzen, a subset area was selected covering ~7 x 7 km for 
further processing. The model area and AEM flightlines are highlighted in Figure 5.2. 

Figure 5.2. Location of the case study used to create the synthetic case. The flight lines shown are the same as in the 
original AEM survey.
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The groundwater system characteristics of the area are summarized by the presence of shallow 
freshwater lenses typically about 10 – 20 m thick (Delsman et al., 2018), caused by Holocene 
sea-level transgressions and subsequent land reclamation (Berendsen, 2005; Delsman et al., 
2014). The hydrogeological system is hosted within lithologies comprising Neogene and 
Quaternary sediments (Stafleu et al., 2011), including younger fine sands, clays and peats, 
with deeper northward dipping sand and silts (Vos, 2015). Within the study area, the dipping 
hydrogeological base extends to ~50 – 70 m below the surface and denotes an impermeable 
aquitard. To create a synthetic reality, we use the existing detailed 3D chloride distribution 
that was obtained from the AEM survey performed over the Province of Zeeland (Delsman 
et al., 2018). This chloride distribution was taken as the “real chloride distribution” at t0. For 
this area, a very detailed 3D-lithological characterization is available (Stafleu et al., 2011), 
based on ~1500 borelogs in the study area (see Figure 5.3). In our synthetic example, we 
assume the lithology to be fully known and focus on estimating the chloride distribution and 
hydrogeological parameters only.

5.2.2a Translation of chloride to electrical conductivity
The chloride distribution and lithological information were further processed into bulk 
electrical conductivity (ECb) to allow for the simulation of an AEM survey and subsequent 
inversion. First, a known empirical relationship from the study area was used to transform the 
data into the electrical conductivity of the groundwater (ECw) and corrected from a reference 
groundwater temperature of 25 oC to 11 oC, as outlined in De Louw et al. (2011). As the ECb is 
a product of both lithology and pore water salinity, a petrophysical transformation is required 
to split the information between the two. The simplest approach is using apparent formation 
factors (FF) which are the ratio of saturated sediment (ECb) to that of the pore water itself 
(ECw) (Archie, 1942). The electrical properties of clays minerals such as surface conductivity 
complicate this relationship (Revil et al., 2017). As a result, a more accurate transformation 
in areas with clay present requires the addition of surface conductivity, such as Waxman and 
Smits (2003). In this study we decided to use the simpler, apparent FFs (ECb/ECw) – values 
are shown in Table 5.1. The values for apparent FFs were taken from over 500 samples in an 
area only 20 km away from the area that was used to create our synthetic model, and therefore 
offered good representative values. 

The 3D distribution of lithological units to derive the FF distribution is the one taken from 
GeoTOP (Stafleu et al., 2011) (Figure 5.3) and corresponding FF values from nearby field-
measurements, as shown in table 5.1. (De Louw et al., 2011).
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Table 5.1. Formation factors used per sediment class for the conversion of ECb data to chloride. 

Lithology Formation factor (FF) Std Samples
Peat 2.1 0.7 41
Clay 2.5 0.6 192
Sandy clay 2.8 0.8 52
Fine sand 3.2 0.4 299
Medium sand* 4
Coarse sand* 5

* FF taken from another study (Goes et al., 2009), without uncertainty and sample numbers.

5.2.2b Obtaining the chloride distribution at t1 using a 3D-VDG model
To set up a 3D-VDG model that produces a realistic change in chloride distributions at t1, we 
constructed a model that comprises a combination of typical anthropogenic and natural drivers 
that result in chloride movements – while at the same time ensuring that the model changes 
enough to produce sufficient signal. Natural drivers are natural recharge and autonomous 
freshening and salinization that occurs as a result of past inundation or sea level change (Vos, 
2015). We also introduced anthropogenic drivers: extensive groundwater extraction that 
results in the so-called upconing (or shallowing) of brackish to saline groundwater and areas 
with enhanced recharge of fresh surface water through Aquifer Storage and Recovery (ASR) 
(Dillon, 2005), which would likely result in a rapid increase of fresh groundwater volumes 
(Pauw et al., 2015b; Zuurbier et al., 2015). 
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Figure 5.3. 3D-VDG model set up highlighting areas of extraction, represented as summer recharge (A)  with enhanced 
recharge in the extraction areas (B), both as m/day. The lithological model (C) that was used to assign hydraulic 
conductivities, shown with 25 x vertical exaggeration. 

With this in mind, a 3D-VDG model was discretized into 25 x 25 m horizontal cells across 
a ~8 x 8 km area and comprised a 0.5 m vertical resolution at shallow depths, increasing 
in thickness logarithmically with depth to a maximum thickness of 10 m, resulting ~3.5 
million active cells over 54 layers. A hydrogeological base was assigned at between 50 and 
70 m depth and was derived from the GeoTOP model and REGIS (Vernes et al., 2010). 
The hydrogeological parameters of the model were similarly taken from the 3D lithology 
distribution of GeoTOP, assigning the parameter values from Table 5.2. Here, lithology classes 
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coarse, medium, fine loamy and silty sand were assumed as aquifer material and the finer and 
organic classes as aquitard material. Well locations were selected based on three conditions, 
in all model cells that are: (1) at 8 m depth (below surface), (2) within aquifer lithologies, and 
(3) within freshwater areas (<0.5 g/l chloride). 

Table 5.2. The parameters chosen for the 3D-VDG model
Parameter Description Value (unit)
Kh Aquifer Horizontal hydraulic conductivity of the aquifer (m/day) 10 (m/day)
Kh Aquitard Horizontal hydraulic conductivity of the aquitard (m/day) 0.01 (m/day)
Kh/Kv Anisotropy 3.3 (aquifer) 2 (aquitard)
Porosity Porosity 35 (%)
Recharge winter Recharge in winter, higher values denote ASR areas 0.003 m/day (ASR areas), 0.0015 m/day 

(other areas)
Recharge summer Recharge in summer, negative value denotes evaporation -0.0005 m/day
Well Extraction winter Groundwater extraction in winter 0 m3/day per model cell
Well Extraction summer Groundwater extraction in summer -0.625 m3/day per model cell

To understand how an AEM survey might respond to groundwater chloride movements 
across a broad range of time-scales, the model was run for 60 years, longer than was thought 
necessary for this study. Finally, at every consecutive 6 month time-step, we modelled the 
geophysical response of the AEM system. In this study, we conclude that after 15 years there 
was likely sufficient signal available for the AEM system based on a known noise threshold of 
5%, (see the Results section). 

5.2.2c Simulating an AEM Survey
As highlighted in figure 5.1, to recover a 3D chloride distribution that has the same resolution 
and physical characteristics of an actual survey at t0 and t1, an AEM survey needed to be 
simulated. The process is similar to (King et al., 2020) and is summarized in the following. 
Existing measurement locations and flightlines (typically with a spacing between 30 and 60 
m) were taken from the survey that produced the “real” 3D chloride distribution (section 
2.2.1). ECb values, which are obtained using the method explained in section 2.2.1, were then 
sampled at these points every ~50 m to facilitate fast inversion times while still honouring the 
50 m horizontal resolution of the 3D model. Vertical sampling was done at 0.5 m intervals. 
The horizontal resolution, or footprint of the system, is approximated as a 100 – 200 m 
diameter circles directly beneath the towed instrument (Reid et al., 2006; Yin et al., 2014). 
Therefore, at each measurement location, the nearest two model cells were averaged to imitate 
a 100 m footprint. Data were forward modelled using AarhusINV (Auken et al., 2005). Coil 
source and receiver spacing, and orientations were selected based on the values used by 
Fugro’s RESOLVE HEM system during the original survey (Delsman et al., 2018). Finally, to 
approximate the noise levels present during FEM acquisition (Farquharson et al., 2003; Green 
and Lane, 2013), 5% white noise was added to the forward modelled data. 
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To recover a distribution of electrical properties from an AEM survey, a geophysical inversion 
is typically undertaken. For this study, a deterministic geophysical inversion (e.g., Auken et 
al., 2015; Farquharson et al., 2003; Viezzoli et al., 2009; Vignoli et al., 2015) (referred to in 
the following as an inversion) using AarhusINV (Auken et al., 2015) was implemented. This 
inversion approach uses a pseudo-2D laterally constrained approach where neighboring 
observations are constrained in the regularization process, helping to produce laterally 
coherent results. The method has been successfully used in many hydrogeophysical studies 
(e.g. Auken et al., 2008; Chongo et al., 2015; Delsman et al., 2018; Kirkegaard et al., 2011) and 
is particularly useful in areas with laterally continuous EC contrasts such as our study area. 

The inversion starting model consisted of 20 fixed layers, with the first set to 0.5 m thick, 
increasing logarithmically till 50 m. Below this, the final layer is assumed to extend infinitely. 
Given the highly saline environment, the model was assigned a starting ECb value of 1 S/m. 
The lateral and vertical constraint parameters were set to 1.3 and 3 respectively, following 
recommended and commonly used values (Auken et al., 2005). This minimum-structure style 
inversion changes ECb only and has been found to accurately reproduce smoothly varying 
chloride distributions (King et al., 2018). The depth of investigation (DOI) varies according 
to the EC of the subsurface; in this case by shallow saline areas, and therefore could range 
from ~5 to 60 m in saline or fresh groundwater areas, respectively. The inversion output has 
an estimation of DOI for each 1D model location. The method to calculate this procedure is 
described in Vest Christiansen and Auken (2012). All inversions converged to a misfit of less 
than 5%, thereby effectively explaining the forward modelled observations. 

Finally, as a 3D initial groundwater chloride distribution is required for the 3D-VDG 
model and the inversion method only produces 1D vertical profiles along flightlines, a 3D 
interpolation step was required. This was approached using a simple method that exploits the 
layered nature of the inverted data to efficiently produce 3D ECb models from the inversion 
results. Each one of the 20 inversion layers for all flightlines were interpolated separately using 
2D kriging with automatic variogram modelling. The resulting 2D layers were then compiled 
to produce a 3D model. The method is described in (King et al., 2018) and has been shown to 
accurately produce 3D volumes of ECb in similar settings. As a final step, the DOI estimates 
were interpolated using the same 2D Kriging technique, where ECb values below the DOI 
were filled to the model base using the last encountered ECb value at that depth. Finally, the 
resulting ECb volume was transformed back into chloride using the reverse of the approach 
described in section 2.2a, resulting in simulated AEM surveyed chloride distributions at t0 
and t1. 

5.2.3. 3D-VDG model simulation and initial parameter estimates
The 3D-VDG model simulation was run iteratively for a 15-year period using the exact same 
discretization and general parameterization as the model described in section 2.2.2, except for 
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the unknown parameters. Following extensive experimentation, we conclude that the method 
was to be used to predict the hydraulic conductivities of the aquifer and aquitard, and porosity. 
The reasoning behind this choice was two-fold: (1) it was found that the 3D-VDG model was 
most sensitive to these parameters, and (2) we had to restrict the number of parameters to 
avoid excessive computation times and identification issues. The ratio of horizontal to vertical 
conductivity Kh/Kv was kept constant, and thus in effect the optimization was used to resolve 
three parameters. As this study is unique and therefore a proof of concept, it was felt that 
while more parameters could be possible, it was important to keep the approach simple. 
Given that especially higher Kh and Kv values result in longer SEAWAT runtimes, initial 
estimates were chosen to be too low on purpose to facilitate faster iteration times early on. To 
test the sensitivity of the optimization to incorrect initial estimates, the starting values were 
chosen to be ten-times greater than the actual values. Effective porosity was simply assigned 
by a random guess to test the general robustness of the method. Values used are highlighted 
in Table 5.3. 

Table 5.3. Initial parameter estimates used in the first iteration. 

Parameter Initial Estimate (m/day) Actual Value (m/day)
Kh Aquifer 1 10
Kv Aquifer 0.3 3
Kh Aquitard 0.001 0.01
Kv Aquitard 0.0005 0.005
Effective porosity 0.1 0.35

5.2.4. The optimization
We used a suitable non-gradient global optimizer that works well in the high-dimensional 
problems typically found in the field of groundwater modeling. For this, the Nelder-Mead 
downhill-simplex method was selected for its robustness and proven ability to optimize 
model parameters and find global minima (Nelder and Mead, 1965). Its ability to handle 
noise is also desirable given the inherent noisiness related to the acquisition of AEM data. The 
optimization was implemented using the SciPy Optimize package available in Python, that 
uses an improvement to the original method by adjusting the simplex parameters relative to 
the dimensionality of the problem (Gao and Han, 2012). 

The objective function returns the root mean squared error (RMSE) between t1 survey and 
t1 predicted, given by:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = &∑ (𝑦𝑦*+,-,/ − 𝑦𝑦+,1,/2
34

/56
𝑁𝑁

 
     (1)

 
where pred at t1 denote simulated AEM surveyed chloride values based on the 3D-VDG 
model predictions (with unknown parameters) and ref at t1 the simulated AEM surveyed 
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chloride values based on the synthetic reality (3D-VDG model with known parameters). Th is 
was minimized until a convergence criterion was met, in this case given by the RMSE between 
iterations. Th is value was set to 0.1 g/l chloride and was chosen to be unrealistically low which 
eff ectively allowed the optimization to run indefi nitely to allow a user-based decision on 
whether it has converged suffi  ciently. In practice, the convergence criteria could however be 
set to refl ect the levels of noise from the AEM system if known.

5.3. Results

5.3.1 AEM sensitivity to estimated chloride distributions
Th e 3D-VDG model was fi rst run for 60 years to understand the length of time needed for 
chloride changes to be detected by the AEM system at each time-step, and indeed the sensitivity 
of the AEM method to the transient eff ects in general. To understand this quantitatively, each 
time step of the resulting 3D-VDG model was geophysically forward modelled using the 
method outlined in section 2, where successive time-steps were compared quantitatively to 
the fi rst model as relative mean absolute error (%). Th e 5% black horizontal line in Figure 5.3 
represents an approximation of AEM noise levels thereby providing a rough indication of 
required groundwater chloride movements before there is enough signal for a second survey 
to measure meaningful diff erences. 

Figure 5.4. Sensitivity of the AEM system over time, represented per fl ightline (light grey lines) and averaged across all 
fl ightlines (red line). Sensitivities are represented as the mean absolute diff erence of all fi ve frequencies of the acquisition 
system over time, including both in-phase and quadrature components from the AEM acquisition system for each fl ightline.
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From Figure 5.4, it follows that prior to ~5 years a repeat survey would likely fall within the 
estimated noise range, indicating that a repeat survey in this instance would fail to effectively 
map differences. After 15 years (or 30 time-steps) the slope gradient decreases after an initial 
sharp increase to ~7.5% difference. Therefore, in the following the time-period between zero 
and 15 years was used to simulate the two surveys and ultimately guide the optimization. In 
a real setting, localized ground measurements over time and geophysical forward modelling 
could be used to estimate if there is likely to be enough signal for a repeat AEM to be useful. 

5.3.2 Estimated Parameters
The optimization ran for 250 iterations for 15 (3D-VDG simulated) years per iteration, taking 
on average five hours per iteration and ~2 months to complete on a standard desktop PC with 
four processing cores. The 3D-VDG model simulation was by far the most computationally 
intensive step, with the geophysical forward modelling, inversion, 3D interpolation and 
petrophysical transforms step only taking around half an hour in total per iteration. 

The optimization results at each iteration are highlighted in Figure 5.4., as the Kh/Kv ratio was 
kept constant only the Kh values are shown for the aquifers and aquitards.

Figure 5.4. RMSE (in g Cl-/l) for each predicted model parameter over each iteration. Top left: predicted Kh clay (or 
aquitard) in m3/day. Top right: predicted Kh cand (or aquifer) in m/day. Bottom left: predicted porosity (%). Red line 
indicates the real, target value. 
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Here it is apparent that there were two local minima: (1) between iterations 20 – 50 and (2) 
between 100 – 170, both of which were successfully avoided by the algorithm. Predictably 
changes in RMSE correlated well to changes in model parameters and showed that the steps 
between each iteration were appropriately sized and generally sensitive to the objective 
function. This is despite the fact that smaller changes in chloride distributions were not 
resolved as a result of the AEM simulation, the effect of which is highlighted in Figure 5.3.

Quantitative results based on the final iteration (Table 5.4), suggest that each of the parameters 
were either successfully predicted or were improved considerably over the course of the 
optimization. 

Table 5.4. The optimization results showing the values of initial, actual and predicted model parameters.
Parameter Initial Estimate Actual Value Predicted Value (difference actual)
Kh Aquifer (m/day) 1 10 10.63291 (0.63291)
Kv Aquifer (m/day) 0.3 3 3.312433 (0.312433)
Kh Aquitard (m/day) 0.001 0.01 0.011838 (0.001838)
Kv Aquitard (m/day) 0.0005 0.005 0.005831 (0.000831)
Porosity 0.1 0.35 0.386181 (0.036181)

5.3.3 Estimated chloride distributions
Qualitative results of chloride distributions at t1 are presented in Figure 5.5, showing the 
synthetic reality on row 1.a. and 1.b. for the AEM salinity and 3D-VDG models respectively, 
followed by the results of the optimization, with the results of the first iteration on row 2, the 
last iteration on row 3 and the difference between the last iteration and the synthetic reality 
in row 4. 

Comparing the chloride distributions between the AEM and the 3D-VDG models in general 
(columns ‘a’ and ‘b’ respectively), it is clear that the AEM simulation successfully mapped the 
locations of larger features such as upconing of saline groundwater and freshwater lenses. 
Smaller features (~< 200 m across) were not successfully resolved given the footprint of the 
AEM system and the loss of resolution during the 3D interpolation of ECb values. In these 
areas the features have been smoothed out – effectively creating a vertically thicker brackish 
zone instead. It was also observed that the optimization successfully managed to recreate 
the synthetic realities’ chloride distribution by the final iteration. The difference between the 
AEM synthetic reality (Figure 5. 1.a.) and the AEM final iteration (Figure 5. 3.a.) is larger than 
the differences between that of the 3D-VDG models. This is likely due to the 5% noise added 
in the geophysical modelling step and appears to cause uncertainty regarding the location 
of the fresh-saline interface. Despite this error, the 3D-VDG model was able to dynamically 
downscale the smoothed features observed in the AEM surveys.
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Figure 5.5. AEM (left column) and 3D-VDG (right column) model results at t1 and initial salinity at t0. Rows 1 
and 2 illustrate the ‘real’ model salinities at t0 and t1 respectively, therefore show our synthetic realities. Row 3 is the 
optimization result at the first iteration and the 4th row is the final optimization result at the final iteration. The last 
(5th) row is the difference between the final iteration and the synthetic reality. The section location is shown in figure 5.6 
with the red line. 

Figure 5.6 shows a 3D image of the final estimated AEM chloride distribution and the 
differences between the initial and final iteration thereof. The observed differences in salinity 
clearly show the zones where the chloride distribution was updated by the calibration process. 
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Figure 5.6. 3D view of estimated simulated chloride distributions. Top: Final estimated AEM chloride distribution. 
Bottom: Differences between the first and final iteration AEM chloride distributions, highlighted zones that were updated 
by the optimization process.

5.4. Discussion

Given the exploratory nature of this study, several necessary simplifications were made. As a 
result of these simplifications, in the following we will first discuss sources of uncertainty and 
their potential effects on our results, followed by a discussion of the optimization method. 
Finally, we mention thoughts on practicalities followed by potential for further research.

In this twin-experiment, we assumed that the synthetic model correctly describes reality 
– this assumption applies to the physics of the simulated AEM survey itself, as well as the 
magnitude of groundwater transport over time based on the 3D-VDG model. In the case 



Chapter 5

110

of the AEM survey, we assumed that the chloride distributions were mapped with similar 
physical limitations to an actual survey. A major cause of this uncertainty is that we used a 
1D geophysical forward and inverse modelling tool for a 3D problem (Auken et al., 2005), 
effectively removing 3D effects on the signal. Although there are 3D AEM geophysical 
modelling tools available (e.g., Cox et al., 2012), it was found that using these tools would lead 
to considerably longer iteration times on an already computationally expensive task. Instead, 
we added 5% gaussian noise which is considered an upper estimate of noise (Siemon, 2012) 
as well as simulating a 100 m footprint at measurement location (Reid et al., 2006; Yin et al., 
2014). These steps effectively tested the robustness of repeat AEM surveys while maintaining 
reasonable optimization run-times. 

For the 3D-VDG model simulation, we sought a careful balance between a realistic model 
while ensuring that there was sufficient signal for the optimization to work with. Based on 
a combination of using real subsurface data and known parameters, which were taken from 
an applied study (Mulder et al., 2020) as well as the groundwater modelling experience of 
the authors – we feel that the model describes reality to an acceptable level for meaningful 
conclusions. 

An additional source of uncertainty is that we assume knowledge of parameter values 
and locations of the other hydrogeological parameters, such as the interaction between 
groundwater and drainage via the so-called drain resistance and the locations of aquitards and 
aquifers. We suggest that a simple way to examine the effect of keeping unknown parameter 
values constant would be to add noise to those that are not part of the optimization – where 
permitted deviations could be based on known uncertainty levels. The same could be said 
for the spatial distribution of clay and sand units, allowing the locations thereof to change 
based on given noise thresholds. The results of implementing this could then be used to 
determine quantitively the effect of these assumptions. Ideally, all uncertainties should have 
been included in the optimization as a fully heterogeneous 3D model. In this study, however, 
we chose to keep our method simple owing in part to the already high computational burden 
(discussed below) as well the fact that this is presented as a proof-of-concept – thus further 
complexity is considered subject for further study.

Besides correctly describing reality – uncertainty exists in both the type of geophysical inversion 
used, as well as the petrophysical transformation (i.e. to transform from ECb to salinity 
and vice-versa). Recent research highlights this, where it was found that the petrophysical 
transformation introduced the most uncertainty – and that overall incorrect handling of these 
two features can result in the mapping of an overly thick brackish zone (González-Quirós and 
Comte, 2020). The deterministic method used here suffers from non-uniqueness – where an 
infinite number of models can explain the data. In these cases regularization constrains the 
inversion, typically resulting in smooth models (Arsenin, 1979; Constable, 1987). One way to 
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explore this effect is stochastic inversion, where a prior model is used instead of regularization 
(e.g. Minsley, 2011; Minsley et al., 2020). In this study we used a single inversion method 
as a necessity, given the computational burden of stochastic inversion. Furthermore, in this 
synthetic study we assume that the lithology is known – and that we estimate the properties 
of only the high and low permeability sediments. In real applications the efficacy of the AEM 
system for mapping similar shallow fresh-saline groundwater distributions, using the same 
geophysical inversion method, was quantitatively validated recently in Delsman et al. (2018). 
As a result, we feel that on balance our approach was valid for this study. 

With the petrophysical model, we settled on the simpler apparent FF without using surface 
conductivities for a number of reasons. First, these values were derived from an actual, local 
field-study, and thus offered a good, realistic approximation for the study area. Second, 
lithologies such as peat and clay that could introduce error were only present as 1.4 and 
6.2% of the total model volume respectively. As a result, we felt that additional uncertainty 
introduced when finding appropriate values for surface conductivity negated the use of local, 
representative data. It is however recommended that this step is taken with care in other 
use cases, given the propensity for incorrectly used petrophysical models to introduce non-
physical error into hydrogeophysical models (González-Quirós and Comte, 2020). The ECb 
gradient is strongly controlled by fresh-saline groundwater contrasts – an effect also observed 
clearly in local ECb ground measurements. As such, despite potential error introduced in 
the petrophysical transformation and inversion, the relative magnitude of signal changes 
over time were considered sufficient to drive the optimization and were a good enough 
approximation for our purposes.

Overall, as the time-lapse approach presented here is new, we recommend that future research 
focusses on a global uncertainty analysis. Having a better quantitative grasp on what this 
means for practical mapping outcomes would be a useful step and potentially highlight 
methods to reduce uncertainty, for example the use of in-situ salinity data. For the purposes of 
this study however, we feel that the potential use of repeated airborne surveys was effectively 
proven given the highly realistic nature of our 3-D synthetic model. 

The downhill-simplex optimization method used here (Gao and Han, 2012; Nelder and 
Mead, 1965) was selected for its simplicity and ability to handle highly-dimensional 
problems. Despite the successes of using the method in this study, in a practical (rather than 
exploratory) setting – we suggest that other methods are considered. This is recommended 
for two reasons: (1) the optimization was impractically slow to find a solution, and (2) the 
addition of other parameters would increase the likelihood of the downhill-simplex arriving 
at a local-minimum, especially given its sensitivity to the choice of initial guesses (Wang and 
Shoup, 2011). As the 3D-VDG model computation step cost ~5 hours per iteration, one could 
simply run this step externally on large computational clusters using iMOD-SEAWAT, which 
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utilizes distributed memory parallelization for faster computation times (Verkaik et al., 2021). 
In a practical setting however, we suggest fully parallelizing the optimization itself, using 
methods such as evolutionary algorithms (Brauer et al., 2002a; Mühlenbein et al., 1991a) 
and parallel Bayesian optimization (e.g. González et al., 2015; Kandasamy et al., 2017) where 
function evaluations can be done in parallel rather than sequentially. The latter approach 
has been successfully used in hydrocarbon reservoir modelling (e.g. Abdollahzadeh et al., 
2011), where similar to the optimization used in this study, inverse problems are solved that 
require multiple flow-simulations, which are more computationally expensive compared to 
our problem. We consider the implementation of this an important avenue for future research 
given the possibility to parameterize fully heterogeneous models. 

Finally, while the results of this research highlight the usefulness of two AEM surveys in 
time, we find it necessary to discuss these results against 3D hydrogeological inverse models 
that utilize different data configurations – for example a single AEM survey, or even multiple 
sources of in-situ head and salinity data. 

Unlike this study, in these cases there isn’t a complete picture of a groundwater state at two 
time intervals in 3D. As a result, an inverse modelling routine relies on a conceptualized 
version of the past based on prior knowledge, followed by a history matching routine until 
the chloride distribution is matched with acceptable accuracy to available data. This has the 
disadvantage that, owing to the large inertia of fresh-salt groundwater systems, simulations 
have to start far back in the past, sometimes hundreds to thousands of years back (Meyer 
et al., 2019; Delsman et al., 2014). Apart from being highly computationally expensive (in 
practice requiring) massively parallel computing, it also requires knowledge of boundary 
conditions from the distance past, adding considerable uncertainty and requiring extensive 
research. Nevertheless, we believe that a quantitative comparison between history matching 
to a single AEM survey and optimizing between two in a similar experiment would be useful 
as future research. 

5.5. Conclusions

Using a twin-experiment involving two highly detailed synthetic realities and simulated 
airborne electromagnetic (AEM) surveys, it was successfully demonstrated that it is 
possible to jointly estimate groundwater salinity and hydrogeological parameters. In a real 
application, this could be achieved using a combination of two AEM surveys (flown across 
the same area over two periods in time) and a variable density groundwater flow and salt 
transport (3D-VDG) model. By coupling AEM and 3D-VDG models using geophysical 
forward modelling methods, it was shown that two AEM surveys are sensitive to changing 
groundwater chloride distributions over time - despite a significant loss of resolution as a 
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result of the survey process itself. In doing so, it was also demonstrated that the time needed 
for chloride movements to be sensitive to AEM can be attained quantitatively. Given the 
knowledge of sensitivities, it followed that an optimization method could be used to recover 
hydrogeological properties using 3D-VDG. With this in mind, a simple optimization process 
was implemented to resolve hydrogeological parameters of interest, while at the same time 
producing a physically consistent estimate of the chloride distribution at higher spatial 
resolution then the AEM surveys. 
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6.1 Introduction

The objectives of the research presented here were twofold: 1) to quantitatively understand 
the uncertainties of regional scale groundwater salinity mapping using Airborne 
Electromagnetic AEM methods, and 2) to use this knowledge to guide the development 
of novel mapping approaches. 

To reach these objectives, data acquired from the Province of Zeeland, the Netherlands were 
used (Delsman et al., 2018). These high-quality data were ideal for the objectives of this thesis, 
as the study area is known as a highly saline groundwater area. Furthermore, the data provided 
a framework for the creation of highly detailed synthetic models to test the development of 
novel mapping methods. 

The synthesis that follows effectively answers the research questions posed in chapter 1. These 
questions are addressed in detail in chapters 2 to 5. Based on the conclusions of this research, 
this chapter finishes with suggestions for further research. 

6.2 Research Questions 

6.2.1 What is the effect of using different inversion methods and parameters on map-
ping results? (Chapter 2)
Geophysical inversion (or simply inversion in the following) is the process of converting AEM 
observations into usable data in the form of electrical conductivity (EC) at depth. Inversion 
adds great uncertainty to the EC mapping as, in principle, the inversion problem is ill-posed: 
infinite possible models can explain the data – as such there are several methods available for 
this purpose (e.g., Auken and Christiansen, 2004; Brodie and Sambridge, 2006; Farquharson 
et al., 2003). In order to counteract the uncertainty due to this non-uniqueness, these methods 
use mathematical constraints to stabilise results – as a result each method also requires user-
based parameter inputs. Besides qualitative studies (Hodges and Siemon, 2008), a fully 
quantitative understanding of the effects of deterministic inversion methods on mapping 
groundwater salinity had not been undertaken. Generally, AEM groundwater studies utilise a 
single inversion method that is subsequently validated using often sparse ground (i.e. in-situ) 
data (e.g., Auken et al., 2005; Farquharson et al., 2003; Siemon et al., 2009). 

To quantitatively understand the effect of different inversion methods and different parameter 
settings for mathematical constraints on groundwater salinity mapping, available AEM data 
were inverted over a highly saline area, along with extensively available ground data for 
validation. Using four commonly used layered-earth inversion methods, several combinations 
of input parameters (controlling constraints) were run for each. Inversion methods comprised 
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the following: 1) smooth, laterally constrained inversion (LCI), 2) few-layer LCI (Auken 
and Christiansen, 2004), 3) sharp LCI (Vignoli et al., 2015) and 4) EM1DFM multilayer 
(Farquharson et al., 2003) types. The most suitable parameters were selected for each through 
quantitative comparisons with in-situ data. The resulting inversions were converted from EC 
to groundwater salinity using petrophysical and analytical relationships (Archie, 1942; De 
Louw et al., 2011; Waxman and Smits, 2003a), and ultimately 3D volumes of groundwater 
salinity using a novel interpolation method. Subsequently, 3D groundwater salinity estimates 
for each method were then compared to assess practical groundwater salinity mapping 
outcomes.

Results were split into four sections: 1) qualitative comparisons, 2) differences in fresh-
brackish-saline groundwater volume estimates, 3) overall accuracy vs. in-situ data, and 4) 
interface mapping accuracy. A qualitative comparison highlighted that all inversions were 
similar and appeared to agree well with in-situ data, with only subtle structural differences 
noted. However, large differences in estimated fresh groundwater volumes were noted between 
the approaches, differing by up to ~7% between the few-layer and smooth LCI methods. In 
practical terms, this is a difference of ~178 million m3 in a total mapped volume of 2.8 billion 
m3. Overall accuracy against in-situ data found that smoother inversions were more precise 
over sharper methods, and that the LCI smooth inversion was preferable in this case. For 
interface mapping however, fresh-brackish interfaces were consistently mapped too shallow, 
overestimating the thickness of the brackish zone. In this regard sharper inversions appeared 
to be better suited. 

Generally, this level of uncertainty corroborates with Delsman et al. (2018), where inversions 
were found to add the greatest amount of uncertainty in a regional scale groundwater salinity 
AEM study. In conclusion, smooth, multilayer inversions seemed preferable overall, however 
caution is advised for all methods – as carefully controlling the amount of smoothness is 
needed to avoid overestimating the thickness of the brackish zone. 

6.2.2 How are results affected by different quantities of available data? (Chapter 3)
The effect that different data densities and types have on regional saline groundwater mapping 
using AEM was quantitatively examined using highly detailed 3D synthetic models. Increasing 
interest in the field of hydrogeophysics (Binley et al., 2015) has highlighted the potential of 
using AEM to map groundwater salinity quantitatively in 3D (e.g., Delsman et al., 2018; 
Faneca Sànchez et al., 2012; Vandevelde et al., 2018). As geophysical inversions – a necessary 
part of AEM data processing – are most commonly delivered as 1D vertical measurements, 
a considerable amount of further processing is required to recover a fully 3D, quantitative 
groundwater salinity model in practical units (such as chloride in g/l). This research question 
follows on from chapter 2, as those results guided the inversion approach used here.  
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Inverted data are represented as bulk electrical conductivity (ECb) – i.e., the combined effect 
of both pore water and lithology. As a result, petrophysical relationships are needed to split 
the signal to recover the conductivity of pore water (ECw) using formation factors (Archie, 
1942; Waxman and Smits, 2003). This step requires the collection of additional, potentially 
expensive lithological information, e.g. using borehole descriptions or cone penetration tests. 
Of course, an additional budgetary consideration is the survey itself, where spacing between 
flightlines (i.e., the tightness of the survey grid) needs to be allocated during survey design 
according to mapping specifications. Although AEM systems have been shown to be reliable 
and repeatable (Huang and Cogbill, 2006), little is currently understood about the effect of data 
density on regional mapping. Consequently, in this chapter we investigated relative sources 
of error based on established 3D groundwater salinity mapping techniques. Specifically, the 
impact of the intensity of two data types were considered: 1) flightline spacing of the AEM 
survey and 2) lithological information from boreholes needed to translate ECb into ECw. 

To obtain a quantifiable understanding of these aspects, a regional-scale 3D synthetic model was 
constructed based on real hydrogeological and geophysical data. In total 90 model realisations 
were run with different densities and spatial configurations of lithological data (in the form 
of boreholes) and flightline spacing. The results of these realisations were compared with the 
‘real’ synthetic model in three components: 1) overall error simply as model differences, 2) 
groundwater volume estimates, and 3) fresh-brackish-saline interface mapping. 

In general, it was found that error as a result of the inversion process far exceeded that of poorly 
understood lithological information. It was also noted that decreasing flightline distance 
consistently improved results. As a result, simply handling the inversion process carefully 
and assigning an appropriate flightline spacing are the most important aspects to consider 
for accurate AEM groundwater salinity mapping. These observations are good news for areas 
with sparse lithological observations, however the need for improved inversion methods is 
emphasised. As overly smooth inversions appear to be a large source of error, it is suggested 
that in this case methods that could offer sharper inversion results are used (e.g., Vignoli et al., 
2015), or even a probabilistic approach that results in a number of possible models (Minsley, 
2011). Overall, these results highlighted that regional-scale mapping could benefit from an 
inversion method that offers an appropriate level of smoothing relative to the groundwater 
characteristics in that particular area. 

6.2.3 Based on the results of chapters 2 and 3, what further methodological improve-
ments can we make? (Chapter 4) 
Chapter 3 concluded that in regard to groundwater salinity mapping accuracy, the improved 
accuracy obtained from an abundance of lithological data is relatively negligible if the 
inversion method is unsuitable. This conclusion is drawn despite using the best performing 
inversion from chapter 2, as well it being a commonly used method in other hydrogeophysical 
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studies (e.g., Auken et al., 2008; Chongo et al., 2015; Delsman et al., 2018; Gunnink et al., 
2012). The observed error in this case appears to stem from the inversion result being overly 
smooth, and thus predicting a brackish zone that is too thick. Of course, the same inversion 
could also be too sharp in areas with different subsurface characteristics. In order to assess the 
correct level of smoothness of AEM inversions, a practical inversion approach was developed 
that utilises cheaply available ground data to supplement an established inversion method 
(Auken and Christiansen, 2004). 

The method exploits in-built inversion parameters to control the level of smoothness based 
on known brackish zone thicknesses, which are often readily available from monitoring wells. 
Here, a regularisation (or penalisation) term can be set to either favour default inversion 
parameters or the observed thickness of the brackish zone. Simply fitting a model to the 
brackish zone is not necessarily the optimal approach, as this could introduce unwanted noise 
into results – and ultimately goes against the point of recovering smooth results, which exist 
to stabilise models and minimise noise (Arsenin, 1979; Constable, 1987). The procedure was 
first tested using a realistic synthetic model to ascertain a good balance between fitting the 
brackish zone and the default (generally less noisy) parameters. 

Results from the synthetic case showed that the default parameters were indeed too smooth, but 
also that favouring the ground data too much introduced considerable noise and uncertainty. 
The resulting optimal regularisation value obtained from the synthetic case was then applied 
to real data – comprising ~100 line km of flightlines and ~30 vertical profiles of ECb as ground 
data. Comparing the default and new (sharper) inversions against validation data showed that 
results were only marginally different, with some improvements observed when mapping the 
location of the fresh-brackish groundwater interface. These results highlight potential of the 
method, but that other inversion approaches should be considered for further improvements. 
These could include the use of coupled hydrogeophysical inversion, where groundwater 
simulations are physically modelled against AEM measurements (Herckenrath et al., 2013; 
A. C. Hinnell et al., 2010). Building on the method presented here, coupled hydrogeophysical 
modelling could be further developed by jointly matching in-situ brackish-zone thicknesses 
and AEM data. 

6.2.4 Are groundwater salinity movements sensitive to repeated AEM surveys? (Chapter 5)
Chapter 5 was inspired by the conclusions of chapter 4, that highlighted the possible advantages 
of coupled hydrogeophysical modelling. Here, the novel idea of using repeated AEM surveys 
over the same location to improve the parameterisation of 3D variable density groundwater 
flow and salt transport models (3D-VDG) is investigated. This coupled approach also has 
the advantage of jointly estimating groundwater salinity distributions, potentially honouring 
subsurface characteristics with greater accuracy than conventional geophysical inversion. 
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The method builds on traditional inverse model parameterisation of 3D-VDG models, where 
parameters are iteratively adjusted until a suitable fit is found against observations (Carrera 
et al., 2005). In this process, uncertainties are reduced through the addition of observational 
data, such as groundwater salinity or hydraulic head – which are often sparse in regional 
3D-VDG studies (e.g., Cobaner et al., 2012; Van Engelen et al., 2019). Repeat AEM surveys 
have the potential of providing two or more regional 3D estimates of groundwater salinity 
over time, thus for the purpose of model calibration offer great potential.  

Addressing the research question – the first challenge was to understand if AEM surveys are 
sensitive to groundwater salinity movements over time, and if they are – how much time 
is needed to pass under a given set of conditions. This question was in part answered by 
Huang and Cogbill (2006), who showed that AEM surveys offer good repeatability in a static 
environment – however it was still unknown whether changes over time could be observed 
(i.e., from groundwater salinity movements). Using a detailed 3-D synthetic model, a 3D-VDG 
model was physically coupled with AEM observations through a forward modelling routine. 
The model was run for 60 years with realistic natural and anthropogenic stressors, such as 
modelled groundwater extraction. Each time-step (half-yearly) was then geophysically 
forward modelled and compared with the first time-step to assess AEM sensitivity over time. 
Results of this indicate that in this case study, after ~5+ years a second AEM survey should be 
sensitive to groundwater salinity differences. 

An optimisation routine was subsequently implemented that minimises the observed 
groundwater salinity distributions from two separate AEM surveys in time. This was done 
using iterated 3D-VDG model runs over a period of time defined by the now understood 
sensitivity (time) period between two AEM surveys. At the end of the defined time period 
(in this case 15 years), the resulting 3D-VDG model is compared with AEM observations. 
The 3D-VDG model then restarts with updated hydrogeological parameters (e.g., hydraulic 
conductivity, porosity) until a suitable minimum is found – in our synthetic case study, 
successfully jointly estimating hydrogeological parameters and groundwater salinity. Our 
findings highlight the potential of this method, and build on other coupled hydrogeophysical 
methods (e.g., Herckenrath et al., 2013; Hinnell et al., 2010) by using repeat AEM surveys. 

6.3 Recommendations for further research

While using AEM to map groundwater salinity is relatively well-established, there is an 
increasing interest for combining these with high-resolution, quantitative 3D groundwater 
salinity models. There also remain known sources of error in the method – in particular those 
introduced through processing steps. As a result, a number of recommendations for further 
research are suggested. The topics discussed are based on the main results and conclusions of 
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chapters 2 to 5, therefore the following will be discussed: 1) deterministic inversion methods, 
2) coupled hydrogeophysical modelling, and 3) applying repeat AEM surveys to a real case. 

6.3.1 Deterministic inversion methods
Traditional inversion methods are deterministic, whereby a single model is selected that fits 
the data. As these kinds of inversion are ill-posed (i.e., an infinite number of models can 
fit the data), selecting a single model is not recommended. The practical limitations to this 
are noted in chapters 2 and 3 of this thesis. One way to approach this problem is through 
probabilistic inversion (Minsley, 2011), which was recently further developed to include 
prior information as a constraint (Hansen and Minsley, 2019). The results of this method 
would allow the user to select either the most probable model, or indeed one that reflects 
the characteristics of the study appropriately. While these methods offer great potential, they 
are complex to implement, including the extensive post-processing, and are computationally 
expensive such that they require the use of distributed-memory super computers. As a result, 
these methods are not yet widely applied. However, further research into computational 
efficiency and the continued development of a more broadly accessible user-interface would 
almost certainly increase uptake. A less computationally expensive alternative to probabilistic 
inversion is simply the incorporation of prior information to deterministic methods. This was 
attempted in chapter 4 of this thesis, through the incorporation of brackish-zone thickness 
measurements to constrain smoothness. However, a few challenges remain as improvements 
were not as drastic as hoped. The most straightforward suggestion is to simply apply the 
method to a different inversion approach. This could be adapting the method to work with 
a so-called ‘sharp’ inversion, such as Vignoli et al. (2015), or adapted to an available open 
source method with published Python scripts (e.g., Cockett et al., 2015). Finally, besides 
simply constraining the inversion to match the thickness of the brackish zone using inversion 
parameters, research that examines the potential of incorporating a coupled hydrogeological 
model into this method is suggested. Here, the brackish zone thickness could be constrained 
to match in-situ data and run iteratively until a suitable match to AEM observations is found. 
The potential of coupled hydrogeophysical inversion is expanded upon in the section below. 

6.3.2 Coupled hydrogeophysical modelling
Coupled hydrogeophysical modelling offers a promising alternative to stochastic geophysical 
inversion. Here, the use of deterministic (or indeed probabilistic) inversion is bypassed – 
where combined with petrophysical transformations, 3D-VDG groundwater models can 
be forward modelled and made to fit AEM observations (e.g., González and Comte, 2021; 
Herckenrath et al., 2013; Hinnell et al., 2010). A big advantage of this is that a conceptual 
hydrogeological model can be incorporated, thus allowing models that are more characteristic 
to a study area. It also has the advantage of encouraging interdisciplinary research between 
hydro(geo)logists and geophysicists, which helps produce realistic models and provides 
more accurate expectation management. However, this process comes with uncertainties of 
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its own – in particular the petrophysical model used. Here, research has found that due to 
model heterogeneity, using a low quality petrophysical model has the potential to introduce 
substantial error (González and Comte, 2020). As a result, further research is recommended 
to use lithological information more accurately on a regional scale. This includes a better 
understanding of incorporating data that is collected at different scales and resolutions, such 
localised lithological data and regional AEM observations. In general, this topic offers great 
potential and is considered a key research area for future studies. 

6.3.3 Applying repeat AEM surveys to a real case
Chapter 5 quantitatively highlighted the potential of flying repeat AEM surveys. Besides 
the existing challenge noted with coupled hydrogeophysical modelling in the previous 
section, there are a number of challenges to overcome first before applying this to real data. 
The method presented in chapter 5 was a necessary simplification of reality – given that it 
was novel and therefore presented as proof-of-concept. As a result, there are three main 
simplifications that require further investigation. First, during the optimisation routine we 
assumed full knowledge of other hydrogeological properties such as the interaction between 
groundwater and drainage, as well as the locations and hydrogeological makeup of aquifers 
and aquitards. It is therefore suggested that this effect is examined further by adding noise to 
parameters that are not part of the optimisation, allowing permitted deviations according to 
known noise levels. Including these properties in a fully 3D heterogeneous model would allow 
a quantitative understanding of these assumptions. Second, a simplified, apparent formation 
factor was used for petrophysical transformations (Archie, 1942). This method does not take 
into account the surface conductivities of clay (Revil et al., 2017; Waxman and Smits, 2003), 
and therefore potentially adds error. It is therefore suggested that this effect is quantitatively 
included in a global uncertainty analysis. Third, from a practical perspective the optimisation 
used was very slow in terms of computation time, therefore research into using a fully 
parallelised optimisation is necessary. This could include evolutionary algorithms (Brauer et 
al., 2002b; Mühlenbein et al., 1991b) or parallel Bayesian optimisation (González et al., 2015; 
Kandasamy et al., 2017b). Finally, as hydrocarbon reservoir simulations utilise time-lapse 
geophysical acquisition and multiple flow-simulations (Sambo et al., 2020), it is suggested 
that a review of the state-of-art in this field should serve as further inspiration for a practical 
implementation in general in the field of hydrogeology. 
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After removing inversions from every 2nd neighboring flightline, the above 3D interpolation 
method was repeated in order to validate the method. This was done using the LCI smooth 
inversion results. The validation 3D volume was therefore interpolated using ~500 line km 
of data, rather than the initial total of ~1000 line km. Considering the flightline spacing, 
distances between flightlines will mostly be 600m in the validation model, rather than the 
initial 300m – and 200m over the Waterfarm area where flightline spacing was 100m. A 
number of steps were taken to compare the two interpolation results. Firstly, the ‘between’ 
2D profiles were resampled in the ‘gaps’ where the flightlines were removed, and compared 
for differences against the original interpolation (figure S1). Secondly, conductivity interfaces 
were extracted directly from the 3D volumes and compared for inconsistencies (figure S2). 
Thirdly, histogram distributions were calculated for each (figure S3), and finally, a comparison 
of volume estimates was undertaken (table S1).

An advantage to the 3D interpolation method presented here, is seen in the preservation of 
sharpness between low to high conductivity values at depth, where original layering from the 
inversion starting models is still preserved. Laterally less extensive features appear to be lost, 
as observed in figure S1 (feature ‘A’).

Predictably, shorter wavelength (therefore likely to be spatially less extensive) features were 
often lost, as indicated by the white boxes (Z and Y) in figure S2.a - this feature is also observed 
in figure S1 (feature A). This is likely because this information is often in-between flightlines 
and is smaller than the footprint of the HEM system. In this case, this is probably caused by 
flightlines beings perpendicular to smaller ‘creek ridge’ features. Naturally, features that are 
laterally less extensive than the flightline spacing used in the validation model, minus the AEM 
system footprint (i.e. 550m or less) are at risk of not being resolved. More subtle differences are 
between -0.2 to 0.2 S/m, as observed in the interfaces in figures S2.b and S2.c, this effect could 
shift an interface depth slightly – particularly at depth where inversion layers are thicker.

3D interpolation can inherently result in a smoothing effect, and in the case of hydrogeophysical 
mapping, this would result in an over-estimation of the brackish zone. Using histogram 
distributions of conductivity, this effect can be observed. A bimodal distribution is observed 
in the original 1D (along flight-line) results, as shown in the histograms in figure S3.

The bimodal nature of the inversion result was seen to be almost identical between the original 
inversion and that of the interpolation directly beneath inversion models, an indication that 
distributions were correctly honored directly beneath flightlines. When compared with the 
entire interpolated volume, the effect of smoothing was observed whereby conductivity 
values were clustered at around 0.3 to 0.7 S/m, and less so on either end of the curve. Overall 
however, the bimodal nature can be seen to be preserved effectively. As a result, it can be 
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assumed that the brackish zone thickness will be preserved beneath flightlines, and slightly 
smoothed between them.

Based on these histograms, volume estimates were undertaken for conductivity groups: (1) low 
(< 0.3 S/m), medium (0.3 – 0.7 S/m) and high (> 0.7 S/m) for both the interpolation using all the 
data, and the validation interpolation. These distributions could be seen as proxies for fresh (0 – 
0.3 S/m), brackish (0.3 – 0.7 S/m) and saline (> 0.7S/m) distributions. This is shown in table S1.

Improvements could be made with regard to flightline anisotropy (downline striping),  which 
was observed in the validation interpolation. However, this effect was not qualitatively 
observed in the final interpolation that used all lines. Furthermore, given that the inversion 
methods are layered earth 1D models, the 3D interpolation honored the true nature of the 
inversion results remarkably. Considering this study will extract fresh-saline groundwater 
interface depths and fresh groundwater volume estimates for analysis, the interpolation 
method was found to be acceptable.

Figure A.1. Interpolation validation sections. Top: original 1D inversion section. Middle: validation section (data sampled 
from between flightlines). Bottom: differences in S/m between the original inversion and the interpolation validation
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Figure A.2. Interpolation validation sections taken from the 3D volume. Top (S2.a): horizontal 2D map of data and 
flightline locations - all flightlines (thin black lines), flightlines used in the validation (dotted red lines), section locations A-A’ 
and B-B’ (thick black lines). Features discussed are highlighted in white boxes (Z and Y). Background is a gridded channel of 
the raw data to illustrate relative high/low conductivity areas. Sections A-A’ & B-B’ (S2.b and S2.c respectively): differences 
observed between the interpolation and validation, given as difference in S/m, along with an extracted interface of 0.18 S/m. 
black = interpolation interface using all flightlines, red = validation interface using every second line.
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Figure A.3. Histogram distributions of inversion results in S/m. Top left (A): original inversion without interpolation. 
Top right (B): interpolated inversion directly beneath flightlines. Bottom left (C): distribution of the entire 3D volume.
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Figure A.4. LCI Sharp inversion misfit of lateral and vertical constraints input as 1.3 and 2 respectively.  Vertical and 
horizontal sharpness as 30 and 15 respectively. Predicted (dashed lines), observed (as error bars as 5% of data magnitude) 
for in-phase (top) and Quadrature (middle) components. Misfit (bottom) shown as solid black line as relative % error, 
instrument altitude as grey dashed line.
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Figure A.5. LCI 5 layer inversion misfit of lateral and vertical constraints input as 1.3 and 3 respectively. Predicted 
(dashed lines), observed (as error bars as 5% of data magnitude) for in-phase (top) and Quadrature (middle) components. 
Misfit (bottom) shown as solid black line as relative % error, instrument altitude as grey dashed line.



Figure A.6. UBC Fixed Trade-Off inversion misfit with the trade-off parameter as three. Predicted (dashed lines), 
observed (as error bars as 5% of data magnitude) for in-phase (top) and Quadrature (middle) components. Misfit 
(bottom) shown as solid black line as relative % error, instrument altitude as grey dashed line.

Table A.1. Volume differences between the interpolation and the validation based on the conductivity distribution, 
illustrated as percentages.

< 0.3 S/m % 0.3 - 0.7 S/m % > 0.7 S/m %
Original Interpolation 40.14 24.90 34.94
Validation Interpolation 39.52 25.22 35.25
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Figure B.1. Overview of methods to compare various data configurations and resulting 3D salinity mapping error. 
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Figure B.2. Comparing geological data density against the reference mode assuming a perfect AEM survey and inversion. 
X-axis = geology data density as vertical metres drilled per km2.Y-axis = MAE of chloride distributions as mg/l. Error 
bars highlight uncertainty as a result of borehole placement and subsequent interpolation.  

Figure B.3. A contour plot of all data confi gurations tested. X-axis = geology data density as vertical metres drilled per km2. 
Y-axis = data density of the AEM survey represented as fl ightline spacing (i.e. smaller spacing is more data). 
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Figure B.4. Total volumes of fresh-brackish-saline groundwater regions of the reference model and inverted (300m line 
spacing) model in km3. The reference geological model was applied to the inverted model, thus a perfect geological map 
is assumed. Blue = fresh, orange = brackish, red = saline. 

Figure B.5. Volume difference against the reference model of fresh-brackish-saline groundwater regions in m3 difference. 
Calculations are based on applying geological information (FF) to the reference model, rather than inverted data. Blue 
= fresh, orange = brackish, red = saline. Borehole data density labelled as vertical metres/km2. Positive values represent 
an overestimation. 
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To understand the spatial uncertainty with regards to interface mapping, fi gure 10 illustrates 
the possible eff ects of applying diff erent FF values to the inversion model for chloride classes 
0 – 5000mg/l.

Figure B.6. Possible ranges of mapped chloride based on the allocated FF value for values between 0 – 5000mg/l. 
Chloride values are calculated based on the process outlined in fi gure 1.

Figure B.7. Absolute vertical error of the 500mg/l chloride interface for each fl ightline spacing class, as well as a 
comparison directly against the reference model.
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Figure B.8. Absolute vertical error of the 3000mg/l chloride interface for each fl ightline spacing class, as well as a 
comparison directly against the reference model.
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Figure B1 illustrates a single fl ightline showing chloride distributions at t=0 and t=1, along 
with the geological section and forward models for the in phase component at that location. 
Plots of airborne electromagnetic forward models based on 3D variable-density groundwater 
fl ow and coupled salt transport models (3D-VDG) time-steps are shown below for all 
fl ightlines (fi gures C.2 – C.25). 

Figure C.1: A single fl ightline showing the forward models for the in-phase component at that location as parts per 
million, coloured lines represent successive forward models at each time step at 5yr intervals (B), as well as fl ight altitude 
(A). Inverted chloride distributions, translated into chloride, at t=0 and t=1 (C and D respectively) along with the 
geological section (E) at that location. Th e geological section illustrates the formation factors used, therefore: 5 = coarse 
sand, 4 = medium sand, 3.2 = fi ne sand, 2.8 = sandy clay, 2.5 = clay, 2.1 = peat. 
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Figures C.2 – C2.5: Both in-phase and quadrature are shown in parts per million (ppm) for all fi ve frequencies across 
all fl ightlines. Th e dark line represents the initial forward model (at t=0), error bars are 5% of data magnitude and thus 
represent the error threshold. Th e coloured lines show change over time in increments of 5 years up to a maximum of 30 
years in 3D-VDG simulations.
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Low elevation coastal zones (LECZs), defined here as areas ≤10 m above mean sea-level, have 
attracted people for millennia. With their abundant resources and access to trading ports, 
today these areas host nearly 800 million people – a figure that is predicted to rise to 1.4 
billion by 2060. Naturally, it follows that with population growth comes an increased demand 
for freshwater. Globally, about 50% of the world’s population rely on groundwater to satisfy 
basic requirements – and LECZs are no exception. However, owing to anthropogenic activity, 
these aquifers are highly stressed and vulnerable to saltwater intrusion – where freshwater 
can be displaced by saline groundwater. As a result, aquifers within LECZs require effective 
management, which in turn requires an excellent regional understanding of fresh-saline 
groundwater distributions. Airborne electromagnetic (AEM) surveys offer a rapid and cost-
effective method to map this, and thus are increasingly used for these purposes. Despite 
increasing popularity, AEM is relatively poorly understand in terms of regional (provincial or 
country scale) groundwater salinity mapping. The primary objective of this thesis is therefore 
twofold: 1) to better understand the uncertainties involved and 2), use this understanding 
to develop novel mapping methods. Consequently, the following research questions were 
formulated: 

1. What is the effect of using different inversion methods and parameters on mapping results? 
2. How are results affected by different quantities of available data?
3. Based on the results of chapters 2 and 3, what further methodological improvements can we make? 
4. Are groundwater salinity movements sensitive to repeated AEM surveys? 

To answer these research questions, I used data from the Province of Zeeland, The 
Netherlands. Zeeland experienced sea-level transgressions in the early Holocene, followed by 
the construction of by man-made coastal defences – which allowed the recent freshening of 
shallow aquifers. As a result, much of Zeeland comprises shallow rainwater lenses (often as 
little as 1 – 2m thick), and therefore offers a fascinating study area for applied groundwater 
research. Furthermore, a recently undertaken, high quality AEM survey and plentiful ground-
based data provide an ideal testing ground. Throughout the thesis, these data were used either 
directly, or as basis for the construction of highly detailed synthetic models. 

The process of converting AEM observations into usable, quantitative data, is referred to 
geophysical inversion. Typically, this process involves iteratively adjusting a model in an 
optimisation routine until a suitable fit is found against observations. The results are typically 
represented in SI units as electrical conductivity (EC), which in terms of groundwater salinity 
mapping, relate to the locations of fresh-brackish-saline groundwater and lithology. However, 
inversions are deterministic (i.e., the result is a single estimated model) – this is potentially 
problematic as an infinite number of models can explain the data. In order to understand 
these uncertainties, I quantitatively compared four commonly used inversion methods and 
associated input parameters. Results of each were interpolated into 3D volumes of EC and 
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transformed into groundwater salinity, where extensively available ground data were used 
for comparisons. Results indicated that all methods offered similar accuracy, however fresh-
brackish-saline groundwater interfaces were frequently mapped too shallow because of 
smoothing introduced by inversions.

With a quantitative understanding of inversions and groundwater mapping using AEM, 
it was now possible to examine other areas of uncertainty. Inversions result in models of 
EC, which is the combined effect of lithology and groundwater salinity, otherwise known 
as bulk electrical conductivity (ECb). In order to recover the EC of groundwater (ECw), 
which is ultimately converted to groundwater salinity using empirical formulae, lithological 
information is required. This data is expensive and is therefore often sparse relative to the 
regional scale of AEM mapping programmes. As a result, detailed 3D synthetic models were 
used to quantitatively examine the effect using different amounts of lithological data to recover 
3D salinity models. Survey design is also an important financial consideration, therefore the 
effects of flightline spacing were examined too. By comparing almost 100 different 3D models 
comprising different levels of lithological information and flightline spacing, it was found that 
error introduced by the inversion process exceeded that of poorly understood lithology. It was 
also noted that decreasing flightline spacing consistently improved mapping accuracy. 

Based on the understanding that inversions introduced groundwater salinity mapping error 
because of overly smooth results, a practical inversion approach was developed to try and 
control the level of smoothing based on available ground data. The method exploits in-built 
inversion parameters of a commonly used method to match the known vertical thickness of 
a brackish zone. In order to balance the effect of matching ground data while not introducing 
noise, a penalisation term can be set to favour either ground data or default inversion 
parameters. The method was initially tested using a synthetic case, the results of which 
guided a practical application using real data. Using available validation data, the results of 
the real case highlighted the potential of the method – however it was concluded that more 
research is still needed. In particular, the potential of coupled hydrogeophysical inversion 
was highlighted as a possible area for further research – which is essentially the geophysical 
modelling of groundwater simulations. 

The final chapter of this thesis builds on the conclusion that coupled hydrogeophysical 
inversion offers an interesting research direction. More specifically, we investigated the novel 
idea of using repeat AEM surveys to jointly estimate groundwater salinity distributions 
while improving the parameterisation of 3D variable density groundwater flow and salt 
transport models (3D-VDG). The approach was developed and tested using a highly detailed 
3D synthetic model. Here, AEM data were first coupled with 3D-VDG simulations using 
a petrophysical transformation and geophysical forward modelling. After running the 
3D-VDG model for 60 years it was concluded that after ~5 or more years, it was possible 
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to monitor groundwater salinity changes over time. An optimisation routine was then 
implemented that minimises the differences between a simulated and an AEM-observed 
salinity distribution based on AEM surveys flown over the same area at two points in time. 
This was done by iterating 3D-VDG model runs with varying hydrogeological parameters 
over the period between the two surveys, where at the final time step the resulting model 
results were compared against AEM observations. The 3D-VDG model then restarted with 
updated hydrogeological parameters until a suitable minima was found. The method was 
shown to successfully estimate hydrogeological parameters while simultaneously resolving a 
realistic distribution of groundwater salinity. 
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Samenvatting

Low elevation coastal zones (LECZ’s), hier gedefinieerd als gebieden 10 m boven zeeniveau, 
trekken al millennia mensen aan. Met hun overvloedige hulpbronnen en toegang tot 
handelshavens, herbergen deze gebieden tegenwoordig bijna 800 miljoen mensen - een cijfer 
dat naar verwachting zal stijgen tot 1,4 miljard in 2060. Uiteraard volgt hieruit dat met de 
bevolkingsgroei een grotere vraag naar zoet water komt. Wereldwijd is ongeveer 50% van 
de wereldbevolking afhankelijk van grondwater om aan basisbehoeften te voldoen - en 
LECZ’s zijn geen uitzondering. Vanwege antropogene activiteit zijn deze watervoerende 
lagen kwetsbaar voor zoutwaterindringing - waar zoet water kan worden verdrongen door 
zout grondwater. Als gevolg hiervan vereisen aquifers binnen LECZ’s effectief beheer, wat op 
zijn beurt een goed regionaal begrip van zoet-zoute grondwaterdistributies vereist. Airborne 
electromagnetic (AEM) surveys bieden een snelle en kosteneffectieve methode om dit in 
kaart te brengen en worden daarom steeds vaker voor deze doeleinden gebruikt. Ondanks de 
toenemende populariteit is AEM relatief slecht begrepen in termen van regionale (provinciale 
of landelijke schaal) grondwatersaliniteitskaarten. Het primaire doel van dit proefschrift 
is daarom tweeledig: 1) de onzekerheden beter begrijpen en 2) deze kennis gebruiken om 
nieuwe karteringmethoden te ontwikkelen. Daarom zijn de volgende onderzoeksvragen 
geformuleerd:

1. Wat is het effect van het gebruik van verschillende inversiemethoden en parameters op de 
resultaten van de kartering?
2. Hoe worden resultaten beïnvloed door verschillende hoeveelheden beschikbare gegevens?
3. Welke verdere methodologische verbeteringen kunnen we op basis van de resultaten van 
hoofdstuk 2 en 3 maken?
4. Zijn grondwaterverziltingsbewegingen gevoelig voor herhaald AEM-onderzoek?

Om deze onderzoeksvragen te beantwoorden, heb ik gegevens uit de provincie Zeelandgebruikt. 
Zeeland had te maken met zeespiegeloverschrijdingen in het vroege Holoceen, gevolgd door 
de aanleg van door de mens gemaakte kustverdediging - die de recente verzoeting  van 
ondiepe watervoerende lagen mogelijk maakte. Hierdoor bestaat een groot deel van Zeeland 
uit ondiepe regenwaterlenzen (vaak slechts 1 à 2 meter dik), en biedt daarmee een boeiend 
studiegebied voor toegepast grondwateronderzoek. Bovendien bieden een recent uitgevoerd, 
hoogwaardig AEM-onderzoek en overvloedige grondgebaseerde gegevens een ideale 
proeftuin. In het proefschrift werden deze gegevens ofwel direct gebruikt, ofwel als basis voor 
de constructie van zeer gedetailleerde synthetische modellen.

Het proces van het omzetten van AEM-waarnemingen in bruikbare, kwantitatieve gegevens, 
wordt geofysische inversie genoemd. Meestal houdt dit het proces in van het iteratief 
aanpassen van een model in een optimalisatieroutine totdat een geschikte fit is gevonden 
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tegen waarnemingen. De resultaten worden meestal weergegeven in SI-eenheden als 
elektrische geleidbaarheid (EC), die in termen van het in kaart brengen van het zoutgehalte 
van het grondwater betrekking hebben op de locaties van zoet-brak-zout grondwater en 
lithologie. Inversies zijn echter deterministisch (d.w.z. het resultaat is een enkel geschat 
model) - dit is potentieel problematisch omdat een oneindig aantal modellen de gegevens kan 
verklaren. Om deze onzekerheden te begrijpen, heb ik vier veelgebruikte inversiemethoden 
en bijbehorende invoerparameters kwantitatief vergeleken. De resultaten van elk werden 
geïnterpoleerd in 3D-volumes van EC en omgezet in het zoutgehalte van het grondwater, 
waarbij uitgebreid beschikbare grondgegevens werden gebruikt voor vergelijkingen. De 
resultaten gaven aan dat alle methoden een vergelijkbare nauwkeurigheid boden, maar 
zoet-brak-zout-grondwaterinterfaces werden vaak te ondiep in kaart gebracht vanwege een 
afvlakking, geïntroduceerd door de inversies.

Met een kwantitatief begrip van inversies en grondwaterkartering met behulp van AEM, 
was het ook mogelijk om andere oorzaken van onzekerheid te onderzoeken. Inversies 
resulteren in modellen van EC, wat het gecombineerde effect is van lithologie en zoutgehalte 
van het grondwater, ook wel bekend als bulk elektrische geleidbaarheid (ECb). Om de EC 
van grondwater (ECw) te bepalen, die uiteindelijk met empirische formules wordt omgezet 
in grondwaterzoutgehalte, is lithologische informatie nodig. Deze gegevens zijn duur en 
daarom vaak schaars in verhouding tot de regionale schaal van AEM-kaartprogramma’s. 
Als gevolg hiervan werden gedetailleerde 3D-synthetische modellen gebruikt om het effect 
kwantitatief te onderzoeken met behulp van verschillende hoeveelheden lithologische 
gegevens om 3D-zoutgehaltemodellen te herstellen. Naast lithologische gegevens moeten ook 
de kosten van de AEM inwinning worden meegenomen. Daarom zijn ook de effecten van 
vluchtlijnafstand onderzocht. Door bijna 100 verschillende 3D-modellen met verschillende 
niveaus van lithologische informatie en vluchtlijn -afstand te vergelijken, werd ontdekt dat de 
fout die door het inversieproces werd geïntroduceerd, groter was dan die van slecht begrepen 
lithologie. Er werd ook opgemerkt dat het verkleinen van de afstand tussen de vluchtlijnen de 
nauwkeurigheid van de kaart consequent verbeterde.

Op basis van het inzicht dat inversies een fout in het in kaart brengen van het zoutgehalte van 
het grondwater hebben geïntroduceerd vanwege te gladde resultaten, werd een praktische  
inversiebenadering ontwikkeld om te proberen het niveau van afvlakking te beheersen op 
basis van beschikbare in-situ gegevens. De methode maakt gebruik van ingebouwde inversie 
parameters van een veelgebruikte methode om de bekende verticale dikte van een brakke 
zone aan te passen. Om het effect van het matchen van grondgegevens in evenwicht te 
brengen zonder ruis te introduceren is bij de minimalisatie een penalty-term meegenomen 
waarmee meer of minder gewicht kan worden gegeven aan de in-situ gegevens of aan de 
standaard inversieparameters. De methode werd aanvankelijk getest met behulp van een 
synthetische casus, waarvan de resultaten leidden tot een praktische toepassing met behulp 
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van echte gegevens. Met behulp van beschikbare validatiegegevens lieten de resultaten van het 
echte geval het potentieel van de methode zien, maar er werd geconcludeerd dat er nog meer 
onderzoek nodig is. In het bijzonder werd het potentieel van een gekoppelde hydrogeofysische 
benadrukt als een mogelijk gebied voor verder onderzoek - dit is in feite de geofysische 
modellering van grondwatersimulaties.Het laatste hoofdstuk van dit proefschrift bouwt voort 
op de conclusie dat gekoppelde hydrogeofysiche inversies een interessante onderzoeksrichting 
bieden. Specifiek hebben we het nieuwe idee onderzocht om herhaalde AEM-onderzoeken 
te gebruiken om gezamenlijk de saliniteitsverdelingen van het grondwater te schatten en 
tegelijkertijd de parametrisering van 3D-modellen voor grondwaterstroming met variabele 
dichtheid en zouttransport te verbeteren (3D-VDG). De aanpak is ontwikkeld en getest 
met behulp van een zeer gedetailleerd 3D-synthetisch model. Hier werden AEM-gegevens 
eerst gekoppeld aan 3D-VDG-simulaties met behulp van een petrofysische transformatie en 
geofysische voorwaartse modellering. Na 60 jaar  te hebben gesimuleerd met het 3D-VDG-
model, werd geconcludeerd dat het na ~5 jaar of meer mogelijk was om veranderingen in 
het zoutgehalte van het grondwater in de loop van de tijd te volgen. Vervolgens werd een 
optimalisatieroutine geimplementeerd waarbij het verschil tussen gesimuleerde en AEM-
waargenomen zoutverdelingen worden geminimaliseerd op basis van AEM-onderzoeken die 
op twee tijdstippen over hetzelfde gebied zijn gevlogen. Dit werd gedaan door 3D-VDG-
modelruns met verschillende hydrogeologische parameters over de tijdsperiode tussen de 
twee AEM surveys te herhalen, waarbij de modelresultaten bij de laatste tijdstap warden 
vergeleken met AEM-waarnemingen. Het 3D-VDG-model startte vervolgens opnieuw met 
bijgewerkte hydrogeologische parameters totdat een geschikt minimum werd gevonden. 
Er werd aangetoond dat de method hydrogeologische parameters met succes schat en 
tegelijkertijd een realistische verdeling van het zoutgehalte van het grondwater oplevert.



chapter 7

182

Acknowledgements 

Many individuals, institutions, funding bodies etc. are acknowledged for their part in making 
this possible.

Firstly, my wife, Liza King – because I believe that I wouldn’t be writing these acknowledgements 
without her support. She joined me on this PhD journey in 2016, when we both moved to the 
Netherlands. Right up to the day that I write this she has been a rock, despite having stresses 
of her own – including a research masters and the jobs that followed. Stressful days were not 
only made bearable – they were often fun. All those evenings sitting with a cheap supermarket 
beer talking through things got me through countless anxiety ridden moments during the 
PhD. I could go on for a while, never mind the technical help with programming too, it’s safe 
to say she probably deserves to be added as a co-author.

I would like to thank my supervisors Marc Bierkens and Gualbert Oude Essink for putting 
their trust in me back in 2016, during the early stages of the Water Nexus programme (to 
whom I also owe my thanks). Their help was consistent and unwavering, despite it taking 
two years longer than planned – ultimately spanning the entire length of a global pandemic, 
three American presidents, and Brexit. Marc Bierkens is especially thanked for his regular 
conceptual chats, particularly concerning chapters 4 and 5 of this thesis. These discussions 
helped combine hydro(geo)logy and airborne geophysics not just in a conceptual manner but 
helped formulate a physical link between the disciplines – which I discovered is no easy feat. 
Gu is thanked, amongst many other things, for his highly detailed feedback on publication 
text, sometimes resulting in many months of extra work – which in retrospect was necessary 
for publishing. His detailed explanations and help with Dutch working culture also played a 
big part in understanding how to navigate collaboration between other Dutch institutions, 
including Deltares – where I currently work. My co-authors are all thanked for their input, 
notably Marios Karaoulis, Bernhard Siemon and Tobias Mulder – all of whom provided 
valuable input into this thesis. 

As far as institutions go, Deltares is thanks for their ongoing support throughout the process, 
including offering a space to work and a laptop. Their assistance in obtaining the data that was 
used for this project was invaluable – for that I would also like to thank all members of the 
‘FreshEM Zeeland’ project. Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk 
Onderzoek (TNO) is thanked for their useful discussions throughout the PhD. I would also 
like to thank individuals at TNO (amongst others - Jan Gunnink and Willem Jan Zaadnordijk) 
for allowing me the opportunity to work on interesting airborne electromagnetic projects 
after my PhD funding had expired. This was an invaluable opportunity to finish off the thesis 
while still doing something related to my research. 



This PhD was hosted by Utrecht University and therefore I owe my gratitude to the 
Department of Physical Geography, where I was offered what I needed in an inspiring and 
busy environment. The day to day interactions between colleagues at the office helped me 
through some quite stressful moments, even if it did mean having to force myself to hang out 
at the packed coffee corner on a Monday morning or leaving my desk for lunch. For this, I 
would like to thank the ‘Man-Cave’ – a random group of researchers from various countries 
with different topics, who shared the same area of the office. Acknowledged members include 
(in no particular order) Daniel, Joeri, Jakob (honorary guest member), Fabian, Tim, Jannis 
and Sepehr. Joeri is especially thanked for his lessons in Dutch culture and etiquette – as well 
as his helpful introduction to writing code in Python – which in no doubt helped the PhD 
chapter 7 along nicely. He is also credited with the translation of relevant parts of this thesis 
into Dutch. Daniel is also acknowledged for help with scripting, as well as helping me to 
acclimatise to the cold weather by insisting that the thermostat is kept no higher than 15C. 

My whole family is thanked for their ongoing support. In the UK – my mom (Claudia), Rory, 
Tom, Lyndall, Will, Arty and Grubby are recognized for being great family to have close 
by in general. Mom – your ongoing trust in my ability, even though I didn’t always believe 
you – certainly helped me push through some difficult moments. Visits to the Netherlands 
were appreciated too and helped me realise that family is still close despite being in different 
countries. My sister in the UK, Lyndall, is owed thanks for emotional support through some 
difficult times – as well as some much-appreciated visits. From renting National Geographic 
VHS tapes on weekends as a kid, to taking me on long hikes and fishing trips on rocky 
coastlines, my late father (Garth King, RIP) is credited for instilling a strong appreciation 
for earth science – which in no doubt helped carry me to the end of this PhD.  My adopted 
family - in particular George, Anita and Basil are thanked for their ongoing support and 
regular visits to the Netherlands – which were always a welcome and happy distraction. To 
one of oldest and best friends, Jonny, (and hopefully one of my paranymphs if all goes well at 
Schiphol) is thanked for the many visits to NL and ongoing banter, which no doubt helped 
keep the sanity levels alright these past six years. 

Towards the end of this journey while I was finishing off the last few chapters of this book, 
I was faced with a difficult and unexpected turn of events – the death of my father, on 5th 
March 2022. I owe immense gratitude to my family in South Africa for being so wonderful 
through this period, in particular my sisters: Rachel, Eden, Zara and Lyndall, as well as my 
stepmother Joy. I wouldn’t have been able to navigate this period alone without them – all 
being so level-headed, agreeable, and mature. Something that I will always appreciate. 

Acknowledgements 





185

About the author

Jude King was born on February 27th, 1984 in 
Makhanda (formerly Grahamstown) in the Eastern 
Cape, South Africa. He grew up in a small town near 
Cape Town called Fish Hoek, where he stayed until he 
moved to the UK at age 14. He then moved back to 
Cape Town a few years later, where he graduated from 
high school with disappointing grades in general. 

Feeling inspired, he returned to the UK in 2003 to 
pursue a career in bartending and shop-keeping – 
eventually finding himself in the unusual position of 
trying to sell houses in London during the economic 
crisis of 2008. It was around this time that he realised 

he was old enough that his high school grades probably no longer mattered, so he applied 
for university. His plan worked and he settled on an honours degree course in Geology at 
Brighton University. Here he graduated with marginally more success than high school in 
2011 and accepted a place in a master’s degree program at the University of Leeds. It was 
here that he discovered his love of Northern England pubs and geophysical modelling. He 
graduated in 2012 and promptly returned to Cape Town, where he worked in airborne 
geophysical exploration for the mineral and hydrocarbon industry around Africa and the 
Middle East. It was in Cape Town he met his future wife (Liza) in 2013. In 2016 they decided 
to move to the Netherlands despite having never been there. 

In the meantime, he had applied for a PhD position at Utrecht University in mapping 
groundwater salinity using airborne electromagnetics. His love of rocks had taken him this 
far, and despite now living in a country without any, he happily accepted the offer of a PhD 
position and started in 2016. His four-year PhD programme was completed six years later in 
2022. He now works as researcher at Deltares in Utrecht, focusing mainly on geophysics and 
groundwater modelling. He currently resides in the Utrecht with his wife and cat. 



UTRECHT STUDIES IN EARTH SCIENCES

Utrecht University
Faculty of Geosciences
Department of Physical Geography

263ISSN  2211-4335

U
S

E
S

 2
6

3
Ju

d
e K

in
g

 –  A
irb

o
rn

e electro
m

ag
n

etic m
ap

p
in

g
 o

f co
astal g

ro
u

n
d

w
ater salin

ity

Airborne electromagnetic
mapping of coastal

groundwater salinity

Quantifying uncertainty and investigating 
methodological improvements

Jude King


	Lege pagina



