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ABSTRACT 
 
The three-dimensional computer code MOC3D (Konikow et al., 1996) is adapted for density 
differences: MOCDENS3D. As a result, it is possible to model transient three-dimensional 
groundwater flow in large-scale hydrogeologic systems where non-uniform density distributions 
occur. A special field of application is the simulation of salt water intrusion in coastal aquifers. 
The groundwater flow equation is solved by the MODFLOW module of MOCDENS3D. Density 
differences are taken into account through adding buoyancy terms to the RHS term of the basic 
groundwater flow equation of MODFLOW. The advection-dispersion equation is solved by the 
MOC module, using the method of characteristics. Advective transport of solutes is modeled by 
means of particle tracking and dispersive transport by means of the finite difference method. An 
advantage of applying the method of characteristics is that the condition of spatial discretisation 
is not strict. As a consequence, the displacement of fresh, brackish and saline groundwater in 
large-scale hydrogeologic systems can easily be modeled. Finally, the evolution of a freshwater 
lens at a circular sandy island is shortly discussed. 
 

INTRODUCTION 
 
Developments in the field of computer codes for simulating 3D density dependent groundwater 
are advancing rapidly. Several 3D codes, such as HST3D (Kipp, 1986), SWICHA (Huyakorn et 
al., 1987), METROPOL (Sauter, 1987), SWIFT (Ward, 1991), FEFLOW (Diersch, 1994), are 
already capable of simulating complex geometries, whereas other codes are in a (final) testing 
phase such as MVAEM1 (Strack, 1995) and FAST-C 3D (Holzbecher, Bear et al, 1998). 
Nevertheless, still substantial restrictions remain. For instance, when geometries are large-scale, 
viz. at least several hundreds of square kilometres by a few hundreds metres depth, sophisticated 
hardware such as a UNIX background and many tens to hundreds of Mb’s Extended Memory is 
still required to cope with the enormous number of elements. Moreover, there is the perpetual 
data availability problem, since 3D modeling needs a large amount of data sets for calibration 
and verification whereas reliable data sets are in practice rare. As such, it has to be accepted that 

                                                           
1 Note that the code MVAEM still neglects the process of hydrodynamic dispersion, as only advection is taken into 
account. This is probably not allowed when large time periods are considered or when groundwater velocities are 
substantial (e.g. in case of high extraction rates of groundwater). 

 



data collection will always lag behind the developments in computer possibilities (Oude Essink 
& Boekelman, 1996). 
In this paper, a new computer code for three-dimensional density dependent groundwater is 
presented, which is based on the computer code MOC3D (Konikow et al., 1996). Note that the 
Testing and Research Institute of the Netherlands Waterworks (KIWA) is simultaneously 
developing a combination of MODFLOW (adapted for density differences) and the solute 
transport code MT3D96 (Schaars, 1996; Van Gerven & Schaars, 1998, see also this 
MODFLOW’98). It is relatively easy to adapt MOC3D, from now on called MOCDENS3D, in 
order to model transient 3D density dependent groundwater flow. An important feature of this 
code is that it can model large-scale geometries by using coarse elements without causing severe 
numerical implications. In this setup, also hydrodynamic dispersion is taken into account. 
The code can simulate transient groundwater flow of fresh, brackish and saline groundwater in 
coastal areas where non-uniform density distributions occur. For instance, the code can be 
applied to optimize sustainable groundwater extraction rates in favour of drinking water supply 
in coastal aquifers where upconing of saline groundwater is possible. Note that, in addition, 
normal computations can still be executed with ‘ordinary’ solute transport without density 
differences, such as the displacement of contaminations through the subsoil. 
In this paper, the most important features of MOCDENS3D are shortly discussed. In addition, the 
basic finite difference equation of the MODFLOW module, adapted for density differences, is 
derived by applying so-called freshwater heads. A problem on the evolution of a freshwater lens 
in a 3D phreatic aquifer, schematised by a sharp interface between fresh and saline groundwater, 
is shortly discussed. Finally, some conclusions are drawn. 
 

CHARACTERISTICS OF MOCDENS3D 
 
MOCDENS3D (in total some 15000 FORTRAN lines including remarks), which is in fact 
MOC3D (Konikow et al., 1996) but now adapted for density differences, consists of two robust 
modules which are fully integrated with each other. First, it comprises a solute transport module, 
here called the MOC module2, to displace the density field (originally, this module was applied 
to simulate ordinary solute transport). Second, it comprises a groundwater flow module, here 
called the MODFLOW module3, adapted for density differences to compute transient density 
dependent groundwater flow. This feature is possible by inserting a so-called buoyancy term in 
the basic equation of the MODFLOW module, a relatively simple adaptation as can be seen in 
the following section. The velocity field distribution is derived from the computed freshwater 
head distribution. Subsequently, the velocity field is used in the MOC module to simulate 
changes in density field. As such, the two modules are coupled with each other. Some 
characteristics of MOCDENS3D are: 

                                                           
2 MOC3D (Konikow, Goode & Hornberger, 1996), version 1.1 of  May 1997, is the 3D successor of MOC 
(Konikow and Bredehoeft, 1978). 
3 The MODFLOW module is just MODFLOW-96 (McDonald and Harbaugh, 1988; Harbaugh and McDonald, 
1996), version 3.0 of December 1996, but now fully integrated in MOC3D. 

 



• the code takes into account hydrodynamic dispersion (molecular diffusion as well as 
mechanical dispersion) and chemical reactions such as adsorption (by means of a retardation 
factor) and radioactive decay, 

• solute transport is modeled through splitting up the advection-dispersion equation into two 
components: (a) an advective component which is solved by means of a particle tracking 
technique (the so-called Method Of Characteristics: MOC), and (b) a dispersive component 
which is solved by the finite difference method. Due to the splitting up, numerical dispersion 
can be kept within bounds, even if coarse elements and small longitudinal dispersivities are 
used (Oude Essink & Boekelman, 1996). As such, numerical problems don’t occur when 
elements are measured e.g. 250*250*10 m in combination with a longitudinal dispersivity of 
αL=1 m. Especially in this characteristic MOCDENS3D differs from codes which solve the 
partial differential equations with the standard finite element or finite difference methods. 
With these methods, severe numerical implications can occur when the spatial discretisation 
condition is not met. This spatial discretisation condition is characterized by the so-called 
grid Peclet number4 (Frind & Pinder, 1982; Daus et al., 1985; Kinzelbach, 1987; Oude 
Essink & Boekelman, 1996). 

• the variation of the pore volume of the elements should be relative small, as otherwise the 
demand of mass conservation of solute is violated too much5. This numerical characteristic is 
related to the particle tracking technique; as a matter of fact, the 3D solute transport code 
MT3D (Zheng, 1990) suffers the same problem. In this paper, the applied version of 
MOCDENS3D uses a uniform grid. 

• though numerical dispersion is limited, deviations in the mass balance of solute transport still 
occur. A substantial difference between the initial mass (in the appearance of the 
concentration distribution) and the mass after a large number of particle displacements can 
arise, in particular when discretisation of the elements is coarse or when time steps are large. 

 
ADAPTATION OF THE MODFLOW MODULE FOR DENSITY DIFFERENCES 

 
The discretised continuity equation for a uniform grid in MODFLOW is as follows (McDonald & 
Harbaugh, 1988): 

Qi Ss
h
t

V� = ∆
∆

∆         (1) 

Rewriting this equation in the well-known MODFLOW terms, using the six volume flows Qi, 
gives (see the description of the symbols at the end of the paper): 
                                                           
4 The grid Peclet number is defined as v∆x/Dh, where v=effective velocity [L T-1], ∆x=characteristic length of the 
element [L] and Dh= hydrodynamic dispersion [L2 T-1]. At great grid Peclet numbers, e.g. greater than 10 (in theory 
>2), standard finite element and finite difference methods can cause severe numerical problems, such as non 
convergence of the solution of the groundwater flow equation, unacceptable numerical dispersion and over- and 
undershooting of the solute concentration values. Great grid Peclet numbers especially occurs in case of coarse 
discretisation of large-scale hydrogeologic systems in combination with small longitudinal dispersivities. 
5 As a matter as fact, the density dependent groundwater flow equation in the MODFLOW module could be 
discretised for elements with a variable pore volume by taking into account density differences in horizontal 
direction (see e.g. Olsthoorn, 1996). However, elements in the MOC module are considered to be uniform. 
Therefore, adaptation of density differences in horizontal direction is unnecessary and, as such, not applicable. 
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          (2) 
The attention is focused in the vertical volume flow in element i,j,k, see figure 1. First the basic 
vertical Darcian velocity (specific discharge) is defined as follows (note that the z-axis is 
pointing downward, as used in MODFLOW): 
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Under normal conditions, MODFLOW applies piezometric heads. However, here so-called 
freshwater heads6 are used because density differences are taken into account. Introduction of 
this freshwater head hf gives (z-axis is pointing downward): 
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Inserting of eq. (4) in eq. (3) gives:  
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In many cases small viscosity differences can be neglected if density differences are considered 
in normal hydrogeologic systems (Verruijt, 1980; Bear & Verruijt, 1987). Equation (5) can then 
be written as7: 
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       (6) 

where kz=κzρfg /µ=hydraulic conductivity for fresh water and (ρ−ρ f) /ρf=the so-called buoyancy 
term. Discretisation of this buoyancy term, which is required in the MODFLOW module, gives 
(see figure 1b): 
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The MOC module relates the density ρi,j,k to the solute concentration Ci,j,k in groundwater for 
each element through the equation of state: 

ρ ρ
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1 , ,      or    ρ ρ    (8) βi, j,k = +f Ci j k( , , )1

                                                           
6 Definition: fictive piezometric head as will be measured when the observation well is filled with fresh groundwater 
instead of saline or brackish. 
7 Note that in cases with high groundwater densities, such as brine transport in salt domes with densities up to 1200 
kg/m3, eq. (5) instead of eq. (6) should be applied. Moreover, additional cross-coupling terms for Darcy’s and Fick’s 
laws are necessary to take into account the dependency of fluid motion to brine transport, and vice versa (e.g. 
Hassanizadeh and Leijnse, 1988). These terms are not included in MOCDENS3D. As such, under circumstances 
with high salt concentrations, sophisticated codes such as METROPOL should be applied. 

 



where Ci,j,k=solute concentration in groundwater in element i,j,k (in mg TDS/l); Cs=reference 
solute concentration in saline groundwater (e.g. 35000 mg TDS/l); β=coefficient of 
compositional expansion (e.g.=0.025/35000=7.14≅ 10-7 l/mg TDS). Rewriting eq. (6) in 
discretised terms of the MODFLOW module and using eq. (7) gives for the flow at the top of 
element i,j,k: 
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and for the flow at the bottom of element i,j,k: 
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Figure 1: MODFLOW elements with corresponding density terms. 
 
The vertical Darcian velocity q is multiplied by the area ∆rj ∆ci to derive the volume flow Q. By 
using the conductance value in vertical direction, CVi,j,k-1/2 = KVi,j,k-1/2 ∆rj ∆ci / ∆vk-1/2 
(McDonald and Harbaugh, 1988), eq. (9) becomes: 

)Qi, j,k-1/2 CVi, j,k-1/2 hf,i, j,k-1 hf,i, j,k vk-1/2= + − + −
�
�
� BUOYi j k, , 1∆    (11) 

Similar for eq. (10): 
Qi,j,k+1/2 CVi,j,k+1/2 hf,i,j,k+1 hf,i,j,k vk+1/2= + − − �

�
��

�
� BUOYi j k, , ∆    (12) 

As can be seen, in Qi,j,k-1/2 the density contribution is positive (+CVi,j,k-1/2BUOYi,j,k-1∆vk-1/2) 
whereas in Qi,j,k+1/2 it is negative (−CVi,j,k+1/2BUOYi,j,k ∆vk+1/2). This is because the direction of 
flow at the bottom of element i,j,k Qi,j,k+1/2 is the opposite to the direction of the z-axis and the 
gravity. In the MOC module the thicknesses THCKi,j,k of all elements in the grid are known: 
consequently, ∆vk-1/2 and ∆vk+1/2 can be rewritten as (THCKi,j,k-1+THCKi,j,k)/2 and 
(THCKi,j,k+THCKi,j,k+1)/2, respectively (figure 1b). 
Summarizing, three adaptations are necessary to make MOC3D suitable for density dependent 
groundwater flow: 

 



a. subtract for each element the two buoyancy terms of eq. (11) and (12) from the right hand 
side term RHSi,j,k in eq. (2) of the MODFLOW module for each time the groundwater flow 
equation is solved: 

   (13) 
RHSi j k
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old CVi j k BUOYi j k THCKi j k THCKi j k

CVi j k BUOYi j k THCKi j k THCKi j k

, , , , , , / , , ( , , , , ) /

, , / , , ( , , , , ) /

� − − − − +

+ + + +

1 2 1 1 2

1 2 1 2

b. add the two buoyancy terms of eq. (11) and (12) to the volume flows Qi,j,k-1/2 and Qi,j,k+1/2 
respectively. These flows are used in the MOC module to simulate solute transport by 
means of particle tracking: 

Qi,j,k-1/2
new Qi,j,k-1/2

old CVi,j,k-1/2� + − − +BUOYi j k THCKi j k THCKi j k, , ( , , , , ) /1 1 2  

Qi,j,k+1/2
new Qi,j,k+1/2

old CVi,j,k+1/2� − + +BUOYi j k THCKi j k THCKi j k, , ( , , , , ) /1 2  (14) 

c.       transform piezometric heads h to freshwater heads hf: 
hi, j,k � hf i j k, , ,         (15) 

As a matter of fact, these adaptations have already been executed by Lebbe (1983) for the 2D 
solute transport code MOC (Konikow & Bredehoeft, 1978). Note again that hf has become a 
fictive freshwater head as density is taken into account. Therefore, streamlines (or velocity 
vectors) are not perpendicular to the freshwater head contour lines. However, in hydrogeologic 
systems with ordinary fresh groundwater nothing changes with respect to the original 
MODFLOW computations. 
 

SIZE OF THE TIME STEP ∆t 
 
In case of groundwater flow with variable densities, the velocity field depends on the density 
distribution through the freshwater head distribution. When fresh, brackish and saline 
groundwater displace, the density distribution changes accordingly. After a while, the freshwater 
head distribution and velocity field should be computed once again, as otherwise the velocity 
field does not correspond with the current density distribution. Consequently, the size of the time 
step ∆t for the groundwater flow equation should be known in advance, since it determines how 
often the velocity field is computed again. Therefore, it is important to determine the size of the 
time step ∆t. This size depends on the pace of the solute process involved as a large time step 
could cause an unrealistic solution. For instance, the time step ∆t in large-scale hydrogeologic 
systems in coastal dune areas can be in the order of (several) years (Lebbe, 1983; Oude Essink, 
1996), whereas near severe groundwater extractions the density distribution can change so fast 
that a smaller time step is needed (in the order of months). In MOCDENS3D, the size of the time 
step is manually determined. The so-called CFL (Courant-Friedrichs-Lewy) condition, which is 
applied by the MOC module for solute transport as a stability criterion (Konikow and 
Bredehoeft, 1978), could be utilized to estimate an acceptable size of the time step for the 
groundwater flow equation. The size of the time step is determined on the basis of experience 
and/or through trial-and-error (e.g. by means of several test computations: when the density 
distribution changes rapidly, small time steps are required). 
 
 

 



BENCHMARK PROBLEMS WITH MOCDENS3D 
 
A benchmark problem for transient 3D density dependent groundwater flow is needed to validate 
the computer code MOCDENS3D correctly. Unfortunately, no 3D analytical solution is available 
in which transport of salt by means of advection and hydrodynamic dispersion is considered. It 
used to be common practice to apply Henry’s problem (2D) as a benchmark for groundwater 
codes which simulate sea water intrusion in coastal aquifers (Henry, 1964). However, it appeared 
that Henry’s analytical solution is not accurate (Segol, 1994). If, however, the benchmark is 
reduced to a sharp interface between fresh and saline groundwater, then quite a few analytical 
solutions exist, such as the upconing problem of Bear & Dagan (1964), sharp interface problems 
in unconfined, confined and semi-confined situations (e.g. Van Dam, 1983) as well as the 
stationary vertical sharp interface of Verruijt (1980). Note that MOCDENS3D has already been 
tested for the vertical sharp interface and a fingering problem (Oude Essink, 1998a) as well as for 
the evolution of a freshwater lens in a one-dimensional aquifer (Oude Essink, 1998b). 
 

EVOLUTION OF A FRESHWATER LENS IN A PHREATIC AQUIFER 
 
In this paper, a transient sharp interface between fresh and saline groundwater in an axial-
symmetric phreatic aquifer is used as a ‘benchmark’. An analytical solution is derived by 
Boekelman (1998). He considered a circular sandy island with a freshwater lens evolving due to 
natural groundwater recharge (see figure 2a). 

Figure 2: a. The sharp interface at a circular island; b. Schematic representation of the problem. 
 
The governing equations for this situation are: 
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Note that eq.(18) comprises two transient terms. Combination of these equations gives: 
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This is not a linear differential equation. Hence, the equation cannot be solved analytically. 
However, an approximate solution can be found if it is assumed that at each moment the shape 
of the lens is conformable to the shape of the lens in the steady-state situation (t64). If so, the 
only difference is a time dependent factor F(t). This results in eq. (20): 

                                              H(r, t) =  F(t) f(R2 - r2 )
2 1k α α( + )

)

    (20) 

                                              for  t = :   F(t) = 1∞  (standard analytical solution)  (21) 
                                              for  t = 0:    F(t) = 0      (22) 

Eq. (20) is combined with eq. (19) to find the best solution, after which the differential equation 
is integrated from r=0 to r=R. As a consequence, a solution for F(t) can be found which satisfies 
the differential equation on an average. This leads to the following formula for F(t) (Boekelman, 
1998): 

(                                              F(t) = tanh t / τ      (23) 
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k f

τ α
α

2
3
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     (24) 

The factor τ is a time constant (unit of time) which comprises the characteristics of the geometry. 
For instance, for t=τ and 3τ, tanh(t/τ).0.761 respectively .0.995.1. This implies that at t=3τ, the 
shape of the freshwater lens has nearly reached the steady-state situation. Boekelman also derived 
formulas for the discharge Q and the growth of the freshwater lens. In addition, a similar 
derivation is given for a one-dimensional elongated island (Boekelman, 1998).  
Based on the thickness of the freshwater lens H, the volume of the lens can be determined: 

                                              V(t) =  f R2  tanh (t /π τ )     (25) 
The steady-state volume of the freshwater lens (at t64) is equal to: 

                                              V( ) = f R
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This formula obviously corresponds with the straightforward formula based on the form of the 
lens: V=2π/3 n (1+α) Hmax R2, where Hmax=H(0,4)=maximum depth of the freshwater lens (m). 
The following parameter set is assumed in this case (figure 2b): α=0.025, R=2000 m, f=0.36 
m/yr, k=20 m/day, n=0.35 and Dmol=0 m2/s, αL=αΤΗ=αΤV=0 m (no hydrodynamic dispersion). 
With these values, Hmax=H(0,4)=62.02 m; the time constant τ=15049 days or 41.20 years and 
V(t)=186.4≅ 106≅ tanh(t/ τ) m3. For the numerical computations the following parameters are 
applied: 27 particles per element and the convergence criterion for the groundwater flow 
equation (freshwater head) is equal to 10-8 metre. The total simulation time is 400 years. The 
bottom is impervious whereas at the four sides a hydrostatic condition occurs. At the top of the 
system, a constant freshwater head exists at the sea and a constant natural groundwater flux at the 
island. Two sets of discretisation are considered: a) 40*40*15= 24000 elements: ∆x=250 
m*∆y=250 m*∆z=10 m, ∆t=0.25 yr; and b) 100*100*15= 150000 elements: ∆x=100 m *∆y=100 
m*∆z=10 m, ∆t=0.25 yr (since this problem is symmetric in the x-axis as well as the y-axis only 
1/4 of geometry could be used for reasons of computational efficiency). At the initial situation, 

 



the aquifer contains only saline groundwater. Figure 3 gives the evolution of the freshwater lens 
at six moments in time. Though numerical dispersion causes brackish elements, the numerical 
result corresponds with the analytical solution.  
 

 
Figure 3: Evolution of the freshwater lens: transient sharp interface between fresh and saline 
groundwater for the case with 40*40*15 elements. 
 
In figure 4, the increase in volume of the freshwater lens can be seen. Note that in this 
comparison, the volume of the freshwater lens derived by the phreatic part hf is also taken into 
account as in the numerical situation the total flux f (=natural groundwater recharge) is inserted 
in the aquifer. As can be seen, the numerical results approach the analytical solution, though they 
don’t really match each other. This is caused by various reasons. First of all, the analytical 
solution suggests an aquifer where vertical groundwater flow is neglected, whereas 
MOCDENS3D simulates vertical groundwater flow as well. This implies that in the numerical 
computations the outflow of fresh groundwater, equal to fπR2, has to exit the aquifer with very 

 



high vertical velocities at the border r=R (total outflow length=2πR). This problem of the 
outflow of fresh groundwater is not considered in the analytical situation. Second, elements with 
brackish groundwater are created due to numerical dispersion in the computer code. As a 
consequence, groundwater near the interface is flowing different than it does in the analytical 
situation. 
 

 
Figure 4: Evolution of the volume of the freshwater lens. The volume is determined by counting 
the number of elements with a concentration smaller than 5000 TDS mg/l (e.g. at t=400 year, 
882 and 5080 elements <5000 TDS mg/l for discretisation a. and b. respectively). 
 

CONCLUSIONS 
 
MOCDENS3D can be used to model transient three-dimensional density dependent groundwater 
flow. The adaptation of the groundwater flow equation of the MODFLOW module is relatively 
simple. The evolution of a freshwater lens in a phreatic aquifer can be simulated, though 
substantial numerical dispersion takes place. A proper selection of model parameters such as size 
of the elements and length of the time step ∆t can reduce the error in solute mass balance. 
 

FUTURE DEVELOPMENTS 
 
Recent developments with MODFLOW are impressive. From a geophysical point of view, it is 
interesting to combine MODFLOW with a code such as RT3D for multi-component transport. 
As the partial differential equations for solute transport and heat transport are in fact analogous, it 
could be possible to simulate heat and composition transport in porous media by applying two  

 



components, coupled with the motion of fluid through the equation of state. As a consequence, 
MODFLOW and RT3D might be applied to simulate groundwater flow in porous media on a 
continental scale where compositional as well as temperature differences should be taken into 
account (e.g. double diffusive convection processes). 
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COMPUTER ANIMATION OF THE EVOLUTION OF THE FRESHWATER LENS 
 
It is possible to download animations of the evolution of the freshwater lens in the axial-
symmetric situation from the following ftp-site: ‘ftp://ftp.geo.uu.nl/pub/people/goe’. In addition, 
the web-site ‘http://www.geo.uu.nl/~goe/’ can be visited for more information on other research 
activities of Gualbert Oude Essink. 
 

NOTATION 
 
Ci,j,k               = solute concentration in groundwater in element i,j,k in mg TDS/l [M L-3] 
Cs             = reference solute concentration in saline groundwater: e.g. 35000 mg TDS/l [M L-3] 
CCi-1/2,j,k   = MODFLOW term: horizontal conductance between the elements i-1,j,k and i,j,k [L2 T-1] 
CRi,j-1/2,k   = MODFLOW term: horizontal conductance between the elements i,j-1,k and i,j,k [L2 T-1] 
CVi,j,k-1/2   = MODFLOW term: vertical conductance between the elements i,j,k-1 and i,j,k [L2 T-1] 
Dmol          = molecular diffusion [L2 T-1] 
f              = natural groundwater recharge [L T-1] 
g               = gravity [L T-2] 
H              = thickness of the freshwater lens [L] 
Hmax = H(0,4)=maximum depth of the freshwater lens at r=0 metre and t=4 [L] 
HCOFi,j,k   = term in the basic equation of MODFLOW for element i,j,k, consisting of terms dependent to  
                  the freshwater head hf [L2 T-1] 
hf              = freshwater head [L] 
KVi,j,k-1/2  = MODFLOW term: vertical hydraulic conductivity between the elements i,j,k-1 and i,j,k [L T-1] 
k             = hydraulic conductivity in sand-dune area [L T-1] 
kz             = hydraulic conductivity in vertical direction [L T-1] 
n              = porosity [-] 
p              = pressure [M L-1 T-2] 
qz = vertical Darcian velocity (or vertical specific discharge) [L T-1] 
RHSi,j,k    = term in the basic equation of MODFLOW for element i,j,k, consisting of terms independent to  
                  the freshwater head hf, such as sources and sinks. In case of density dependent computations 
               the buoyancy terms are added to this term [L3 T-1] 
R              = radius of the sand-dune area [L] 
Ss  = specific storage [L-1] 
v = effective velocity [L T-1] 
V(t) = volume of the freshwater lens as afunction of time [L3] 
TDS = total dissolved solutes: concentration of dissolved solutes in groundwater in mg/l [M L-3] 
BUOYi,j,k = buoyancy term, the relative density difference between the elements i,j,k and i,j,k+1 [-] 
z = elevation head (z-axis is pointing vertically downward) [L] 
α = relative density difference=(ρs −ρf)/ρf [-] 

 



αL = longitudinal dispersivity [L] 
αΤΗ,αΤV = transversal dispersivity, respectively horizontal and vertical [L] 
β = coefficient of compositional expansion: e.g. 7.14≅ 10-7 l/mg TDS [L3 M-1] 
∆h = change in head over a time interval of length ∆t [L] 
∆ci = length of element i,j,k in column direction [L] 
∆rj = width of element i,j,k in row direction [L] 
∆t = length of the time step to compute again the groundwater flow equation [T] 
∆vk-1/2       = thickness of element i,j,k in layer direction [L] 
∆V = volume of the element [L3] 
κz = intrinsic permeability in vertical direction [L2] 
µ = dynamic viscosity [M L-1 T-1] 
ρi,j,k           = density of groundwater in element i,j,k [M L-3] 
ρf              = density of fresh groundwater: 1000 kg/m3  
ρs              = density of saline groundwater: 1025 kg/m3 
τ               = time constant [T] 
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