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General introduction

The development of models has been the direct outcome of the need to integrate our existing
theories with all physical and measured data. The key factor in this development is the
(still ongoing) breakthrough in computation technologies, because it is the digital computer
which is capable to store, to manipulate data and to execute complex calculations beyond
the physical ability of man, yet within his mental capacity. In order to avoid that you, as
a hydrogeologist-in-spe, will get stranded in the fine art of modelling, these lecture notes!
are written to show you some ropes in the fantastic, tempting, and yet creepy world of
groundwater modelling.

The presence course, which comes under the ICHU?, is called Groundwater Modelling
I. The aim of this course is to gain more insight in the behaviour of groundwater processes,
quantitatively as well as qualitatively, by means of numerical modelling. These lecture
notes are divided into two parts:

I. Modelling protocol
in this part, the procedure of modelling hydrologic processes is described. A hydro-
geologist should advance this procedure, from coping with a hydrological problem
towards solving the problem by means of (numerical) modelling, while skipping all
kinds of traps on the track; and

[1. Groundwater modelling
in this part, features of groundwater flow and solute transport are considered and
numerical solution techniques of partial differential equations are discussed. Moreover,
some groundwater computer codes will be treated.

During the computer practicals, attention will be paid to the modelling of standard problems
by means of the codes MODFLOW and MOC(3D). Primarily knowledge should comprise
basic knowledge on hydrogeologic processes such as the Darcy equation and stationary
groundwater flow; as well as basic knowledge on discretisation techniques such as Taylor
series and simple numerical solution techniques. For students of the Department of Physi-
cal Geography, it is strongly recommended to have followed Groundwaterhydrology (HYDB).
For all students, the lectures Hydrological Transport Processes (L3041/KHTP) are also rec-
ommended.

Gualbert Oude Essink, September 2000
g.oude.essink@geo.uu.nl

'Parts of these lecture notes are based on the lecture notes Hydrological models (f15D) of the Delft
University of Technology (Oude Essink, G.H.P., Rientjes, T. & R.H. Boekelman, 1996).

2The Interfacultair Centrum voor Hydrologie Utrecht (ICHU) is a centre which provides a so-called study-
path Hydrologie to students from the Faculty of Earth Sciences and Department of Physical Geography.
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Chapter 1

Introduction

1.1 Historical developments towards hydrologic modelling

The science of hydrology began with the conceptualisation of the hydrologic cycle. Much of
the speculations of the Greek philosophers was scientifically unsound. Nonetheless, some of
them correctly described some aspects of the hydrologic cycle. For example, Anaxagoras of
Clazomenae (500-428 B.C.) formed a primitive version of the hydrologic cycle (e.g. the sun
lifts water from the sea into the atmosphere). Another Greek philosopher, Theophrastus
(circa 372-287 B.C.) gave a sound explanation of the formation of precipitation by conden-
sation and freezing. Meanwhile, independent thinking occurred in ancient Chinese, Indian
and Persian civilizations.

During the Renaissance, a gradual change occurred from purely philosophical concepts
of hydrology toward observational science, e.g. by Leonardo da Vinci (1452-1519). Hydraulic
measurements and experiments flourished during the eighteenth century, when Bernoulli’s
equation and Chezy’s formula were discovered. Hydrology advanced more rapidly during
the nineteenth century, when Darcy developed his law of porous media flow in 1856 and
Manning proposed his open-channel flow formula (1891).

However, quantitative hydrology was still immature at the beginning of the twentieth
century. Gradually, empiricism was replaced with rational analysis of observed data. For
example, Sherman devised the unit hydrograph method to transform effective rainfall to
direct runoff (1932) and Gumbel proposed the extreme value law for hydrological studies
(1941). Like many sciences, hydrology was recognized only recently as a separate disci-
pline (e.g. in 1965, the US Civil Service Commission recognized a hydrologist as a job
classification).

Over the last decades, the subject of interest from society to hydrology gradually
changed. Some two decades ago, the main subject was of a quantitative nature: how much
water is available, how much can be extracted, what are the effects on piezometric heads,
etc. Nowadays, also the qualitative aspect of water becomes more and more important,
such as pollution of surface water and groundwater by acid rain (e.g. due to agricultural
and industrial activities).

The spectacular boom in computer possibilities during recent times (viz. decades and
especially the last years) makes hydrologic analysis possible on a larger scale. Figure 1.1
shows that the improvements of desktop computer systems are outstanding. As a result,
hydrologists have analysed problems in more detail and with shorter computation intervals
than before. Complex theories describing hydrologic processes have been applied using
computer simulations. Also interactions between surface water systems and groundwater

3
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Figure 1.1: Relative performance improvements of a 6000 US$ computer as a function of three
moments in time relative to 1987 (no parallel processing) [after Cutaia, 1990].

systems in terms of quality and quantity became within the reach of the hydrologist. Vast
quantities of observed data have easily been processed for statistical analysis. Moreover,
during the past decade, developments in electronics and data transmission have made pos-
sible to retrieve instantaneous data from remote recorders (e.g. satellites), which lead to
the development of real-time programmes for water management (e.g. flood forecasting for
the river Maas).

1.2 Why modelling ?

Hydrology is a subject of great importance for people and their environment. Practi-
cal applications of hydrology are found in tasks such as water supply (both surface and
groundwater), wastewater treatment, irrigation, drainage, flood control, erosion and sedi-
ment control, salinity control, pollution reduction, and flora and fauna protection.

Mankind has always been anxious to comprehend and subsequently control the processes
of the hydrologic cycle. Many hydrologic phenomena are extremely complex, and thus, they
may never be fully understood. However, the one that knows the hydrologic processes best
is you, the hydrogeologist.

During the past, the processes of the hydrologic cycle were only conceptualised, and
causes and effects were just described in relatively simple relations. For example, ancient
Roman times, water courses were constructed without preceding sound (theoretical) sci-
entific research, yet the construction lasted for ages. Nowadays, however, the state of
technology makes it possible to even understand rather complex processes of the hydrologic
cycle by means of executing a model on the computer.

Some definitions of a model are given here:

“a model is a simplified representation of a complex system.”

or:

“a model is any device that represents an approximation of a field situation”
[Anderson & Woessner, 1992].
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or:
“a model is a part of the reality for the benefit of a specific purpose.”

or:

“a model is a computer code filled up with variables and parameters of the specific
system.”

The purpose of a model is:

"to replace reality, enabling measuring and experimenting in a cheap and quick
way, when real experiments are impossible, too expensive, or too time-consuming’
[Eppink, 1993].

Modelling (also called simulation or imitation) of specific elements of the real world could
help you, as a hydrologist, considerably in understanding the hydrological problem. It is an
excellent way to help you organise and synthesize field data. Modelling should contribute
to the perception of the reality, yet applied on the right way. In fact, hydrological models
should énly be applied to help the user with the analysis of a problem, nothing more, nothing
less. Remember that it is only part of the way to understand or percept a hydrological
process.

1.3 Some drawbacks in modelling

Microcomputers now provide many hydrologists new computational convenience and power.
The evolution of hydrological knowledge and methods brings about continual improvement
in the accuracy of solutions to hydrological problems. However, the continuous supply
of hydrological models and their sophisticated graphical modules makes it very easy that
the primary function of modelling (“only to help the user with the analysis of a problem”)
might be in danger of being overlooked. Formulating of and simulating with a hydrological
model can be accomplished rather easily, however, checking the correctness of the model
description, the applied concept of the model, the applied schematisation of the process
involved, the applied simplifications, the applied parameters and the accuracy of the results
may be very complex. Therefore, a critical view upon the application of computers in
hydrology is very useful, especially on relative new topics such as modelling of acid rain,
nitrification and NAPL’s?.

Unfortunately, models have been applied by just anybody, sometimes without really
awareness of its potentials and impossibilities. This might lead to serious errors in the
conclusions. It is very tempting to overestimate the predictive and interpretive potential
of models, in particular if sophisticated graphical modules make the simulations realistic
and reliable. Note that even a wrong concept may well produce a reasonable prediction.
Knowing this, it’s a logic phrase, that “models which reproduce results that exactly fits
available historical records should be treated with suspicion.”

Another reason for scepticism is the data availability. A well-known statement concern-
ing data applied in models is:

garbage in, garbage out !

nonaqueous phase liquids (NAPL’s) are complex dissolved substances which contaminate porous media.
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It may occur that data are inadequate, e.g. due to poor quality, to support modelling results.
Not taking into account the uncertainty of the model parameter during the calibration phase
would inevitably lead to inaccurate results. Therefore, results and conclusions of modelling
are rather disputable when the reliability of the results is not given at the same time. As
today’s computer codes and graphics packages can easily produce impressive results, one
might be misled to model anyway, while it should be ethically sound to advice against
modelling. Hence, a responsibility rests upon the hydrologist to provide the best analysis
that knowledge and data will permit. Yet, an element of risk is always present, e.g. a more
extreme event than any historically known can occur at any time.

1.4 Definitions

Before going on, some keywords (on an alphabetical order), applied in these lecture notes,
are defined here:

e Computer code
A computer code (or computer programme) describes and solves (partial differential)
equations by means of numerical methods on a digital computer.

e Hydrologic system
“a set of physical, chemical and/or biological processes acting upon an input variable
or variables, to convert it (them) into an output variable (or variables)” [Dooge,
1968]. See figure 1.2.

Flow of matter
and/or energy

and/or information

. Hydrologic
system

Figure 1.2: Schematic representation of a hydrologic system [after Domenico, 1972].

or:
“a structure or volume in space, surrounded by a boundary, that accepts water and
other inputs, operates on them internally, and produces them as output” [Ven Te
Chow, Maidment & Mays, 1988].

e Hydrology
“Hydrology is the science of the occurrence, the behaviour and the chemical and phys-
ical properties of water in all its phases on and under the surface of the earth, with
the exception of water in the seas and oceans.” [CHO-TNO, 1986].

e Parameter
a quantity characterising a hydrologic system and which remains constant in time.
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For example, the area of a hydrogeologic system is a parameter characterising the
system. This definition is distinguished from the erroneous definition that any mea-
surable characteristic of a hydrologic system is a parameter, whether time-variant or
time-invariant.

e Variable or variate
a characteristic of a system which is measured, and which assumes different values
measured at different times.

In addition, here follows an outline of the disciplines involved (in Dutch !) [OCV, 1997]:

e Fysische geografie
omuat de studie van het terrestrische deel van het aardopperviak. Dit aardopperviak
wordt in deze discipline opgevat als een samenhangend geheel van abiotische en bi-
otische elementen: een geo-ecologisch systeem. In dit systeem zijn geomorfologisch,
bodemkundige en biologische componenten nauw verweven.

e Geochemie
omuat de studie van het védrkomen, en de verspreiding (verdeling) van de chemische
elementen en verbindingen in de lithosfeer, de hydrosfeer en de atmosfeer alsmede van
de chemische omzettingen en processen die in deze sferen plaats vinden. De relatie tot
de biosfeer is daarin begrepen. Veelal worden subdisciplines onderscheiden: bijv. anor-
ganische en organische geochemie, isotopengeochemie, hydrogeochemie, biogeochemie
en mariene geochemie.

e Geofysica

omuat de studie van de processen en de structuur van de vaste aarde met nadruk op
de observatie van fysische processen en velden en hun kwantitatieve (mathematisch-
fysische) modellering. De geofysica kent de subdisciplines: theoretische geofysica, seis-
mologie, tectonofysica, en paleo/geo-magnetische die gericht zijn op de planetaire fys-
ica en in het bijzonder op processen in de korst, lithosfeer en mantel, en de exploratie
geofysica welke gericht is op de opsporingsmethoden voor aardgas, olie, water, ertsen
en andere verrijkingen/verontreinigingen van de ondiepe ondergrond.

e Geologie

omuat de studie van de huidige gesteldheid van en de processen op en in de aarde en
betreft de reconstructie van hun veranderend verleden door analyse van het gesteente-
archief waarin de geschiedenis van het gehele aarde systeem en de evolutie van het
leven besloten ligt. De geologie kent traditioneel de volgende subdisciplines: mineralo-
gie, petrologie, vulcanologie, structurele geologie, tectoniek, stratigrafie, paleontologie
en sedimentologie. Afgeleide subdisciplines zoals exploratie-geologie en milieu-geologie
richten zich op respectievelijk de opsporing van delfstoffen en de paleoklimatologie/-
oceanografie/-geografie alsmede het terrestrische en marine milieubeheer.

e Hydrologie (somewhat different as defined above)
houdt zich bezig met de opslag en transport van water, over en onder het aardopper-
viak. De landfase van de hydrologische cyclus in al zijn onderdelen vormt het weten-
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schapsgebied. De Hydrologie heeft duidelijke relaties met de bodemkunde, fysische
geografie en meteorologie/klimatologie.

e Geohydrologie
houdt zich bezig met het voorkomen, de ruimtelijke verdeling, de verplaatsing en het
beheer van water onder het aardoppervlak

e Hydrogeologie
idem als geohydrologie, alleen grotere nadruk op de geologie

Many other keywords, such as deterministic, lumped and distributed, are defined separately
in the following chapter.



Chapter 2

Classification of mathematical models

2.1 Introduction

In general, three main classes of models can be distinguished: |. a physical model or scale
model, being a scaled-down duplicate of a full-scale prototype; Il. an analogue model', being
a physical process which is translated to the hydrologic process involved, such as electric
models (conduction of heat in solids?); and Ill. a mathematical model.

In these lecture notes, the third main class is described intensively, as nowadays, most
models are of that kind. Various definitions of a mathematical model exist, as subject to
the concept of the model and the field of application. Before going on, two commonly
applied definitions are given:

e “A mathematical model is a model in which the behaviour of the system is represented
by a set of equations, perhaps together with logical statements, expressing relations
between variables and parameters” [Clarke, 1973]. See also figure 2.1.

system characteristics

parameters
input Mathematical output
variables equations variables

1

conditions: initial and boundary

Figure 2.1: Parts of a mathematical model.

1This main class is often subdivided under physical models.

ZNote that the mathematical similarity between conduction of heat in solids and groundwater flow
through porous media has been discovered several decades ago. Analytical (exact) solutions for heat prob-
lems have been applied in (equivalent) groundwater flow problems, after conversion of parameters.

9
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o “A mathematical model simulates groundwater flow indirectly by means of a governing
equation thought to represent the physical processes that occur in the system, together
with equations that describe heads or flows along the boundaries of the model” [An-
derson & Woessner, 1992]. As you can read, this definition is specific for groundwater
flow.

In order to gain an overview of the types of mathematical models, they are classified
on the basis of various characteristics. As can be seen in the following sections, various
classifications of mathematical models are possible. The terms applied in the classifications
are just global indications. In the procedure of selecting the most suitable mathematical
model, proper use of these terms should guide you when the characteristics of available
mathematical models are quickly compared.

2.2 Based on the design of the mathematical model

This classification is based on the way the mathematical model is designed, e.g. how the
model domain or problem area is schematised; what the characteristics of the data are
(variables and/or parameters) and how they are utilised in the model.

Analytical model versus numerical model

An analytical model is a model that is based on (e.g. Laplace) transformations and the
hodograph method (conformal mapping). In a numerical model, the partial differential
equations are replaced by a set of algebraic equations written in terms of discrete values.
A numerical model is often based on computer codes. At this moment, numerical models
are available in great numbers.

Deterministic model versus stochastic model

A model is regarded deterministic, if all variables are regarded as free from random varia-
tion, or, if the chance of occurrence of the variables involved in such a process is ignored
and the model is considered to follow a definite law of certainty and thus not any law of
probability. A deterministic model is one that is defined by cause-and-effect relations. A
deterministic model treats the hydrologic processes in a physical way.

A model is regarded stochastic, if any of the variables are regarded as random variables,
having distributions in probability. Early stochastic approaches concentrated on linear or
multiple correlation and regression techniques to relate the dependent variables (e.g. dis-
charge out of an aquifer) to the independent variables (e.g. rainfall). With modern computer
abilities, methods to represent random variations in processes by means of the probabil-
ity laws became possible. Note that stochastic is a more general word than statistical, to
emphasize the spatial and time-dependence of the hydrologic variables related in the model.

Bear in mind that neither model always stands alone as a practical approach. For ex-
ample, the input of a deterministic model for determining the water balance in an aquifer
is usually based on measurements of rainfall and evaporation. Where this information is
limited, stochastic models can be employed to develop synthetic rainfall records, e.g. using
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the Monte Carlo simulation. Consequently, in this example, the output from the determin-
istic model is stochastic as the input is stochastic as well. Nonetheless, the structure of the
model itself remains deterministic.

Lumped model versus distributed model

A lumped model neglects the spatial distribution in the input variables and the parameters
in the model domain. A lumped model is a system with a particular quantity of matter,
whereas a distributed model is a system with a specified regions of space. For example,
a lumped model treats variables, such as natural groundwater recharge, in the area of a
catchment surface as a single (1D) unit, whereas a distributed model calculates the variables
from one point in the area to another point (2D or 3D). A semi-distributed model still
follows some physiographic characteristics of the area. Figure 2.2 shows three discretisations
of a rainfall-runoff process in a catchment. The application of the terms lumped, semi-
distributed and distributed are only useful in case methods of modelling, each describing
the same physical process in a different way, are compared with each other. It appears that
most terms mentioned here are applied for surface water models.

Q

a. lumped b. semi-distributed c. distributed

Figure 2.2: Comparison between a lumped, a semi-distributed and a distributed model: discreti-
sation of precipitation and evaporation.

Black box model versus white box model

A black box model is a term often used for a lumped-parameter model in which inputs and
outputs of a hydrologic system can be measured or estimated though the processes which
interrelate them are not often observable. The distinctive feature of a black box problem
is that a space coordinate system is not required in problem formulation and solution. As
such, the time aspect is an important feature in the modelling process.

For example, a water table rise in wells over a certain time interval, a so-called response
variable, may be converted to natural groundwater recharge without any regard to the
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location of wells in the field or to their spacing or even to the amount of rainfall. For
example, the hydrologic cycle itself is often presented as a black box system of lumped
elements.

By contrast, a white box model, which is by the way not a frequently used term, is
regarded as a distributed-parameter model of which the distinctive feature is that the
internal space of the hydrologic system is described by a distribution of points, each of
which requires information. The model domain is partitioned which results in a grid with
elements. For a mathematical solution, the model input data must include not only the
values of the properties at all elements within the system, but also the location and the
values of the model boundaries. A space coordinate system comprises a necessary part of the
problem formulation and solution, when the mathematical model applies partial differential
equations. In literature, a grey box model is synonymous for a conceptual model.

Empirical model versus conceptual model versus physically based model

An empirical model is based on observation and experiment, not on physically sound theory.
In the empirical approach, physical laws are not taken into account. These models are often
applied in inaccessible (ungauged) areas, where only little is known about the area involved.
The models are based on regression analysis : for example, > Q.+ = a+PF;+¢;. This means
that the coefficients in the function are determined through calibration with the output data
of the hydrologic phenomena involved. As such, a calibrated model is not universal, as each
area has its own relation. For example, the discharge at a specific moment in time can be
a function of discharges and precipitations at previous moments in time and a few extra pa-
rameters: Qq; = f(Qu,t—1, Qu,t—25 s Quit> Quit—15 -, Pty Pjt—1, -y Pty Prji—1, -y a1, a2)+
€;. In addition, it is also possible that empirical models are based on physiographic char-
acteristics of the system. Note that the dimensions of the different parameters do not have
to be equal !

A model is regarded as a conceptual model, if physical processes are considered which are
acting upon the input variables to produce output variables. In the conceptual approach,
an attempt is made to add physical relevance to the variables and parameters used in the
mathematical function which represent the interactions between all the processes that affect
the system. An example of simple conceptual models is the formulation of Darcy (law of
porous media flow). Conceptual models are widely applied, as they are easy to use, apply
limited input data, and can always be calibrated.

A physically based model is based on the understanding of the physics of the processes
involved. They describe the system by incorporating equations grounded on the laws of
conservation of mass, momentum and energy. The parameters of a physically based model
are identical with or related to the respective prototype characteristics (e.g. storage capac-
ities, transmissivities). Physically based models often apply deterministic and distributed
input data. They can be applied in measured as well as unmeasured systems. Physically
based models have the advantage that they have universal applications. The measured or
estimated model parameters and hydrologic stresses (e.g. differences in natural groundwater
recharge, human impacts such as groundwater extractions) can be adjusted in the input
data file, so that the model is geographically and climatically transferable to any other area.
Because of this reason, recent activities in hydrogeology are mostly focused on physically
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based modelling. On the other hand, these models are limited due to presuppositions of
the theoretical background (as such, there is a fundamental deficiency of similarity between
theoretical model and reality), huge amounts of input data and restricted computer capac-
ity. Moreover, model development is labour-intensive. Physically based computer codes for
groundwater problems are MODFLOW (section 9.2) and MOC (section 9.5).

Table 2.1 shows the differences between the three models in terms of discretisation and
application of complex hydrological problems. An empirical model is often called a black
box model, a conceptual model a so-called grey box model and a physically based model a
white box model.

Table 2.1: Model types and applied space discretisations: differences between empirical, conceptual
and physically based models.

Model type Spatial discretisation System dimension
distributed | semi-distributed | lumped [ 1-D | 2-D | 3-D
Empirical (Black box) - - + T B _
Conceptual (Grey box) (+) + + + + -
Physically based (White box) + (+) - + + +

In a way, a conceptual model has some degree of empiricism, since its (lumped) param-
eters do not depend on direct measurements. In fact, the distinction between conceptual
and empirical is almost artificial. Historically, the treatment of hydrological theory and
calculation has been restricted due to computational facilities. Subsequently, individual
and component processes were considered, such as evaporation and runoff. For example,
Darcy’s law is a latter of observation, and hence, it is empirical by strict definition. With
the advent of the digital computer, the component processes could be integrated and time
and space variables could be represented, which lead to a physically based approach. For
example, models apparently firmly based on physics may contain empirical components.

Transient model versus steady state model

A model is called a transient model (other synonyms are dynamic, unsteady, non-steady
state, non-stationary) when a time variable is present in the partial differential equation
and a time variable is calculated for every time step. In a transient model, the initial
situation must be known. Obviously, in a steady state model, the time variable is set to
infinite. As such, the partial derivative of the time variable is zero.

Note that the so-called quasi-transient situation is the succession of steady state situa-
tions. As such, the result seems to be a transient situation.

It is important to recognise whether or not the hydrologic process you want to model is
steady state or transient. For example, you will not retrieve correct results when you are
modelling the effect of the tide on a coastal groundwater system when you are applying a
steady state model (see figure 2.3).

Linear model versus nonlinear model

A linear term is a first degree in the dependent variables and their derivatives. A linear
differential equation consists of a sum of linear terms. The most important feature of a
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Figure 2.3: Attempt to simulate the tidal effect on the coastal groundwater system with a steady
state model will not give satisfying results.

linear model is that linearity in differential equations is synonymous with the principle
of superposition, meaning that the derivative of a sum of terms is equal to the sum of
the derivatives of the individual terms. Moreover, linear representation of the relationship
between processes means that, when the processes are plotted against each other, the
relationship would be a straight line, whereas for a nonlinear model a curve would exist.

For example, expressed in terms of the response of the hydrologic system, the total
effect resulting from several stresses acting simultaneously is equal to the sum of the effects
caused by each of the stresses acting separately.

Unfortunately, most hydrologic processes are nonlinear, though often the processes are
linearised to simplify the mathematics. For example, the variation of infiltration rate with
time for a uniform rainfall intensity is nonlinear. Note that it requires various skills to
recognise a system being in fact a linear system.

If the model is linear, it is possible to use linear programming for optimizing a hydrologic
process to meet a given goal. For example, a well-known groundwater flow problem is
the extraction of groundwater from wells: through maximising the extraction (which is
limited by physical circumstances), combined with maximising the economic return from
the extraction and minimising the pumping costs, the result of the optimization is the
location of the optimal wells within the possible locations and the optimal extraction rate
in these wells.

Note that in fact, many groundwater processes, such as solute transport in groundwa-
ter flow, control of salt water intrusion, flow of heat or cold groundwater, are nonlinear.
This is because the groundwater flow equation and advection-dispersion equation are in-
terconnected with each other, e.g. through the dispersion coefficients as a function of the
velocity (see section 6.2, equations 6.70 to 6.74, page 88). As such, these processes cannot
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be subjected to linear programming optimization.

Space dimensionality of the model: viz. 0D, 1D, 2D, 3D, quasi, radial, axial-symmetric

Though the term dimension is difficult to define, it can be applied to qualify the char-
acteristic of the partial differential equations in the mathematical model. The number of
dimensions of a mathematical model is related to the number of independent space-variables
in the applied partial differential equation. As such, the so-called quasi-2D and quasi-3D
models drop out, as mostly the term ’quasi’ only comprehends a trick to interpret the re-
sults of respectively a 1D model and a 2D model in an extra dimension. For example, the
position of an interface between fresh and saline groundwater in a horizontal 2D-plane gives
a 3D-presentation of the results.

Based on this definition, so-called 0D-models are possible, when in the equations no
space-variables occur. For example, the lumped-parameter model of figure 2.2 is such
a 0D-model. However, there are always dubious cases. For example, the dimension of a
model, which consist so-called linked reservoirs (viz. each reservoir does not contain a space-
variable), is difficult to give: 0D or 1D. Such a model is a model for a sewage system of a
city, containing several reservoirs with both water flow and silt transport for each district
[Heikens, 1992]. And what will be the answer (0D or 1D) if the length between the districts
is taken into account to determine only the flow friction in the channel ?

2.3 Based on the processes in the hydrologic cycle

This classification is based on the processes in the hydrologic cycle described with the model.
Figure 2.4 shows a schematic representation of the hydrologic cycle. Note that, obviously,
not every process is represented. Most models simulate a few hydrologic processes at the
same time. Table 2.2 shows some hydrologic processes which can be described by models.

2.4 Based on the application of the model

This classification is based on the purpose the model is applied. The models should provide
the user more (quantitative) information on the hydrologic processes involved. The use of
models can be subdivided into three classes:

I. process models, applied from a scientific point of view,
in order to promote a better description of hydrologic phenomena, through research
and investigation of the hydrologic processes involved. Science is interested in deter-
mining certain relations between processes.

Il. design models, applied from an engineering point of view,
in order to achieve certain objectives. Engineering is interested in hydrologic processes
only to the extent that they achieve some utility or purpose. Thus, the engineer
is concerned with the relations between processes discovered by science to simulate
performance, reliability, cost of development, maintainability, or life expectancy.

A further subdivision is in:
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Figure 2.4: A schematic representation of the hydrologic cycle. Surface water processes are not
taken into account in these lectures.

a. assessive or interpretive models,
which try to assess the present state of a system to gain more insight and under-
standing into the controlling parameters in a site-specific setting. For example,
to improve understanding in regional groundwater flow systems, more quantita-
tive information should be provided on the magnitude, quality, distribution (and
timing) of available water. These interpretive models are also useful for design
purposes.

b. predictive models,
which try to extend the knowledge of the assessive models to predict the fu-
ture effect of any physical alteration on a system, such as direct and indirect
influence of human actions (e.g. urbanisation, intensification of agricultural and
forestry land use, higher rates of groundwater extraction for future water supply,
climate change, sea level rise). Most modelling efforts are aimed at predicting
the consequences of a proposed action.

Note that predictive models require a calibration phase (see also section 3.5), whereas
the assessive models do not necessarily require such a phase.

I1l. management models applied from a point of view of management and planning,
in order to control a certain system by decision variables. Management is inter-
ested in the establishment of: (a) output models that describe the consequences if
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Table 2.2: Processes in the hydrologic cycle.

Groundwater /Subsurface

-Occurrence, origin, movement, quality, recovery, use

-Solute transport: chloride, pesticides, hydrochemical constituents

-Density differences: fresh-salt interface, non-uniform density distributions

-Pumping discharges, water table variations (transient or steady state)

-Biochemical processes

-Waterbalances

-Subsidence of the ground surface due to compaction, shrinkage and oxidation of peat

Surface water

-Rainfall-runofff (the most often described hydrologic process)
-Precipitation, evaporation, infiltration

-Thermal surface water transport (power plants, energy)
-Solute transport (pesticides, hydrochemical constituents
-Open channel flow (hydraulic)

-Soil erosion (sediment transport)

Interaction groundwater-surface water

-Rainfall-runoff, base-flow

-Saturated-unsaturated zone (agricultural device and purposes, crop yield)
-Water management of polder areas

-Infiltration-percolation, interflow

1 = another term of rainfall-runoff is precipitation-discharge.

a system is developed in an unregulated manner, and (b) intervention models that
describe the probable result of intervention. These models are useful for operational
management (e.g. decision techniques). The planners and decision makers also ap-
ply information from class Il. Examples of management processes are: water yield
assessment (rain, snow and/or groundwater); agricultural crop yield management
(unsaturated zone); flood and drought forecasting (rainfall-runoff, water distribution,
design and frequency); drinking water supply from groundwater (extraction, upconing
fresh groundwater); water quality assessment; control of soil contamination and soil
erosion assessment; use management.

For the (recently) more complicated multi-objective and multi-constraint problems,
the decision making process is a complex process, and thus, system analyses have
been required (e.g. flood and drought forecasting; river basin management; reservoir
control; see the PAWN-study (Policy Analysis for the Watermanagement of the Nether-
lands) [Pulles, 1985]). For example, for the problem of water resources assessment,
conflicting water requirements (which form the objectives) as well as the water avail-
ability are considered. Moreover, a number of constraints should also be taken into
account (see table 2.3).



18

Groundwater Modelling, Part |

Table 2.3: Example of the aspects involving a water resources assessment.

Water resources assessment

-pollution control
-power plants
-environment

-desalinisated water

Water requirements Water availability Constraints
-agriculture -surface water: -min./max. allowable flows
-water supply: snow melt, precipitation | -quality
domestic & industrial | -groundwater: -water level
-flood regulation fossil, sustainable, mining | -velocities




Chapter 3

Methodology of modelling

In this main chapter of part I, the methodology of modelling will pass in review, based on the
steps in the diagram in figure 3.1. It is very tempting to pass over some steps, for example,
verification of the computer code for your specific problem is not a very popular activity,

Define purpose

Conceptualization of

Field data ——p{ .
mathematical model
Analytical | Numerical formulation |
solutions I :
| Computer program |
| A
| Code verification _>
verified?
: CODE
SSELECTION | oeeeeeeeeeeeeeeeevsseseosessssssnsnseeeesssssssssnsseesesees
Model design Field data
Calibration Sensitivity analysis
Comparison
with +
field data - -
Model verification
Simulation Sensitivity analysis
Presentation of results
Field data Postaudit >

Figure 3.1: Steps in the protocol for model application [adapted from Anderson & Woessner,
1992].
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and therefore, it is often skipped over too fast. As can be seen, several steps precede the
total simulation phase. Though not always every step should be treated equally intensive,
you should always at least glance through all steps.

3.1 Define purpose of the modelling effort

Obviously, it is essential to identify the purpose of the modelling effort before going on.
Therefore, in order to help yourself in the way of modelling, you should ask yourself the
following questions:

e What is the application of the model (from a scientific, engineering or management
point of view, see section 2.4) ?

e What do you want to learn from the model ?
e What questions do you want the model to answer 7
e Is a modelling exercise the best way to answer the question ?

e Do we really need a mathematical model 7 Can an analytical model provide the
answer or must a numerical model be constructed ? In a number of case studies, an
analytical model is adequate enough and a numerical model only lead to overkill.

The responses of these questions will lead you in determining the modelling effort: analytical
or numerical, lumped or distributed, transient or steady state, etc. Note that, once again,
modelling is only one component in the process of solving the hydrological problem, and
not an end in itself. It is recommended to use only models when it is really necessary and,
if possible, to use already existing standardized programme code.

3.2 Conceptualisation of a mathematical model

In general, it is not possible to include all processes of a hydrologic system in one model, as
the 'real-world’ situation is too complex. Therefore, you have to select those processes you
want to model for sure, and you have to define which processes can be left out of consider-
ation. The conceptualisation of the model consists of two modules: (a.) a schematisation
of the hydrological problem and (b.) a concept of the mathematical model.

ad a. Schematisation of the hydrological problem

The first step towards the conceptualisation of the mathematical model is to set up a
schematised or pictorial representation of the hydrological problem you want to model.
Simplification is necessary because a complete reconstruction of the hydrologic system is not
feasible. For example, figure 3.2 shows the schematisation of the subsoil of the groundwater
flow system in the low-lying western part of the Netherlands. In general, schematisations
in groundwater problems are focussed on [Hemker, handouts, 1994]: the composition of
the subsoil (layered system, number of aquifers); the type of groundwater flow (steady
state, 1D or 2D); the properties of groundwater (density, temperature, fresh-saline interface,
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Figure 3.2: A schematisation of the groundwater flow system in the low-lying western part of the
Netherlands: the system is divided up into a fresh, brackish and saline part.

fresh /saline, dissolved solutes); the boundaries of the study area (location of the boundary,
type of boundary condition); and the use of averaged values (piezometric head, polder level,
thickness of layers, porosity, groundwater extraction).

ad b. Concept of the mathematical model

Based on the schematisation of the hydrologic problem, the concept of the mathematical
model is built. The purpose to building a concept is to simplify the field problem in order
to make the schematisation suitable for numerical modelling. In other words, you have to
simplify the system you are interested in to a large extent. In addition, the building of a
concept organises the associated field data so that the hydrologic system can be analysed
more easily. A concept is set up to define system characteristics, processes and interactions.
For example, figure 3.3 shows the concept of the mathematical model of the groundwater
flow system in the low-lying western part of the Netherlands (the property of groundwater
is not shown in this figure). This concept is based on the schematisation in figure 3.2 and
is suitable for numerical modelling.

Note that this step of the modelling protocol is obviously a very important one. You
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Figure 3.3: A concept of the mathematical model of the groundwater flow system in the low-lying
western part of the Netherlands.

have to know what detail can be neglected, what will be the time scale and space scale (the
number of model dimensions), what will be the relation between the scale of the system
itself and the model, etc. In the end, the nature of the concept determines the dimensions of
the numerical model and the spatial and temporal discretisations. In addition, the concept
determines what processes are simulated and what processes are neglected. For example,
a failure in the concept will very likely lead to inaccurate predictions with the numerical
model. Bear in mind that a wrong concept may well produce a reasonable solution. This
may lead to the following situation:

“A hydrological misconception becomes a virtually insurmountable obstacle to
progress in hydrology, when the models take the shape of easy-to-use software
packages.” [Klemes, 1986].

It is therefore essential to know what is relevant to the hydrologic system you want to
model.
In this step of the modelling protocol, the following topics can be identified:

1. the relevant hydrologic phenomena which are taken into account
Conversion from all observed phenomena in a hydrologic system to mathematical
descriptions of some selected phenomena obviously requires professional skill. In-
spiration can be found from the already present scientific knowledge and through
observation of relevant quantities. It may always be possible that you have skipped
a relevant hydrologic process which was not described with the mathematical de-
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scription you formulated. Be therefore always critical on the results of the modelling
simulation phase.

In addition, the water, the solute and/or the sediment budget in the hydrologic system
is prepared. The order of magnitude of sources (e.g. precipitation, deepwell infiltra-
tion, contamination sources, groundwater extraction) as well as the flow direction of
water, solute or sediment should be known quantitatively in order to summarize the
magnitudes of the flows and the changes in storage. During the calibration of the
model (see section 3.5), the measured budget is compared with computations by the
model.

2. the system boundaries
The area of interest or the size of the system is defined by identifying the boundaries of
the model (a Dirichlet, Neumann or Cauchy condition, see section 3.4). When possi-
ble, the natural hydrological boundaries of the system should be used. In groundwater
problems, the impermeable base is a logical no-flow boundary at the lower part of
the model. Obviously, in many cases, a natural boundary is not available: then an
artificial boundary is simulated (see also section 3.4).

3. the physiographic characteristics of the hydrologic system, both variables and parameters
Detailed information of the hydrologic system involved is gathered. Field data are
assembled to assign values for the parameters of the described hydrologic system.
They should be obtained by observing, studying and measuring. For example, the
following information could be relevant for a groundwater problem:

e Subsoil parameters: geometry, position of layers, hydraulic conductivity, trans-
missivity, hydraulic resistance, porosity, specific storativity, anisotropy,

e In- and outflows: precipitation, evaporation, evapotranspiration, surface runoff
(overland flow), natural groundwater recharge, infiltration, percolation, recharge
form surface water bodies, baseflow,

e Initial conditions: piezometric head and solute concentration,

e Geochemical data: cations (e.g. Ca®2?, Mg*™2, Nat) and anions (e.g. SO, 2,
HCOg, Cl™), temperature, pH, trace metals, isotopes and organic compounds.

In addition, hydrological units with similar hydrologic properties are defined, based on
the information of the area of interest. In groundwater problems, a geologic formation
is subdivided into aquifers and aquitards: the concept is frequently represented in the
form of a block diagram or a cross-section. For example, the so-called Holland profile
is a hydrogeological schematisation of the subsoil which consists of a Pleistocene sandy
aquifer overlain by a Holocene (clayey) aquitard. It is representative for large (low-
lying) parts of the western part of the Netherlands. The division into hydrologic units
can be supplied by hydrogeologic survey (e.g. geo-electric prospecting: see the lecture
notes Geohydrologisch Onderzoek f15C of the Delft University of Technology [van Dam
& Boekelman, 1996]).

4. the mathematical model which describes the relevant processes
Based on the concept of a hydrologic system, the governing mathematical equations



24 Groundwater Modelling, Part |

impermeable walls
land surface
river surface river surface
table water ¥
- table
low permeability low permeability
streambed material streambed material
Q
(pumping) i recharge
] —
Pensacola Bay Q;, i recharge
—> | layer 1 Florida
— layer 1
B
=}
layer 2 %, o E;::
—» layer 2
) 5 y
=
=
3
. layer 3

Figure 3.4: Translation of the hydrogeologic information of a schematised groundwater flow system
to a concept suitable for numerical modelling [adapted from Anderson & Woessner, 1992].

are formulated. This implies that only the equations are defined of the considered
processes. See section 6.1 for some mathematical equations of groundwater problems.
Verification of the mathematical model will be done in a later step (see section 3.3).

During this step of the modelling protocol, it is recommended to visit the field site in order
to keep you tied to reality and to provide you the necessary background information during
the subjective modelling phase.

Figure 3.4 shows two examples of how a concept can be constructed from a schematised
groundwater flow system.

3.3 Selection of the computer code
A very wide range of computer codes exists for application of different problems. In order

to select the best code, you have to formulate a list of demands. When choosing a code
from the selection available, the following points should be considered:
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e What code is best in solving your particular problem 7

e What are the data requirements for both code and problem ?
e What computer hardware and supporting staff are required ?
e How much will the computer code cost ?

e How accurate will the code be in representing the real world ?

Based on these questions, you should select your code. There are two choices: you choose
one of the many codes available or you will develop your own code. Points can be stated
in favour of and against each choice.

The use of an existing computer code has advantages in saving both time and money
since programme code development is avoided. Large institutes, such as the U.S. Geological
Survey, employ tens of scientists who develop and update computer codes for public do-
main purposes (see page 187, for the addresses and internet-sites of some large institutes).
Moreover, you can benefit from experience gained from previous applications (verification
cases, test-cases, etc.). On the other hand, it is possible that you will not fully understand
the theory and especially the assumptions that are applied in the existing code. This could
lead to the situation that the code may be a kind of black box under specific circumstances.
This problem is often exaggerated by the lack of basic documentation.

When an own code is developed, you must obviously understand the problem in more
details. Nowadays, however, you are advised against developing your own computer code
for several reasons: (1) it is a very time-consuming activity, (2) your model, obtained from
your code, still has to prove its robustness, reliability and accuracy, (3) your code may not
be applicable for other (nearly similar) hydrological problems, and (4) the code may still
contain so-called ’childhood diseases’.

Anyway, it is important that the code you use has been verified by comparisons between
numerical solutions generated by the code and analytical solutions. Newly developed codes
also require to be debugged to remove errors on programming and logic prior to their use
in hydrological analysis. Even with rigorous checking you should be on the look-out for
programming errors. In general, newly released codes are not free of programming errors.
This can be deduced from the existence of code versions (e.g. 3.6 or 5.3)!. Testing of the
computer code or code verification comprises verification of problems for which analytical
solutions exist. Often the testing of the computer code for problems with known solutions
is erroneously called wvalidation [Konikow & Bredehoeft, 1992]. A mathematical model is
said to be validated, if sufficient testing has been performed to show an acceptable degree
of correlation [Huyakorn et al., 1984]. However, as a matter of fact, the models can only
be invalidated, since the testing or code verification is only a limited demonstration of the
reliability of the model (figure 3.5). Though analytical solutions can be complex, mostly
straightforward hypothetical cases are considered.

During the past decades, so many computer codes have been developed that it is very
likely that there already exists a code for your hydrologic problem with the appropriate

!The integer number mostly indicates that a new (major) procedure or feature is implemented in the
computer code, whereas the decimal number mostly indicates that the computer code is debugged, adapted,
improved and updated, viz. made free of programming errors.
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Figure 3.5: Verification of a computer code: the application of the computer code is limited and
may not represent parts of the reality you want to model [after Heikens, 1995].

characteristics and with documentation on test-cases e.g. in articles and journals. Therefore,
it is advisable to be lazy and let other people do the job. Although it is tempting to fix
on the first computer code that is brought to your attention, open your mind to other
computer codes. Assure yourself of selecting the most suitable computer code available,
within the demands you have listed.

Numerous sources can provide you suitable computer codes. First of all, check the
database at your own organisation. Second, for the Netherlands, the STOWA? database
(formerly called SAMWAT) for computer codes in water management [Volp & Lambrechts,
1988; Heikens et al., 1991] contains codes on fluid, solute (sediment) and heat transport,
chemical and biological processes in surface water and groundwater. Numerous computer
codes for hydrological problems have been developed in the United States of America. The
US Geological Survey is one of the leading institutes in developing two and three dimensional
groundwater computer codes: http://water.usgs.gov/software/ground_water.html®. Impor-
tant distributors of affordable codes of groundwater problems are the International Ground
Water Modeling Center [GWMC: Golden, USA, 1995], http://www.mines.edu/igwmc/, and
the Scientific Software Group, Washington D.C., USA [1996], http://www.scisoftware.com/.
The Hydrological Operational Multipurpose System (HOMS) of the World Meteorological
Organization (WMO) includes a number of computer codes for hydrologic analysis.

3.4 Model design

The concept of the mathematical model is transformed to a form suitable for numerical
modelling. In other words, you have to convert the concept of the your specific hydrologic
problem to a model which can be implemented in the chosen computer code. This step
in the modelling protocol includes the design of the domain partition, the selection of the
length of the time steps (when transient), the setting of the boundary and initial conditions,
and the selection of the initial values for system parameters and hydrologic stresses.

2STOWA=Stichting Toegepast Onderzoek Waterbeheer, see http://www.waterland.net/stowa.
3Hydrology web: http://terrassa.pnl.gov:2080/EESC /resourcelist/hydrology.html
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3.4.1 Grid design

In a numerical model, the continuous space domain of your hydrological problem is replaced
by a discretised domain, the so-called grid. The concept, the selected code and the model
scale determine the overall dimensions of the elements (also called blocks or grid cells) in the
grid. There are numerous types of elements, see figure 3.6. The two most commonly used
grids, applied in mathematical models, are based on the finite difference method and the
finite element method (see section 7.5 and 7.6). As can be seen, the finite element concept
tolerates more shapes of the elements due to the nature of the interpolation (basis) function
(see section 7.6). As a result, elements by the finite element concept allows more flexibility
in designing the domain. However, the block-centered approach in the finite difference
concept is often applied in a large number of computer codes, because this approach can
treat the boundaries more easily.

The number of layers which are considered in the discretised domain, depend on the
diversity of the hydrogeologic units of the system, and thus, on the concept. If the gradient
in the piezometric head in one aquifer differs significantly, more layers are necessary. In
most cases, the slope of aquifers is insignificant. However, if the aquifers slope at some
significant angle (e.g. larger than 1 or 2 degrees), two-dimensional models in vertical cross-
sections or fully three-dimensional models should be used. Once in a while, models can
also be constructed with an adapted orientating of the grid. In those cases, the coordinate
system is aligned with the principal direction of the hydraulic conductivity tensor (see
figure 3.7).

The spatial discretisation of the grid and the temporal discretisation are determined by:
(a.) the scale of the natural variation, (b.) the scale of the concept of the model and the
model domain, and (c.) the sampling scale:

ad a. this is the smallest scale on which the natural processes are taking place (as far as we
know). As such, the heterogeneity of the hydrologic system has a major effect on the
grid design. For example, Darcy’s law for the flow of fluid through a porous medium is
defined for a specific spatial scale which corresponds with the so-called Representative
Elementary Volume (REV) [Bear, 1972]. The size of the REV is selected such that
the averaged values of all geometrical characteristics of the microstructure of the void
space is a single valued function. At a scale smaller than the REV, groundwater also
flows, viz. flow through pores and channels, but at that scale of Darcy’s law is not
valid any more. Note that the laws of continuity of mass, momentum and energy are
applicable on each scale. Upscaling from the base equations at REV scale to regional
flow of groundwater requires a lot of knowledge about the processes involved: which
processes may be neglected and which processes should be taken into account.

ad b. this is the scale on which the parameters and variables are implemented in the model.
The dimensions of the elements as well as the length of the time step influence the
design of the grid.

ad c. this is the scale on which the measurements of system parameters and variables are
taking place. For example, in groundwater problems, the location of wells influences
the grid design. In addition, if only one observation well is recording the piezometric
head in an area of e.g. 25 km?, the spatial discretisation of the grid should match
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Figure 3.8: Time-space dimensions of some natural phenomena in air, water and soil [Zoeteman,
1987].

Table 3.1: Length of time steps for various hydrologic processes.

Hydrologic process to be modelled Order of magnitude

of time step

(dynamic) flood wave in open channels (short term forecasting & control) | hours

salt water intrusion into aquifers years/decades/centuries}

solute transport in groundwater years

river basin management (water shortage and pollution) days/week

large-scale planning of water resource use (control strategies) week /month

changes in the length of glaciers due to climate change years/decades

river and flood plain management (flood control) hours

drawdown in an aquifer due to groundwater extraction hours/days/weeks

I: salinisation of the subsoil can be a very slow process.

with the availability of the data. If data is scarce, it make no sense to apply a
three-dimensional model which demands a vast quantity of input data that cannot be
supplied.

Note that a universal methodology cannot be given here, as the exact form of your grid
depends primarily on the hydrologic system and the hydrological problem to be solved.

3.4.2 Temporal discretisation

The length of the time step depends on the dynamic character of the hydrologic process
you want to model. Figure 3.8 shows the spatial and temporal scales of some (hydrologic)
processes. Various examples of different time steps are shown in table 3.1.

The following considerations determine the selection of the temporal discretisation:
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e what is the purpose of the model application (transient or steady state),

e which (external) hydrologic stresses must be modelled (e.g. transient or steady state
well extraction; changes in polder levels),

e what is the availability of input data (daily or weekly data; storage data; initial
conditions),

e which storage processes must be modelled (system dependence: slow, rapid ground-
water flow; areal dependency: topography),

e which computer code is available.

The length of the time step should be determined accurately for transient simulations.
In principle, the specific storativity Ss should not be equal to zero. When the interest
is focused on the development to a new state of dynamic equilibrium for the piezometric
head, the length of the time step should not be too large, because the new state of dynamic
equilibrium may be approached within some (tens of) days, e.g. due to changes in pumping
rates.

Most computer codes for groundwater problems allow the time step to increase as the
simulation progresses (e.g. a geometric progression of ratio 1.2 to v/2) [de Marsily, 1986].
It is, however, recommended to decrease the time step once again when new stresses are
imposed on the hydrologic system. See page 100 for the determination of a critical time
step in a non-steady aquifer system.

3.4.3 Boundary conditions

Besides a governing equation and initial conditions, mathematical models consist of bound-
ary conditions. These boundary conditions are mathematical statements at the boundary
of the problem domain. A correct selection of boundary conditions is a critical step in the
model design, as a wrong boundary may lead to serious errors in the results. Mathemati-
cally, the boundaries are divided in three types:

|. Dirichlet condition (specific head boundary),
describing specified head boundaries for which a head is given. Examples of speci-
fied head boundaries are: the water level at a lake or at the sea. A specified head
boundaries represent an inexhaustible supply of water. For example, water is pulled
from or discharged in the boundary without changing the head at the boundary. In
some situations, this is probably an unrealistic approximation of the response of the
System.

A specified head boundary (qb(r’y,z,t):qbcmsmm,t) difficult to model is the water table,
because the location of the water table is usually unknown, whereas it often the feature
we want the model to calculate. This is a feature of the so-called moving-boundary-
problem. For example, in transient simulations, the purpose is to predict the effect
on the location of the water table of pumping or changes in recharge. The problem
can be avoided by using an unsaturated/saturated flow model (though it may lead to
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other complications) or use the Dupuit assumption* to model flow in the top layer of
the model.

[I. Neumann condition (specific flow boundary),
describing specified flow boundaries (g, ..1) = ag—ﬁ:qconsmm,t) for which a flow (the
derivative of head) is given across the boundary. Examples of specified flow bound-
aries are: natural groundwater recharge in an aquifer (areal recharge); groundwater
injection or extraction wells; groundwater springflow or underflow; seepage to a hy-
drologic system. A special Neumann condition is the no-flow boundary condition.
A no-flow boundary condition is set by specifying the flux to be zero. Examples of
no-flow boundaries are: the groundwater divide in a catchment area; a streamline (a
cross-section perpendicular to the contour lines of the piezometric head may also be
considered as a no-flow boundary for groundwater problems); a fresh-saline interface
in a coastal aquifer (interface is a streamline boundary); and an impermeable fault
zone. The no-flow boundary condition is simulated in a (block-centered) finite differ-
ence grid by assigning zeros to the transmissivities or the hydraulic conductivities in
the inactive elements just outside the boundary. In a finite element grid, the no-flow
boundary condition is simulated by simply setting the flux in the node equal to zero.

[1l. Cauchy condition (head-dependent flow boundary),

describing head-dependent flow boundaries for which flux across a boundary is calcu-
lated, given a value of the boundary head. This condition (ag—ﬁ + B¢ =constant) is
also called the mized boundary condition, as it relates boundary heads to boundary
flows. It is dependent on the difference between a specified head, supplied by the
user, on one side of the boundary and the model calculated head at the other side.
Examples of head-dependent flow boundaries are: leakage to or from a river, lake or
reservoir®; evapotranspiration (flux across the boundary is proportional to the depth
of the water table below the land surface).

Physical boundaries are formed by the physical presence of an impermeable body of rock® or
a large body of water (e.g. river, lake or ocean), whereas hydraulic boundaries are the result
of invisible hydrologic conditions, such as groundwater divides and dividing streamlines. An
important characteristic of a hydraulic boundary is that it is not a stable feature: it may
be shifted or even disappear if hydrologic conditions change. This situation may obviously
occur for transient processes when heads along hydraulic conditions might change due to
stresses on the system. If a constant head condition is applied, a serious error may occur
because the model will retain the head at the boundaries. As a first estimate whether or
not the error is serious, the head boundary should be changed to a flux boundary: if the
effect of the head or flux boundary is small, the error is probably small as well.

4Dupuit indicated that for flow towards a well in the center of a circular island in a unconfined aquifer
the following assumptions hold: (1) the flow is horizontal, (2) the velocity over the depth of flow is uniform,
and (3) the velocity at the free surface is a derivative of the radius towards the well instead of the flow path
towards the well.

5L=k./b(psource — ¢), where L=the leakage; k.=the vertical hydraulic conductivity; b=the thickness of
the riverbed sediments; ¢source=the head of the source reservoir; and ¢=the head in the aquifer itself.

5In many groundwater problems, a two order of magnitude contrast in hydraulic conductivity may be
sufficient to justify the placement of an impermeable boundary [Anderson & Woessner, 1992].
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Figure 3.9: Determination of boundary conditions: zooming in the system is possible as long as the
pumping from the well will not affect heads or fluxes in the vicinity of the (hydraulic) boundaries.

It is not necessary to design a grid with physical boundaries which are located far away
from the area of interest, as long as the zone of influence of hydrologic stresses do not reach
the boundaries during the simulation. Then, hydraulic boundaries closer to your specific
hydrological problem are more convenient (see figure 3.9). When the boundary conditions,
located far away from your problem, still influence the solution of your hydrological model,
you should consider grid refinement. In this technique, the solution of a large regional grid
is applied to set the boundary conditions (e.g. heads conditions) for the small local grid of
the hydrological problem in which you are interested. This technique is often applied in
groundwater models which simulate solute transport. A large grid is used for groundwater
flow whereas a smaller subgrid is applied for the movement of solutes.

You should avoid using only specified flow conditions for a mathematical reason: a non-
unique solution may occur, because then both the boundary conditions (flux is equal to
derivatives) and the governing equation are written in terms of derivatives. For example,
in steady state groundwater problems, at least one boundary node is necessary to give the
model a reference elevation from which the heads can be calculated. Note that it is usually
easier to measure heads than fluxes.

After calculations have been carried out, one should be sure whether or not the effects
of certain hydrologic stresses in the system (measures such as groundwater extractions)
appear at the boundaries of the model: if so, this could lead to wrong results. One of the
possibilities is to check the water balance and see if it remains the same. Another possibility
is to enlarge the model area and to check whether or not the heads at the location of the
(fixed head) boundaries of the original model area are still the same. If so, then the original
model area was probably large enough; if not, then the area has to be enlarged, e.g. by
expanding the grid and moving the boundaries farther from the area of interest which is
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normally situated in the center of the grid.

3.4.4 Initial conditions

When the problem is transient, an initial condition is necessary at the beginning of the
simulation everywhere in the hydrologic system.

It appears to be a standard practice to apply the steady state initial condition which is
generated with the calibrated model (by setting the storage equal to zero or by setting the
time step to a very large value) instead of the initial condition which is obtained with field-
measured head values. The reason is that the parameters and hydrologic stresses inserted
in the model are consistent with the generated heads and not with the field-measured heads
during the early time steps of the simulation. Note that the initial condition generated by
the calibrated model is simulated prior to the transient simulation itself. In groundwater
models which simulate solute transport, not only the head distribution, but also the solute
concentration should be specified at the beginning of the simulation.

Another alternative in selecting a starting variable distribution is to use an arbitrar-
ily defined variable distribution and then run the transient model until it matches field-
measured variables. Then, these new calibrated variables are used as starting conditions
in predictive simulations. In this selection, the influence of errors in the initial condition
diminishes as the simulation progresses. Note that in groundwater models which simulate
solute transport, this alternative should not be used, as during the run before the new cal-
ibrated heads are found, the solute is transported also. In density dependent groundwater
flow, solute influences the groundwater flow, and as such, this alternative cannot be applied
either.

In a (normal) groundwater flow problem, the initial condition can be given in three
features (see figure 3.10): (1) the static steady state condition in which the head is constant
throughout the problem domain and in which there is no flow is the system (e.g. used
for drawdown simulations in response to pumping); (2) the dynamic average steady state
condition in which the head varies spatially and flow into the system equals flow out the
system (this condition is used most frequently); and (3) the dynamic cyclic steady state
condition in which the head varies in both space and time (a set of heads represent cyclic
water level fluctuations, e.g. monthly head fluctuations or monthly average recharge rates).

In transient situations, it is important to monitor the way in which transient effects
propagate at the boundaries. The effects on the boundaries should be evaluated by checking
whether the change in flow rate at specified head boundaries and the change in head at
specified flow boundaries remain zero between the initial situation and the final time step
of the transient simulation.

3.4.5 Preliminary selection of parameters and hydrologic stresses

In this phase, the physiographic characteristics of the hydrologic system (e.g. subsoil pa-
rameters as porosity and hydraulic conductivity) and hydrologic stresses (e.g. sources and
sinks as injection and pumping well rates; flux across a water table as natural groundwater
recharge and leakage through a resistance layer) have to be discretised for the input data
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Figure 3.10: Three types of initial conditions for one-dimensional groundwater flow.

file of the model. Moreover, mostly numerous other model parameters, such as dummy
parameters which set the printing options, must also be inserted in the input data file.

3.5 Calibration

A numerical model, which is applied to simulate hydrologic processes, must be validated
with available data in order to prove its predictive capability, accuracy and reliability. Note
that in fact, “a valid model is an unattainable goal of model validation”. Most hydrolog-
ical models require adjustments to the system parameters in order to tune the model to
match model output with measured data. This procedure of adjusting parameters is called
calibration” . Calibration of a model is one of the most important steps in the application
of models. Note that some types of models do not use a calibration procedure, where pa-
rameters are assessed from tables and measurements and then used in the model without
further adjustment.

The parameters are adjusted within a predetermined range of uncertainty until the
model produces results that approximate the set of field measurements selected as cali-
bration targets. A calibration target is defined as a calibration value and its associated

"Calibration is essentially synonymous to parameter estimation.
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Figure 3.11: Procedure of the trial-and-error calibration.

error. The effects of uncertainty in hydrologic parameters, hydrologic stresses, and possi-
bly boundary and initial conditions are tested. Furthermore, both spatial and temporal
discretisations are considered. They are varied in the early stages of the calibration and
possible adjusted. Most of the time the transmissivities are the least known parameters
and thus, they are often modified during the calibration procedure. In addition, when a
hydrologic system is in a steady state situation, the calibration is more easily then when
the hydrologic system is in a transient situation, because one of the unknown parameters,
viz. the storativity, drops out. The accuracy of the whole study will depend on the level
of calibration achieved. Though calibration procedures vary from model to model, general
alternatives can be listed:

I. Trial-and-error calibration

In this alternative, the user inputs all the parameters that can be based on physical
observation, and provides estimates of the unknown parameters as a first trial. As
such, the adjustment of parameters is manual. The model is run and the computed
output is compared to the measured output from the prototype (figure 3.11). The
comparison is done by means of visual pattern recognition of the measured and com-
puted flow hydrographs or solute distributions, or it is based on some mathematical
criterion. Based on this comparison, adjustments are made to one or more of the trial
parameters to improve the fit between measured and computed output. The trial
runs of the model are repeated until some kind of required accuracy or calibration
target is achieved. Tens to hundreds of runs are typically needed to achieve calibra-
tion. Parameters which are known with a high degree of certainty should only be
modified sightly or not at all during the calibration procedure. The modeller can
influence the trail-and-error process twofold: by applying expertise on the responses
of the hydrologic process to changes in parameters and conditions, and by applying
subjective unquantifiable information.

Il. Automated parameter estimation codes
In this alternative, also called the inverse problem®, the model itself contains inter-
nal programming which will adjust the trial parameters in a systematic step by step

8Invers modelling means that point measurements of piezometric heads and solute concentrations are
used to obtain a better estimate of subsoil parameters.
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manner until the goodness of fit criterion (viz. the calibration target) is satisfied (note
that it is a subjective choice to what is a close enough fit). In this way, the model
will automatically calibrate itself and carry out the necessary number of trial runs
until the best set of parameters is achieved. The purpose is to minimise an objective
function such as to minimise the sum of the square residuals (which are the difference
between measured and computed heads), whereas the likelihood or plausibility of the
applied parameters should be maximised. For this goal, a statistical framework is
formulated to quantify the errors in parameters. For example, in a so-called weighted
least square statistical framework prior information is weighted to place emphasis on
measurements that are thought to be of higher reliability, whereas in a so-called Fish-
erian statistical framework the subjective procedure of assigning reliability weights
to piezometric heads and parameter measurements is avoided. Note that unstable
and unreasonable solutions can also be possible (e.g. by giving negative parameters).
Only now in the 1990’s, computer codes, that perform automated calibration, are
actually introduced to the modellers, though it may take still some time before the
use of automated calibration codes becomes standard practice due to the complex-
ity of most hydrological problems. In contrast with the trial-and-error calibration,
this alternative gives information on the degree of uncertainty in the final parameter
selection and it gives the statistically best solution.

I1l. Combination of | and Il
In this alternative, first a trail-and-error manual adjustment of parameters is carried
out until the model is almost calibrated, then to introduce the automatic search
technique to refine the goodness of fit.

A model calibrated with the automated technique is not necessarily superior to a model
calibrated with the trial-and-error method. Points in favour of the automated calibration
codes is that they are objective compared to the trial-and-error method, they provide
information on uncertainty in the calibrated parameters and they may speed the modeller
in the time-consuming (thus expensive) and frustrating part of the modelling protocol. On
the other hand, they are criticized because of problems of non-uniqueness (e.g. due to the
absence of prior information on transmissivities in groundwater problems) and instability.

To decrease the uncertainty of the calibration, the errors in the sample information or
calibration values should be minimised. Examples of such errors are:

e interpolation errors, as the calibration values do not coincide with nodes.

e measurement errors, which are associated with the measuring device, the operator,
and the location of the observation point.

e errors due to transient effects, which may be present in the field-measured values but
are not included in the model.

e errors due to scaling effects, which may be caused by small-scale heterogeneities but
are not captured in the model. Moreover, scaling effects are also caused by the conver-
sion from field-measured values to point values required in the model (e.g. the head in
an observation well represents the head over the entire length of the screen, whereas
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in two-dimensional models in vertical cross-sections or three-dimensional models the
head is required as point values).

Some presentation techniques to show the calibration results are: (1) to present the results
in a tabular listing of calibration targets versus simulation values in combination with the
residual error (viz. the difference between field-measurement values and computed values);
(2) to display the residual errors on a contour map (they should be randomly distributed
over the model grid); (3) to display the residual errors on a scatterplot which is a linear plot
of field-measured values on the horizontal axis versus computed values on the vertical axis;
(4) to calculate the average measure of the residual, such as the mean absolute error (viz.
average of the absolute values of the residuals) or the root mean squared error (viz. average
of the squares of the residuals), see page 39.

Model calibration can be performed to steady state or transient data sets. It is common
practice to begin the calibration of a transient hydrologic process with a steady state data
set and then to continue the calibration under the transient conditions. The selection of a
proper steady state data set can be difficult, especially when the hydrologic process to be
modelled is really a transient one. For example, it is complicated to define a steady state
water level when seasonal fluctuations in water level are large.

Models can be calibrated to time series (e.g. changes in water level in response to a
drought, discharge in a channel, solute concentration in an observation well, pumping test
data in response to long-term pumping or to a particular moment in time (e.g. contour map
of water levels, solute concentrations, rainfall).

Note that, in general, calibration does not have a unique solution: different acceptable
sets of parameters may give reliable results. Moreover, the possibility to a non-unique
solution is enhanced if there is no or little prior information on parameters, if the calibration
targets are large, and/or if the calibration targets are few and poorly distributed. It is
advisable to use both heads and fluxes to increase the likelihood of a unique calibration. It
should be the hydrologist’s experience to tell which set of parameters is the most likelihood.

3.5.1 Evaluating the calibration

The results of the calibration should be evaluated both qualitatively and quantitatively.
Whether or not the fit between model and reality is good is a subjective judgment. For
example, statements such as

“The measured and computed contours compared favourable, and therefore, the
transient state model is considered calibrated.”

cannot easily be evaluated.

Traditionally, two methods are used to evaluate the calibration: (a) qualitatively, by
comparison of contour maps of measured? and computed parameters, which provides only
a qualitative measure of the similarity between the patterns; and (b) quantitatively, by a
scatterplot of measured and computed parameters, where the deviation of points from the
straight line should be randomly distributed. The objective is to minimise the error in
the calibration. Three ways of expressing the average difference between measured and
computed parameters are normally used to quantify the average error in the calibration:

9Note that interpolation techniques also introduce errors in the contour map of the measured parameters.
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1. The mean error (ME)
which is the mean difference between measured (ppmeqsured) and computed (Peomputed)
parameters, such as piezometric heads:
1 n
ME = E Z(pmeasured - pcomputed)i (31)
i=1

where
e n = number of calibration values,

As both negative and positive differences are incorporated in the calculation, they
may cancel out the error. As such, a small error may not indicate a good calibration,
and this way of quantifying the error should be used with care.

2. The mean absolute error (MAE)
which is the mean of the absolute value of the difference between measured and
computed parameters:

1>
MAE = E Z |(pmeasured - pcomputed)i| (32)
i=1

This error clears away the difficulty in item 1.

3. The root mean squared error (RMS), standard deviation or standard error of estimate (SE)
which is the average of the squared differences between measured and computed pa-

rameters:
1 n 0.5

RMS = E Z(pmeasured - pcomputed)z2 (33)
i=1
This error is usually thought to be the best measure of error if errors are normally
distributed.

Ideally, the maximum acceptable value of the calibration criterion should be established
prior to the calibration, though normally, it is set during the calibration itself.

The evaluation of the model calibration can be quantified by using so-called levels of
calibration, viz. level £ means that the computed value falls within £ times the associated
error of the calibration target. For example, level 1 represents the highest level of calibration
as the computed value lies within the calibration target. For each calibrated parameter one
map is required, e.g. for head or solute concentration (at each time step when transient).
The results can also be presented in tabular form, in box plots (see figure 3.12) or in a time
series plot.

3.5.2 Error criterion

When iteration is involved to solve the mathematical equations, an error criterion or con-
vergence criterion can be used to judge whether or not the solution converges. Iteration
stops when the change in e.g. fluxes, water balance, heads or solutes (the latter two in all
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Figure 3.12: Box plot of data which graphically represents the experimental distribution: con-
tinuous lines show the quartiles and the median (thus the box contains 50 % of the data) and the
discontinuous lines contain 80 % of the data.

elements) between two successive iterations is less than the error criterion. As a rule of
thumb, the error criterion should be one or two orders of magnitude smaller than the level
of accuracy desired in the results. The residual error of the iteration should progressively
decrease during the solution of the mathematical equations.

For example, the accuracy of the solution of the groundwater flow equation in the
MOC! code of Konikow & Bredehoeft [1978] can easily be enlarged by decreasing the
value of the convergence criterion TOL. Numerous causes are possible if the solution fails to
converge. Examples of such causes are: the initial guesses of variables and parameters may
be inappropriate (e.g. transmissivity is so large that within one time step all groundwater is
pumped out of the aquifer, the contrast in transmissivity between an aquifer and an aquitard
is too large); the grid design may be incorrect (e.g. modelling a sloping groundwater flow
system by means of a grid with rectangular elements may induce difficulties); errors can
be made in typing input into computer files (print and check the output file); the error
criterion is set below the precision of numerical solution (no convergence can be reached
due to machine truncation); and the concept of the model may be poor (e.g. a model for
simulating steady state groundwater flow in an aquifer with natural groundwater recharge
and no-flow boundaries).

The check on the water balance can be very useful in designing the model. For example,
when the fluxes to or from the model are unreasonable high or low, then the inserted trans-
missivity file may be wrong, whereas unreasonable high or low volumes of water entering
or leaving the storage may indicate a wrong storage parameter. As a rule of thumb, the
ideal error in the water balance for numerical modelling should be less than 0.1 %, whereas
an error around 1 % is usually considered acceptable.

In the following example, the water balance of a groundwater flow system is consid-
ered. The incoming and outgoing water masses over a boundary are determined from the
velocities perpendicular to that boundary and the lengths of the boundary segments. In

ONowadays, MOC is also called USGS 2-D TRANSPORT.
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Figure 3.13: Symbols of water masses in the hydrogeologic system of the sand-dune area of
Gemeentewaterleidingen Amsterdam.

Table 3.2: Flow of water masses in million m?/yr during some specific years. See figure 3.13 for

the meaning of the symbols.
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figure 3.13, the symbols and positive directions of the water masses are given flowing over
specific boundary segments of the hydrogeologic system.  Table 3.2 shows the flow of
water masses at the sand-dune area of Gemeentewaterleidingen Amsterdam during specific
years in million m3/yr. In the year 1854 AD the lake Haarlemmermeer was completely
reclaimed. Before 1854, groundwater has flowed from the deep and middle aquifers towards
the sea (the symbols M1 and D1), while since 1854 salinisation of the hydrogeologic system
occurs. Moreover, high groundwater extraction rates from the middle aquifer (symbolised
by Ex) at the sand-dune area of Gemeentewaterleidingen Amsterdam seriously affect the
groundwater flow in the hydrogeologic system. For example, the salt water intrusion from
the sea in both the deep and middle aquifer is more severe in 1956 than in 1987, when
the groundwater extraction rates from the middle aquifer are again low. Based on these
simulations, the effects of different groundwater extraction rates can be assessed.

In addition, errors in the computed output variables may also arise due to wrong dis-
cretisations of both time and space. Some solution techniques have a limit on the time
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step as otherwise the solution does not converge. For example, the size of the grid Ax
may be restricted when the finite element method solves solute transport (by means of
the advection-dispersion equation) in combination with groundwater flow (e.g. the Peclet
number should be small, up to maximum 10, see section 8.3).

3.5.3 First model execution

In general, the making of the first error-free output will probably require many additional
hours, at least, more than you expected. The whole phase of the first model execution
includes the preparation of the input data file, the entry of input data file into computer
lines, the execution of the model (the so-called run), and the interpretation of the results.

Preparing the input data file can be time-consuming if the problem is complex and /or
if you, as a modeller, are unfamiliar with the code. Many computer codes are written in
FORTRAN (viz. FORmula TRANSslator), probably because the creators are raised with
this symbolic algorithm computer language. If not written properly, this language can be
very chaotic and difficult to understand. In a badly written FORTRAN programme the
statement GO TO causes switches between different parts of the programme, and the pro-
gramme can rapidly be a fuzzy and indistinct one. In addition, old versions of FORTRAN
requires that data in the input data file have specific formats.

Some entry errors during the first runs due to a wrong input data file is normal, and
usually, after a few runs these errors are removed. Preprocessors may help you in assembling
the input data file by means of user-friendly screen menus. However, if not all options are
included in these preprocessors, they may limit the flexibility of the model. As such, a
familiar user would probably prefer to compose the input data file directly, e.g. by means
of a simple editor. Note that, at present, many preprocessors are available, so this step will
rapidly be passed by.

To execute the model, an executable file of the computer code must be produced by an
appropriate compiler. A compiler reads the source code and generates machine language
statements for the computer hardware. A computer system with sufficient random access
memory (RAM) is required to store data and arrays during the execution of the model. Until
a few years ago, most FORTRAN compilers on the Personal computer accessed only 640 Kb
of RAM, which is the standard memory limit of DOS. As such, the possibility to store large
amounts of data was limited. So, the arrays which represent the parameters and the number
of elements should not be dimensioned too large. The problem of insufficient memory, the
so-called memory problem has recently been solved. Since the late 1980’s, much more
memory is available on the personal computer: the so-called Extended Memory RAM (EM
RAM). Executables of computer codes can address this EM RAM beyond the usual 640 Kb
RAM-limit of DOS through sophisticated compilers (e.g. the Lahey Fortran compiler F77L-
EM/32 in combination with the Lahey/Ergo/Phar-Lab 386 Operating System). As such,
even stand-alone personal computers can accommodate a much larger number of elements
than under 640 Kb of conventional RAM. Meanwhile, as three-dimensional models appear
more and more on the scene, much more data must be stored, and consequently, the EM
RAM must increase simultaneously. Now, in 1999, the true application on a broad scale
of three-dimensional models for (regional) complex geometries is still in a primary stage,
even though the computer systems rapidly increase their abilities in terms of processors
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Table 3.3: Execution time of different computer systems (processors) with different MHz on a
benchmark problem [Anderson & Woessner, 1992].

Computer system Speed (relative to PC)

PC 1
XT 1.9
286 (AT) 7.0
386 16 MHz 9.7
386 25 MHz 9.9
486 25 MHz 29.8
486 33 MHz 39.3
486 50 MHzt 49.7
Pentium 120 MHz7 186.4
SUN OS 5.7 UNIX 1* 293.2
Pentium Pro 200 MHzj 382.7
SUN OS 5.5.1 UNIX {1 1186.4
Pentium Il 733 MHz7 1461.3
7: based on Oude Essink’s experience.

*: UNIX workstation at Geophysics with 495 Mb EM RAM.
I: UNIX workstation at Geophysics with 1500 Mb EM RAM.

(disk-speed) and RAM (standard computer systems contain several (tens of) Mb of EM
RAM, see also figure 1.1).

The length of time necessary to execute the computations with the computer programme
for a given set of input data of a hydrological problem is the so-called ezecution time. This
execution time depends on four factors:

a. the speed of the computer
Table 3.3 illustrates how some types of computer systems perform. Note that the
difference in MHz does not matter much. As can be seen, the new computer sys-
tems with faster processors (disk-speed) open the application of three-dimensional
modelling.

b. the size of the model

The number of nodes and type of the governing equations being solved determines
the size of the model. The larger the number of elements, the longer the execution
time will be. The arrays which represent the parameters and the number of elements
should not be dimensioned too large, as otherwise, insufficient memory is available.
Table 3.4 shows how much memory is required for the groundwater computer code
MOC as a function of the number of elements and the initial number of particles. In
addition, table 3.5 gives the number of elements or grid blocks of some other computer
codes.

c. the efficiency of the compiler
Some compilers go through commands and information more efficiently than others.
For example, the Lahey Fortran compiler (e.g. F77L-EM/32) can very rapidly compile
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Table 3.4: Total memory required in Mb as a function of elements and the initial number of
particles per element for the groundwater code MOC [Konikow & Bredehoeft, 1978; Oude Essink,

1996].

Number of | Number of particles | Total initial number Total memory
elements per element of particles per grid | requirement (Mb)
1400 8 3200 0.302
900 4 3600 0.418
900 9 8100 0.490
900 16 14,400 0.591
3200 9 28,800 1.249
7200 9 64,800 2.551
10,000 9 90,000 3.454
20,000 9 180,000 6.693
50,000 9 450,000 16.410

: these are the characteristics of the original MOC code in 1978.

Table 3.5: The number of elements or grid blocks of executable computer codes depends on the
free Extended Memory RAM (EM RAM) of the computer [source: Scientific Software Group, 1996].
Note that, e.g., in an 8 Mb EM RAM personal computer, only some 7 Mb is free for memory

allocation.
Computer code Extended Memory RAM Number of 2D or 3D
(Mb) elements

MOCDENSE (2D)t 25 2500
SUTRA (2D)i 4 1300
8 2175
16 6525
HST3D (3D) 4 2500
8 7000
16 14,000
MODFLOW (3D) °4 60,000
MOCDENS3D* 74 (8 particles/element) 125,000
43 (27 particles/element) 40,000

1: MOCDENSE [Sanford & Konikow, 1985] is an adapted version of MOC,
developed for vertical cross-sections (it is based on pressures).
I: the main reason for this small number of elements relative to MOC is that
SUTRA [Voss, 1984] has to allocate arrays for additional subsoil characteristics.
: it is also possible to apply a virtual memory system, which uses disk storage to
supplement the computer’s memory. Note, however, that then the computer
speed will drop significantly.
*: MOCDENS3D [Oude Essink, 1998] is an adapted version of MOC3D [Konikow
et al., 1996], which can simulate density dependent groundwater flow (see
also the lectures notes of Hydrological Transport Processes/Groundwater)
Modelling Il [Oude Essink, 2000].
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FORTRAN-codes. This compiler for personal computers could already address the
EM RAM at least since the end of the 1980’s.

d. the type of the output device
Some models ask for keyboard input during the execution or frequently write to
the screen printer or even an output file. These actions increase the execution time
(massive output files of several Mb’s may increase the execution time substantially).
Examine whether or not you can reduce the output devices after the first model
execution is finished, e.g. by setting the printing options to minimal output.

3.5.4 Sensitivity analysis

Given that the calibration may be non-unique, you have no guarantee that the predictive
model will produce accurate results when the model is stressed differently from the cali-
brated conditions. Moreover, calibration is difficult as values for hydrologic parameters,
stresses and boundary conditions are typically known at only a few nodes and are asso-
ciated with uncertainty. In addition, there is even uncertainty about the geometry of the
hydrologic system (e.g. lithology and stratigraphy) you are trying to analyse. In order to
reduce the uncertainty, it is essential to subject the (already) calibrated model to a so-called
sensitivity analysis. The purpose of a sensitivity analysis is to quantify the uncertainty in
the calibrated model. A sensitivity analysis is typically performed by changing the value
of one parameter at a time. The widest range of plausible solutions can also be examined
by changing two or more parameters. The procedure of calculating sensitivities can also be
automated or can be done by stochastic modelling.

During the sensitivity analysis, calibrated values of the most important hydrological
parameters, such as transmissivities, are systematically changed within a (previous estab-
lished) plausible range, e.g. by means of a coefficient of variation (standard deviation divided
by the expected value). The sensitivity analysis of a parameter has its effect on relevant
variables of the hydrologic process, such as head, solute concentration, sources of water to
a pumping well, etc.

3.56.5 Kiriging

Kriging is a method for optimizing the estimation of the spatial distribution of parameters in
a network of already measured points (figure 3.14). It is a statistical interpolation method
that chooses the best linear unbiased estimate (the so-called BLUE) for the variable in
question. Kriging differs from other interpolation methods because it considers the spatial
structure of the parameter and provides an estimate of the interpolation error in the form
of a standard deviation of the kriged values. Moreover, kriging preserves the field value at
measurement points. In hydrology, kriging has a wide variety of applications, such as:

e calculation of rainfall, temperatures, sunshine, etc., based on measurements from
climatological stations.

e interpolation of thickness or elevation of geological formations based on logging of
wells!!.

"'The record of any phase of well drilling can be called a log [Davis & DeWiest, 1966].
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Figure 3.14: Kriging: the so-called point estimation is based on the determination of the quantity
Zy for any xy that has not been measured. By modifying the position of xg, the whole field of Z
can be estimated.

e estimation of hydrogeological parameters (transmissivities, piezometric heads, solute
concentrations) based on measurements in wells.

Kriging can also be used: (1) to estimate the confidence interval of an estimation, (2)
to estimate the mean value on a given block (e.g. on the mesh of a grid of subdomain),
and (3) to locate the best situation for a new measurement point through minimising the
overall uncertainty in the field. Based on item (1) and (2), kriging can help to estimate
parameters. Better estimates of parameters can be obtained when prior information is used
in the analysis. The error estimates are applied in assigning plausible, reasonable ranges of
parameters in the hydrologic setting.

3.6 Model verification

Due to a number of uncertainties, the set of parameters used in the calibrated model may
not accurately represent the real hydrologic system. As such, it may occur that under a
different set of hydrologic stresses, the hydrologic system is not accurately represented by
the calibrated parameters. In order to improve the confidence in the calibration of the
model, the model has to be tested by using a second independent set of data. This is called
the model verification or model validation (see figure 3.15). The normal procedure is to
split a record in half: one half for calibration and one half for verification.

A so-called verification target is satisfied when the accuracy and predictive capability of
the model have been proven to lie within acceptable limits of error. A model is verified when
the verification targets are matched without changing the calibrated parameters. If it is
necessary to adjust parameters during the model verification because the verification targets
are not matched, the verification becomes a second calibration and other independent data
sets should be needed until the verification of the model is performed. Unfortunately, it is
often impossible to verify a model because usually only one (reliable) set of data is available,
which is already needed for the calibration. This is the so-called wverification-problem.

“Once the available record has been used for calibration, there is nothing left
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Figure 3.15: Verification of a model: a new set of independent data is used to check whether or
not the calibrated model is capable of accurately simulating a transient response.

for model verification, and consequently, the adequacy of the model cannot be
challenged by comparison with the actuality’...” [Klemes, 1986].

As such, the results simulated with an unverified model are generally more uncertain than
with a verified model. Nevertheless, a calibrated but unverified model can still be applied
to make predictions as long as the sensitivity analysis of the calibrated model is performed
accurately.

3.7 Simulation

Whereas the objective of calibration was to demonstrate that the calibrated model can
reproduce measured hydrologic processes, the ultimate modelling objective is to produce
a model that can accurately simulate or predict (future) conditions for which no data is
available. Once a model is calibrated as well as verified, it can be used for predicting the
response of the hydrologic system to events either in the past, present or future. The confi-
dence which is placed in model predictions largely depends on the results of the calibration,
the verification and the sensitivity analysis.

An important problem is to determine the length of time for which the model accurately
predict the response of the hydrologic process in the future. Klemes [1986] subdivided the
extrapolation of the calibrated and verified model is three categories, ranked in order of
diminishing possibility of checking the results by observations:

1. short-term forecasting and prediction
In this category, we can often rely on the laws of fluid mechanics and hydraulics. At
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the most, interpolation and short extrapolation occurs. The availability of test data
provide a relatively good safeguard against misconceptions.

2. hydrologic simulation
In this category, at least an indirect testing on analogous empirical data is often
possible. It is mentioned that a predictive simulation should not be extended into the
future more than twice the period for which the calibration data are available.

3. long-term forecasting and prediction
In this third category, the possibility of testing is nonexistent. Some environmental
problems require a length of time of many years, perhaps as many as 10,000 years
(see figure 3.8: long-term processes are taking place in the glaciers, regional ground-
water; obviously, geological processes are also long-term processes). For example, as
groundwater flow and solute transport are slow processes, a long simulation time of
several centuries for large-scale coastal groundwater flow systems is not rare.

The results of predictive modelling are uncertain because of two reasons: (1) uncertainty
in the calibrated model (the same parameters are used which are determined during the
calibration and verification steps), and (2) uncertainty about the future hydrologic stresses.
The likelihood of future hydrologic and human-regulated events such as future pumping
rates introduce errors in the simulations. A sensitivity analysis is necessary to assess the
effect of both calibrated parameters and hydrologic stresses on the results of the simulations.

Then, scenarios are formulated to assess future hydrologic stresses, such as human
activities. If the number of scenarios is very large, a number of representative scenarios
should be selected. Subsequently, the scenarios should be executed and the results should
be presented.

3.8 Presentation of results

In this (final) phase, a report has to be completed. A good report is essential to the
effective completion of the modelling study. A modelling report should contain the following
elements!'?:

e purpose of the model
An informative title of the report should reflect the goal or objective of your (mod-
elling) effort. The long-term goal of the hydrological study should be recognised in
this element. The success of the study will be judged by the degree to which the
objectives are met. The overall approach or strategy to accomplish the goal of this
study must be pointed out. A location map of the studied area should be presented.

e formulation of the concept of the model
Field data (e.g. geologic and topographic setting, hydrologic parameters) and assump-
tions should not only be supplied to formulate the concept of the model, but also for

12Note that the standard elements of a report, such as a summary, conclusions, recommendations for
further research, list of references and appendices with additional or supplemental information, are not
considered in this listing of a modelling report.
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several other reasons: to set the reasonable ranges of parameters, to calculate initial
conditions, to calibrate the model and to estimate water balances. A definition of
hydrostratigraphic units and water and/or solute budget information should be pro-
vided. The governing equations of the hydrologic process you want to model should
be formulated.

e information about the computer code
Especially information about the code should be added, if the computer code is a new
one. Details of the governing equations, how boundary conditions are handled, data
input requirements, the numerical method used to solve the equations, modifications
in the code (if applicable), code verification results, a listing of the code and a user’s
manual (in appendices).

e model design
The relation between the concept of the model and the numerical model should be
described. The boundary conditions and initial conditions are selected. The parame-
ters of the hydrologic system used in the model are set. The applied temporal as well
as the spatial discretisations of the numerical model are defined, in combination with
locations of the boundaries and types of the hydrologic stresses. The uncertainty of
parameters and stresses must be discussed.

e calibration and model verification

The calibration targets are defined. The sources and magnitudes of each calibration
value are described. The changes in calibration values which led to the model cali-
bration are described. The matches between measured and computed parameters are
recorded by means of contours and/or box plots of residuals, location and value of
calibration targets and plots of mean error, mean absolute error or root mean squared
error as a function of calibration run number. A list of parameters, boundaries and
stresses of the final calibrated model should be implemented. A second dataset which
is used for model verification should be applied.

e sensitivity analysis
The sensitivity of the results to variations in parameters, grid size, boundary condi-
tions, and calibration criterion should be documented.

e results of the predictive simulations

The scenarios of stresses (both natural and human-induced future alterations) to the
hydrologic system are defined. The consequences of changes in stresses (e.g. water
management practices) through graphical presentation are described. Information
should be collected on the assumptions, uncertainties and limitations of the predic-
tions, e.g. by means of a sensitivity analysis to quantify the effect of uncertainties in
future changes in the hydrologic system. The limitations of the modelling effort itself
should be discussed, such as the reliability of the calibration and sensitivity analyses,
in order to state that the modelling results can be applied by decision makers, e.g.
for water management practices.

In conclusion, sufficient data should be included in the report to allow a reader to reproduce
your modelling effort.
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Figure 3.16: Differences in contour lines in the Inverse Distance interpolation technique of SURFER
due to different options: the weight is raised to a power to increase the influence of other nodes
close to the node considered; the number of nearest points around the current grid node is increased
which are applied in the calculation of the current grid node; and the grid size is increased from 1.0
versus 0.5.

During a typical modelling study, parameters, boundary and initial conditions, and
even (lines in) the computer code are changed. Therefore, it is advisable to keep a journal.
Anyway, normally, you will start modelling with good intentions of recording each change
in the original design and its effects on the modelling process, but when modelling is getting
under way and the deadline is approaching, it may occur that the inclination to recording
changes is diminishing. Moreover, the journal can help you in preparing the report. By
documenting your modelling effort, the model can be regenerated after a time, e.g. by
another investigator (see section 3.9). The journal should archive the purpose of each
model run, the modifications of the computer code (if applicable), the changes in input
files, and the effects of the changes on the results.

Nowadays, the graphical presentation of data output has really become professional. A
large number of sophisticated graphical modules makes simulations understandable, (more)
reliable, and more easy to interpret. However, remain critical, as impressive pictures could
distract you from the real purpose of the modelling process. Several software packages are
capable of generating smooth contour maps by applying interpolation techniques. In those
software packages, an option is applied to eliminate irregularities in the output data. For
example, in the SURFER software package, three interpolation techniques can be used:
viz. Inverse distance, Kriging and Minimum curvature. The gridding interpolation method
Inverse Distance, which is the most commonly used (default) technique SURFER applies,
assumes a so-called weighted average technique to interpolate grid node from the XYZ data
file. The weights are inversely proportional with the distance to the grid nodes. Data points
further away from a given grid node will have less influence. Figure 3.16 shows that the
contour maps can be significantly different due to different options in the method applied.
Be aware that such techniques may manipulate the modelling results.

Mostly, results from model simulations are used by decision makers to plan the future
changes in hydrologic processes. Therefore, the results of your simulations should (some-
what) be adapted to the imaginative powers of the decision maker.
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3.9 Postaudit

Postaudits'® or verifications of the complete modelling result examine the accuracy of a
prediction by a model which was executed a considerable number of years ago (e.g. at least
10 years to allow adequate time for the hydrologic system to move far from the calibrated
solution). As such, these postaudits can help us in answering the question: “How good can
models predict the future ?27.

As there are large-scale (regional) hydrologic systems which have been simulated to
predict long-term response to some applied stress since the 1960’s, a number of postaudits
can be possible. Now, in the 1990’s, it is possible to evaluate the modelling effort in those
years, for example by applying another computer code, another concept of the model,
different boundary conditions or parameters. This method to increase the confidence in
modelling is more reliable than methods which apply automated calibration techniques or
stochastic simulations. There exists also the iterative way of improving a model to achieve
a better calibration to measured conditions. When new data become available over the
years, the concept of the model should be evaluated. If the concept of the model should be
changed, then changes should also be incorporated into the numerical model.

For example, Anderson & Woessner [1992] discussed four postaudits, which were the
four groundwater flow problems reported in literature up to that moment (in 1992). Though
numerous predictive modelling studies have been executed since the 1960’s, it can be stated,
based on the small number of postaudits, that models are (traditionally) used rather in a
crisis mode, to answer some pressing question and to be forgotten after served this purpose,
than in a management mode on a day-to-day, month-to-month, or year-to-year basis. T'wo
problems evaluated the response of pumping by means of electric analogue models, and the
other two problems described solute transport in combination with groundwater flow by
means of digital models. Anderson & Woessner [1992] concluded that all four models did
not accurately predict the future, mainly due to:

1. errors in the concept of the model of the hydrologic system

The modeller did not define a proper concept of the model. They defined an inade-
quate description of the state of the hydrologic system, and as a result, errors were
introduced. Based in the four postaudits, errors did not occur due to the numerical or
theoretical deficiencies in the model itself. For example, in one postaudit, to predict
more reliable water level changes due to pumping, the concept of the model would be
improved significantly if changes in aquifer storage and transmissivity could be rep-
resented in three-dimensions instead of in the two-dimensions of the electric analogue
model.

2. errors in the estimations of future hydrologic stresses
The errors in future stresses, such as recharge, pumping and contaminant loading
rates, are easy to be understood, as we tend to extrapolate current trends into the
future, though the current trends may not apply to future events. To overcome this
problem, scenarios of future (hydrologic) stresses with different trends were applied
in order to define a range in the predicted values.

BDutch: 'na-controle’.
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Table 3.6: Comparison of prognoses of future sea level rise in ¢cm relative to 1980, except for the

prognosis of Oerlemans which is relative to 1985 and the estimates of the Intergovernmental Panel
of Climate Change (IPCC).

| Author [ 2000 | 2025 | 2050 | 2075 | 2100 |

Extrapolation of historic data® | 2-3 | 4.5-6.8 | 7-10.5 | 9.5-14.3 | 12-18
Revelle [1983] 70 in 2085 relative to 1980

Hoffman et al. [1984]:¢

- Conservative Scenario 4.8 13.0 23.8 38.0 56.2
- Mid-range Moderate Scenario 8.8 26.2 52.3 91.2 144.4
- Mid-range High Scenario 13.2 39.3 78.6 136.8 216.6
- High Scenario 17.1 54.9 | 116.7 212.7 345.0

Polar Research Board [1985]¢ 50-200 in 2100 relative to 1980

Villach II Conference [1985]¢ 20-140 when global warming is 1.5°C' to 4.5°C.

Robin [1986]7 2551 526 70.8 80.1
Oerlemans [1989] 20.5 | 33.0 50.5 65.6
IPCC [1990] 31-110 in 1990-2090, 66 c¢m as the best estimate
IPCC [1995)9 20-86 in 1990-2090, 49 c¢m as the best estimate

@ The historical sea level rises have been estimated by Barnett [1983] and Gornitz et al.
[1982]: 10 & 15 cm per century in the period 1880-1980. The data are based on measure-
ments of sea level variations with tidal gauges at particular locations over the past century.

b Revelle [Titus, 1987] ignored (and not added) the impact of global warming on Antarc-
tica, though he noted that the latter contribution is likely to be 1 to 2 m/c after 2050.

¢ Hoffman et al. [1984] made projections of sea level rises for the next century at interme-
diate years, based on special case scenarios for changes in greenhouse gases. They
assumed that the glacial contribution would be one to two times the contribution of
thermal expansion.

4 The USA National Academy of Science Polar Research Board [Titus, 1987].

¢ The predictions are based on observed changes since the beginning of this century [Bolin,
1986].

f These prognoses were calculated by Robin from the sea level-time regression (linear rela-)
tionship to estimate sea level rise for a 3.5 K warming [Oerlemans, 1989].

9 This lower figure is largely due to the downward revision of the rate of global warming.

For example, in the beginning of the 1980’s, the predictions of rates of sea level rise
were not very consistent (table 3.6). Within some ten years, it became clear that the
early predictions were exaggerated. Nowadays, the predictions are more consistent.
though several mechanisms, such as the feedbacks of clouds and oceans, are still not
completely understood.

In conclusion, the predictions have been inaccurate due to the failures of the modeller, not of
the model, though these failures are understandable and unavoidable. In order to overcome
uncertainties in future stresses, you need to apply several different possible scenarios of
future stresses.
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3.10 Why can things go wrong ?

“Thus at the present stage of hydrologic science, hydrologic modelling is most
credible when it does not pretend to be too sophisticated and all inclusive, and
remains confined to those simple situations whose physics is relatively well un-
derstood and for which the modeller has developed a good ‘common sense’ within
his primary discipline.” [Klemes, 1986].

Remain independent and critical towards the modelling results you have obtained. Never
trust the results at first sight. Due to an increase in the complexity of modelling, sophis-
ticated graphical techniques are applied to show comprehensible (simplified) pictures. As
such, users and decision makers could get a poor understanding in the underlying idea of
the hydrologic process you want to model. If you suspect that the results are not conform
to your expectations, you should go back to the source, backwards in the modelling process
and ask yourself what may be the cause of this discrepancy in expectation and outcome.
Some causes could be:

e the conceptualisation of your problem is wrong. For example, a relevant component
of the hydrologic process is not considered, as it was expected to be negligible.

e the governing (partial differential) equations do not comprise all relevant processes
in your hydrological problem. Terms are averaged or even neglected which is not
allowable in your specific situation, e.g. the dispersive term has been deleted in the
solute transport equation. Through evaluating these terms and checking their order
of magnitude with respect to the other terms, errors can be located and possibly
solved.

e variables and parameters are not assessed properly, e.g. due to a lack in data. More-
over, initial and boundary conditions are not properly assigned or inserted in the
input data file, e.g. due to a wrong discretisation of the hydrologic process.

e the computer code you apply may contain errors. In fact, as long as there are new
releases (viz. version 3.2), computer codes are not completely finished to perfectly
model the hydrologic process involved. You could bring out your findings to the
developer of the code who will, (only) in the long run, be grateful of your investigations
(provide the developer of sufficient output of the problem that goes wrong).

e numerical problems on wrong discretisations occur regular, such as oscillation and
truncation errors (see chapter 8). Check whether different spatial as well as temporal
discretisations significantly effect the modelling results. If so, smaller discretisations,
smaller time-steps or even more stable numerical schemes should be considered.

Note however, that, in general, good thinking helps, most other things not !
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Chapter 4

Data gathering

Obviously, a numerical model, which is applied to simulate a hydrologic process, must
be calibrated and verified with available data in order to prove its predictive capability,
accuracy and reliability. Regrettably, in many cases reliable and sufficient data are scarce.
As such, the data problem, also known as the parameter crisis, is one of the most important
problems in hydrological modelling, because the accuracy of the modelling results does not
only depend on the degree to which the model structure ’correctly’ represents the hydrologic
process but mostly on the accuracy of the input data. It has no sense to develop a complex
model when the input data requirements cannot be satisfied.

It is clear that the field data can be extracted from various sources, obtained from maps,
cross-sections, well-logs, borings, data on precipitation, etc. Developments in remote sens-
ing, geographical information systems (GIS) and data processing are with great potentials
in the process of data gathering. Regrettably, in many cases sufficiently reliable data are
still scarce, because data collection is expensive and labour-intensive. The availability of
enough reliable data is obviously even more pinching for three-dimensional models than for
two-dimensional models. As such, the application of three-dimensional computer codes is
restricted seriously.

The availability of data is important for the conceptual construction of the model as well
as the calibration of the numerical model (e.g. see figure 4.1). Examples of data are rainfall
data, subsoil parameters (e.g. the hydraulic conductivity, the exact position of aquitards,
the effective porosity, the anisotropy, and the hydrodynamic dispersion), groundwater ex-
traction rates, and salinity and piezometric head distributions as a function of space and
time. Data are necessary to calibrate the applied model as accurately as possible. When the
existing network of recording instruments should be augmented, the records will probably
be too short to allow adequate calibration of the mathematical model. Consequently, poor
estimates will be given. Unfortunately, long time series are available only occasionally.

For example, calibration of groundwater models with salinities changing over time and
space is still rather laborious. As the flow of groundwater and subsequently the transport
of hydrochemical constituents are slow processes, it takes quite some years before (a change
in) salinisation can be detected. As such, relative long time series of monitored salinities
(of some tens of years or even more) are necessary in order to accurately calibrate 3D salt
water intrusion in large-scale coastal aquifers. Unfortunately, these time series are available
only occasionally and reliable measurements are scarce in many cases. As a consequence,
the calibration will be less reliable. One has to collect many data during many years before
a good calibration can be achieved.

The type and amount of parameters that should be measured depends on the purpose
of the modelling exercise and on the physiographic characteristics of the hydrologic process
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Figure 4.1: Example of data requirements in a catchment model [modified from Fleming, 1979].

and, as such, on the structure of the model. Some ’simple’ models require only a few
parameters, whereas ’complex’ (distributed physically-based) models requires large data
series.

Moreover, the density of data also depends on the scale of the representative elementary
volume (REV, introduced by Bear [1972]) of the modelled hydrologic process. For example,
for large-scale (regional) models only data in national data banks may be sufficient, whereas
for local, detailed models data can probably be collected in the field.

In addition, for three-dimensional models, the upscaling of data from one-dimension
and two-dimensions to three-dimensions may face some difficulties. In fact, the collection
of data is one- or two-dimensional. For example, hydrogeologic information is mostly ob-
tained from a point source (e.g. groundwater level from an observation well) or from a line
source (hydrogeologic information from a hydrogeologic column). This information must
be extrapolated or interpolated to a three-dimensional distribution of subsoil parameters.

Before data can be used in the calibration or application of the mathematical model,
they must be checked for errors and deficiencies. For example, long-term errors in precipi-
tation gauges, e.g. due to vegetation growth around a gauge, can be identified by plotting
cumulative annual total of the gauge in question against the sum of the cumulative annual
totals of the surrounding base gauges. Any long-term inconsistencies will be evident by a
change in the slope of the plotted line.

When data series are inaccurate, the gaps in the model data input should be corrected
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by correlation with nearby gauges (or weighted average of some more distant gauges) to
obtain a homogeneous reliable data series with no gaps.

When data series are absent, the model data input should be filled by stochastic tech-
niques to create data series with statistical characteristics identical to the original data
series. Note that stochastic techniques do not account for changes in the hydrologic sys-
tem, such as climate changes over long periods of time (for generating precipitation data).

Geographical Information System

To solve the data availability problem to a certain extent, so-called Geographical Information
Systems (GIS) can be very useful. In these systems, all relevant hydrologic data can be
stored. By analysing these systems, areas with a lack of data can be detected immediately.

In fact, a GIS only utilises a databank of spatial information. It is able to carry out
all kinds of operations with the data, such as subtracting, averaging and interpolating.
As such, a GIS provides a functional framework for coupling hydrological models with
spatial units. As a user of geographical data, hydrology was in the foreground of the
development of GIS at the end of the 1980’s. Moreover, remote sensing data, e.g. obtained
from satellites, makes it possible to consider large-scale hydrologic systems. For example,
research on environmental changes on planetary scale (e.g. climate change and greenhouse
effect) employs large-scale hydrologic systems. Distributed models make the greatest use
of a GIS, because such models require spatially distributed model parameters. A GIS can
obtain model parameters for each grid element from maps or points.

A GIS can be applied to process model input and model output. Basic GIS applications
are: (1) digitalize analog data such as maps or time series to provide the geographic reference
of variables; (2) accomplish relations between variables by overlaying maps; (3) assess
outlines, lengths (e.g. pipes), surfaces (e.g. surface per land use), volumes (e.g. excavations
of dumping ground to calculate the costs in guilders per m?); (4) present maps and figures;
(5) analyse spatial information; (6) interpolate discontinuous data of contour maps; and
(7) convert input data file to a standardized format and visualise output data on maps.

Up till now, GISs are applied for input preparation of model parameters (pre-processing)
and for output presentation of model results (post-processing). The possibility of a GIS to
support hydrological models is limited by its ability to store, retrieve and perform operations
with temporal data!, such as time series on water quality variables and changes in water
levels due to different pumping rates. The leading GIS is ARC/INFO, whereas PCRaster
(http://www.geog.uu.nl/peraster.html) at this Utrecht University, Faculty of Geographical
Sciences, ILWIS (the Integrated Land and Water Information System) [ITC, 1996], IDRISI
and GRASS (USGS) are also capable systems.

Future developments in hydrological modelling and GIS will probably focus on data
collection, expanding databases, and advances in the integration of models in a GIS. The
integration of a GIS and models, using a Structured Query Language (SQL), shortens
the time on the exchange of data between the systems, but it may decrease the quality
of modelling results when the GIS is treated as a black box without understanding the
fundamental data manipulations that it carries out.

1As data storage in GIS has originally been concentrated on spatial data, a GIS is not specialized in
temporal data.
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For groundwater flow problems in the Netherlands, research institutes, governmental
organisations and drinking water companies started in 1990 the development of a so-called
REgional Geohydrologic Information System (REGIS). The central system is administered
by Netherlands Institute of Applied Geoscience TNO - National Geological Survey (NITG
TNO)2. In REGIS, a database is available to supply all types of relevant hydrogeologic in-
formation, such as geo-electric data, groundwater levels (observation well data®), chemical
data, hydrogeologic columns, topographic information, pumping and borehole test data,
locations of contaminants, etc. Now, the system is operational and has already proven to
be profitable. Note that, in addition, often applied sources in the Netherlands are borrowed
from drinking water companies, waterboards, NITG TNO, Rijkswaterstaat, ILRI (Interna-
tional Institute for Land Reclamation and Improvement) and grey literature (articles and
reports of site-specific problems descriptions). &

2Dutch: Nederlands Instituut voor Toegepaste Geowetenschappen (formerly: TNO Grondwater Geo-
Energie) and Rijks Geologische Dienst (RGD).
3Information can be retrieved from the so-called Grondwaterkaarten and the On Line Grondwater Archief

(OLGA).
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Chapter 5
Introduction

The application of groundwater models can be described in terms of modelling quantity
problems or quality problems.

For a quantity problem, only the flow of groundwater itself is modelled through mathe-
matical description and interconnection of two equations: the equation of motion (Darcy’s
law) and the equation of continuity (equations 6.14 and 6.25), resulting in the groundwa-
ter flow equation (equation 6.30). For a quality problem, a new equation is added to the
two equations of the quantity problem: the so-called advection-dispersion equation (equa-
tion 6.68). This equation is applied to simulate solute transport, including chemical and
physical reactions. Note that the quality problem also concerns heat transport in ground-
water, using in fact the same advection-dispersion equation, although now it is called the
convection-diffusion equation.

5.1 Classification based on the design of the model

In the past, the behaviour of groundwater flow has been investigated by means of physical
(scale) models, analogue models as well as by means of analytical methods. With the
advent of high-speed computational capabilities (digital computer), the use of physical
(scale) models and analogue models for simulating groundwater problems has decreased.
The application of physical (scale) models is also limited by space, time as well as cost. They
are still scarcely applied in laboratory studies on transport of groundwater contaminants.

Since computers appeared on the scene, mathematical models gained ground. They are
subdivided into analytical models and numerical models. These analytical models, based on
numerical techniques, apply infinite series of definite integrals to solve the solution (e.g. see
section 7.7). For this application, computers are needed to solve the complicated (partial
differential) equations involved. Numerical models, however, are directly based on computer
codes. At present, a large number of mathematical models is available, which are capable of
handling many types of groundwater flow. Figure 5.1 shows a classification of groundwater
models based on the design of the model.

Computations with groundwater models result in data concerning piezometric heads,
drawdowns, upconing, groundwater flow velocities, flow paths, travel times, solute concen-
tration patterns, heat patterns, etc. In practice, based on these computational results,
hydrogeologists have to make decisions based on the optimal positive effect of a solution
and the minimal costs. The main applications of groundwater models are in the field of:

e prediction and simulation of certain measures or activities.
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Groundwater models
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Figure 5.1: A classification of groundwater models [Hemker, 1994].
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Table 5.1: Analogies to groundwater flow: electricity and heat [Canter et al., 1987].

Variable Groundwater Electricity Heat

Potential head, ¢ [m] voltage, V' [Volt] temperature, T [°Celsius]
Quantity volume discharge rate electric charge heat

transported [m3/s] [Coulomb] [calorie, Joule]

Physical property | hydraulic conductivity electrical conductivity thermal conductivity

of medium k [m/s] o [mhos/m)| A [Joule/(m s°C))
Relation between | Darcy's law Ohm's law Fourier's law

potential and specific discharge [m/s]: | electric current [Ampere/m?]: | heat flow [Joule/(m? s)):
flow field q=-k grad ¢ i1=-0 grad V' qg=-\ grad T

Storage specific storage capacitance heat capacity

quantity Ss [1/m)] C [microfarad] ¢y [Joule/(m3°C)]

e planning and evaluation of different scenarios and strategies.

e optimization of the use of water resources.

5.1.1 Physical models

Physical model (also called scale models) are actual physical replicas of a groundwater flow
system (mostly a simple aquifer) that have been scaled down for study in the laboratory.
For example, the soil column (one-dimensional) and the sand tank (three-dimensional) are
physical models. The behaviour of the prototype to hydrologic stresses can be simulated
by subjecting the scale model to certain stresses such as water removal or injection or
contaminated recharge. Scale relationships are used to interconnect the prototype with the
physical model, for example Ug=¢,, /€, where U is the ratio of the model parameter &,
divided by the actual aquifer parameter &.

5.1.2 Analogue models

Analogue models are based on the fact that several physical processes are governed by
equations that are similar to the equations of groundwater flow (see table 5.1). As such,
these processes are analogous with groundwater flow. If such a process can easily be re-
alized and measured, it can be applied to study groundwater flow in a specific situation
through interpretation and translation of the physical constants towards groundwater flow
constants. Unfortunately, in most cases analogue models cannot be applied for simulating
the movement of contaminants in groundwater.
Examples of analogue models are [Bear, 1972; Canter et al. 1987; Strack, 1989]:

1. the Hele Shaw model
Sometimes, this model is also subdivided under the type of physical models. This
analogue simulates slow flow of a viscous fluid in the narrow space between two
parallel plates. It can be used to model problems with a free boundary, transient flow
or multiple fluid flow (e.g. a model to study wastewater injection into a fresh-saline
groundwater system).
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Groundwater ﬂow:l Darcy

piezomaric head
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Figure 5.2: Analogue of groundwater flow: electrodynamics and heat transfer.

2. the electric model

This model is based on the similarity between Ohm’s law for the movement of electrons
through a conducting material and Darcy’s law for the movement of fluid through a
porous media (see figure 5.2):

AV = IR (5.1)
1 A
R o Al RoczﬁRszl (5.2)
oI 1AV

where

V' =electric potential (Volt),

i =electric current (Ampere m=2),

R =electric resistance (12),

e A =considered surface of the object (m?),
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e Al =length of the considered object (m),

e p =specific electric resistance (Ohm m, Qm).

: . lov . 1oV
Ohm's law (2D): i, = P by = >3y (5.4)

- . 0i 0i
Continuity electrodynamics: — + —%

il (5.5)

The properties of an aquifer (e.g. permeability, storage coefficient) is simulated by elec-
tronic components (e.g. resistors, capacitors). For example, it can be used to measure
pumping response in an aquifer through measuring appropriate voltages (similar to
piezometric head) and currents (similar to groundwater flow).

3. the thermal model
This model is based on the similarity between the flow of heat in a uniform body
and groundwater flow in an aquifer (note that the same symbol ¢ is usually used for
groundwater flow and heat transfer):

T T
Fourier's law (2D): ¢, = —/ﬁjg— qy = —/ﬁ?a— (5.6)
x

where

e ¢ = heat flow (Joule m™2 s71),

e k = thermal conductivity (Joule m~! s=! °Celcius).

0 0
Continuity heat transfer: % + 9y

e Ty =" (5.7)

Moreover, in case of a steady state isotropic homogeneous system with no sources or
sinks, both processes obey the Laplace equation:

ot 0*r  9%r
oxr?  Oy2 022 (58)
where 7 = piezometric head (¢) (m) or temperature (T') (°Celsius). The flow of heat
is simulated through adding a heat source or sink to a given material and measuring
the temperatures.

4. the membrane model
This model is based on the similarity between the small slope of the surface of a
stretched thin rubber membrane and (axial-symmetric) steady state groundwater flow
in polar coordinates. Drawdowns due to a well is simulated through measurements

of the deflections of the membrane caused by a protrusion’.

'Dutch: ’uitsteeksel’.
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| Equation of motion: Darcy's law

Partial differential equations
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Figure 5.3: The schematisation of the calculation scheme, applied for mathematical modelling of
groundwater.

5.1.3 Mathematical models

In general, a mathematical model for groundwater problems is formed by (partial) differ-
ential equations (e.g. including density dependent groundwater flow as well as solute and
heat transport), together with specification of system geometry, boundary conditions? and
initial conditions for transient processes (see figure 5.3). In combination with data of your
specific groundwater flow problem, the (partial) differential equations of the mathematical
model are solved by using: (a.) analytical methods and (b.) numerical methods.

ad a. Analytical methods

In the past, analytical methods® were commonly used for the analysis of groundwater
problems. An analytical solution of the partial differential equation was brought up for
a particular problem with its corresponding initial and boundary conditions. For exam-
ple, the piezometric head ¢ and the groundwater flow ) were computed by solving the
equations directly and continuously in time and space. For example, analytical solutions
of groundwater flow and solute transport are given for the one-dimensional form of the
advection-dispersion equation by Ogata & Banks [1961], Shamir & Harleman [1966] and
Kinzelbach [1986, 1987a]. Bear [1972, 1979] has summarized examples of analytical solu-
tions of the hydrodynamic dispersion with specific boundary and initial value problems. See
also the TUDelft lecture notes Geohydrologie f15B [Boekelman & van Dijk, 1996] (chapters
5t09).

The trick is to find an analytical solution suitable for your specific problem. Various
mathematical techniques are applied to find appropriate solutions. In addition, an effective
approach is to obtain analytical equations from analogous physical processes. The similarity
between groundwater flow and conduction of heat in solids appears to be very convenient.
In this physical process, several analytical solutions are similar to those for groundwater

2Specification of appropriate boundary conditions on the flow domain is often the most difficult task in
formulating the model, and one of the primary sources of uncertainty in model analysis.
3These methods are also referred to as exact solutions.
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flow in aquifers. For example, Carslaw and Jaeger [1959] obtained equivalent problems in
the theory of 'Conduction of Heat in Solids’.

The advantage of analytical methods is that they can give a quick insight in the sensi-
tivity of the solution for various physical parameters (such as transmissivity, storativity).
Moreover, they can serve as verification of solutions of more complex systems obtained by
numerical methods. However, the application of analytical methods is limited as analytical
solutions are only available for relatively simple and strongly schematised problems* (e.g.
homogeneous aquifers, 1D or 2D, steady state, interface between fresh and saline ground-
water).

For example, for problems of steady flow in two dimensions, the method of complex
variables is commonly used (remember the equation z = x + iy). This method contains
concepts such as the hodograph method and conformal transformations (also called confor-
mal mapping). For problems of transient flow other transformation techniques are applied,
such as Laplace and Fourier transformations. For more information about complex vari-

able techniques, various transformations, the Cauchy-Riemann relations (% = g—z and ‘g—;

= -%), the potential ® and the stream function W, etc.: see Verruijt [1970] and [Strack,
1989].

With the introduction of powerful computers the application of analytical methods is
becoming less.

ad b. Numerical methods

If groundwater problems become more complex (e.g. inhomogeneous, anisotropic, transient,
regional groundwater flow with changes of the properties of aquifers and semi-pervious lay-
ers, with wells, rivers, etc.), the system becomes too complicated for solutions obtained
with analytical methods. In these cases, numerical methods have to be used. The introduc-
tion of micro-computers increased the application of numerical methods and these methods
replaced almost completely the use of analytical methods.

A main characteristic of numerical methods is that the computations result in values
at discrete points. For example, the piezometric head ¢ and the groundwater flow @ are
computed by solving the equations at nodal points in time and space.

One of the basic principles of numerical methods is that for each discrete point one
difference equation (or, if solute or heat transport problems are considered, two difference
equations) are generated, which can be solved in two ways (see also [Stelling & Booij, 1996]
and [Spaans, 1992]):

e explicit: one after another in a certain sequence, or

e implicit: as a set of equations by means of a matrix approach: (1) direct solution as
a complete matrix (e.g. Gauss-Jordan Elimination (section 7.4), Decomposition and
Matrix Inversion) or (2) indirect or iterative solution, where equation after equation
is solved, using trial start values (e.g. Gauss-Seidel Substitution (subsection 7.2.3),
Successive Overrelaxation (subsection 9.2.5) and Conjugate Gradient Methods).

Numerical methods and their solution techniques are discussed in chapter 7.

4Unfortunately, analytical solutions are very rarely available for problems with density dependent ground-
water flow in combination with solute transport, governed by means of the advection-dispersion equation.
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5.2  Outline

In this part Il, the characteristics of groundwater models are discussed. In chapter 6, a
classification of groundwater models is enumerated and mathematical descriptions of the
relevant processes are given. In chapter 7, some numerical techniques are demonstrated
and six methods which solve the partial differential equations of groundwater flow and/or
solute transport are briefly described. In chapter 8, numerical aspects of groundwater
models are considered intensively. Finally, in chapter 9, some computer codes which handle
salt water intrusion are briefly mentioned®. In addition, four groundwater computer codes
are discussed more intensively: MODFLOW, Micro-Fem, MOC3D and an adapted version
of MOC (2D).

5See the lectures notes of Hydrological Transport Processes/Groundwater Modelling Il: Density Dependent
Groundwater Flow: Salt Water Intrusion and Heat Transport for more information.



Chapter 6
Mathematical description of hydrogeologic processes

In this chapter, the mathematical description of the some hydrogeologic processes is given.

6.1 Fluid flow: equation of motion and continuity

In so-called quantity problems, the interest is focussed on groundwater and related aspects,
such as piezometric heads, streamlines and water balances. Examples of quantity problems
are: modelling drawdowns due to groundwater extractions (for domestic, industrial and /or
agricultural purposes), the pumping of groundwater out of an excavation by means of
a system of shallow wells or the lowering of (polder) water levels through drainage and
pumping.

The tools available for the mathematical modelling of quantity problems are the equation
of motion (Darcy’s law) and the equation of continuity (mass balance equation). Well-
known groundwater computer codes for quantity problems are MODFLOW (section 9.2)
and Micro-Fem (section 9.3).

6.1.1 Equation of motion: Darcy's law

Darcy (1856) did experiments on flow through a cylinder of saturated sand (homogeneous
and isotropic porous medium) (see figure 6.1). He found relations between different param-
eters which influence the flow of water. The rate of flow appears to be proportional directly
to head loss and inversely to the length of the flow path, with a constant proportionally
factor, see the equations 6.1 to 6.5:

Darcy's law (1856): Q x 1 — ¢ (6.1)
0 x % (6.2)

QoA (6.3)

Q x A% Z 02 (6.4)

Q=rali g %0 (6.5)

where

e () = rate of flow (L3T1),

69
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reference level

Figure 6.1: Darcy’s experiment.

e ¢ = Darcian specific discharge (LT~!),

e A = cross-sectional area of diameter of the cylinder (L?),

¢ = head (L),

L = length of the flow path (L),
e k = proportionally factor or hydraulic conductivity or permeability! (L7T~1).

Darcy’s law is only valid in case of laminar flow: viz. at relative low velocities when water
particles move more or less parallel to each other. In quantified terms, Darcy’s law is valid
as long as the so-called Reynolds number Re (—) does not exceed some value between 1
and 10:

Reynolds number: Re = paft <1-10 (6.6)

1
where

e ¢ = Darcian specific discharge (L T~!),
e 1 = dynamic viscosity (M L=1T~1),
e R = hydraulic radius of the pore (L).

Darcy’s law can also be obtained from a mathematical point of view. Three forces are
working on a water particle, see figure 6.2:

1. Pressure differences:  p,1 AyAz — poAyAz (6.7)
2. Gravity forces: — pigAxAyAz (6.8)
3. Friction forces: — %qua:AyAz (6.9)

where

'Dutch: ’doorlatendheid’ or ’doorlatendheidscoéfficient’.
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Figure 6.2: Forces on a water particle.
e Kk = intrinsic permeability (L?).
Combination of these three terms gives:
P ATAY — poAxAy — pigAxAyAz — quAa:AyAz =0 (6.10)
K
Pz2-P21 H
= a=0 6.11
N, T 0T (6.11)
Kk (Op
=——| = ; 6.12
¢=— ( .+ ng> (6.12)
Similar for the z - and y-direction:
Kk Op K Op Kk Op
__noP —_2Zr = ——(=— ; 6.13
@ ==, W=y q: u( 5, T Pi9) (6.13)

In conclusion, the equation of motion for three-dimensional (laminar) groundwater flow in
an anisotropic non-homogeneous porous medium in the principal directions is described by
Darcy’s law [e.g. Bear, 1972]:

Kg OD Ky Op Kz
_— _haOp _ _fyop L=l P 6.14
q e W=y q M( 5, ) (6.14)

where
® ¢, qy,q. = Darcian specific discharges in the principal directions (LT~1),

® Ky, Ky, Kk, = principal intrinsic permeabilities (L?),
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ground surface (grondoppervlak)

water table (grondwaterspiegel)

=pressure head

R
filter Pg (drukhoogte)

d=piezometric head
(stijghoogte)

z=elevation head
+ (plaatshoogte)

Figure 6.3: Definition of the piezometric head (terms in Dutch between brackets).

pi = dynamic viscosity of water at point [x,y,2] (M L='T~1),

e p = pressure (M L~1T72),
e v = p;g = specific weight (M L=2T-2),

p; = density of groundwater at point [z,y, z] (M L™3),

e g = gravity acceleration (L7T~2).

6.1.2 Piezometric head

The relation between the pressure and the so-called piezometric head is as follows (if the
atmospheric pressure equals zero), see figure 6.3:

p=-"L 42 (6.15)
pig

where
e ¢ = piezometric head (L). Also called hydraulic head or piezometric level,
° p%g = pressure head (L),
e 2z = elevation with respect to the reference level, e.g. N.A.P. (L).

p=pig(¢—=2) (6.16)
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6.1.3 Hydraulic conductivity and permeability

If p;g is constant, then the hydraulic conductivities of groundwater k; in the principal
directions can be defined as follows:

ke = 2209 ky = 218 ko= P9y (6a7)
i 1223 i

Combination of the equations 6.14, 6.16 and 6.17 gives?:

_ ., 09 _ ;. 99
Qy—_kya_y q, = kzaz

9¢

R (6.18)

Gz = — kg

The intrinsic permeability « largely depends on the size of the pores through the effective
porosity n.. A commonly-used equation is the one of Kozeny-Carmen to clearly demonstrate
the relation between x and n,:

3

Te (m?) (6.19)

Kozeny-Carmen: K=c d2m

where
e ¢ = depending on the structure of the pores, e.g. ¢=1/180 (—),
e d = main grain size (diameter of the pore) (L),
e n. = effective porosity (—).

Some values for k and k are given in table 6.1.3. In addition, it can be deduced that
the permeability varies with depth due to increasing pressure or effective stress. Though
exact relations are difficult to obtain as in situ data are scarce and upscaling of data from
laboratory-scale experiments is somewhat unreliable, a correlation between permeability x
and depth z becomes widely accepted. For instance, the following equation is given for the
permeability as a function of depth in the continental crust (Manning & Ingebritsen, 1999):

logk = —14 — 3.2log 2z (6.20)

where z is the depth in kilometres (L). An empirical porosity-depth relation is given by
Athy (1930):

Ne = Ne,0exp(—Bs(z0 — 2)) (6.21)

where B, and n. o are fit coefficients. For instance, n.0=0.5, Bs=-0.5 x 10~ and 2z9=0 for
sands (z in cm) and ne=0.6, Bs=-0.6 times 107> and z,=0 for shales (Bethke, 1985).

2Here it is assumed that the variation of the density with the pressure can be neglected. This is very
often possible in hydrogeologic practice.
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Soil ‘ k (m/s) ‘ £ (m?)
Unconsolidated deposits

Clay <1077 <10~17
Sandy clay 1072-10=% | 10~16_10715
Silt 1078-10-7 | 10-15-10714
Peat 1079-10-7 | 10~16-10~14
Very fine sand 10761075 | 10713-10712
Fine sand 1075-10=* | 107121071
Coarse sand 107410723 | 10~1-10710
Sand with gravel 1073102 | 10~10-107?
Gravel >1072 >1077
Rocks

Unfractured rocks <1079 <10~
Sandstone 10710-1076 | 10-17-1013
Limestone & dolomite | 107°-107¢ | 10-16-10~13
Fractured rocks 1078-10* | 10~ -10~11
Permeable basalt 1077-1072 | 107 14-107*
Karst limestone 1075-1072 | 10~ 13-1079

Table 6.1: Values for the hydraulic conductivity k and the intrinsic permeability k. In conclusion:
fine sand 1 a 10 m/day and clay 10~°-10~* m/day.

Fractures

A fractured medium is a special case of voids in solid rocks [de Marsily, 1986]. Almost all
rocks in the earth’s crust are fractured because of tectonic movements, e.g. faults, fissures,
joints, cracks. If the fractures are not sealed by some kind of deposit such as clay, calcite
or quartz, a network of (interconnected) fracture is created: a fractured medium with a
so-called fracture porosity. It is possible that a fractured medium consists of two types of
porosities: the regular (porous medium’) porosity and this fracture porosity. Examples
are (some types of) sandstones and limestomes. In these media, a so-called double porosity
model can be applied to simulate groundwater flow.

Modelling flow in the fractured medium can be considered in two different concepts:
(a) considering the fractures one by one, or (b) considering the fractured medium as an
equivalent continuous medium. Flow in a fracture can be laminar or turbulent?.

For an equivalent continuous fractured medium where the flow is laminar, the effective
permeability x.ry can also be estimated as follows:

(53

/{eff = ﬁ (622)

where

e 0 = width (aperture) of the fracture (L),

3The Reynolds number (equation 6.6) classifies whether the flow regime is laminar (Re < 2000) or
turbulent (Re > 2000).
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e f = distance between the fractures (L).

See for more information on fractures de Marsily [1986].

6.1.4 Density of groundwater

Density should be considered to be a function of pressure, temperature of the fluid and
concentration of dissolved solids:

where:
e p = density (kg/m?),
e p=pressure (kgm ! s7?2),
e T = temperature (°C).
e S = salinity* or total dissolved solids (TDS) (g/1).

However, the influence of pressure can be neglected under the given circumstances of most
considered hydrogeologic systems. Furthermore, the influence of temperature on the den-
sity is of minor importance with respect to the influence of dissolved solids concentration
within many hydrogeologic systems, see figure 6.4. Therefore, the density of groundwater is
often only related to the concentration of dissolved solids in the groundwater, whereas the
temperature is considered to be equal to a constant value (in the Netherlands ~ 10 °C).
In general, when the quality of groundwater is in question, the salinity or total dissolved
solids TDS is considered. An advantage of using TDS is that a rapid determination of TDS
is possible by measuring the electrical conductivity of a groundwater sample.

The concentration of dissolved solids is subdivided into negative (anions) and positive
ions (cations). For instance, ocean water consists of 11 main components: Since in coastal
groundwater chloride (C17) is the predominant negative ion, which is moreover investigated
intensively, the interest is often focused on the chloride distribution. When, in fact, only
changes in the chloride distribution are simulated, the distribution of all dissolved solids
is meant. In other words, the distribution of chloride ions is considered to represent the
distribution of all dissolved solids. As such, a proportional distribution of all dissolved
solids, which is present in ocean water, is also assumed to be present in groundwater under
consideration.

The applied classification of fresh, brackish and saline groundwater based on chloride
concentrations according to Stuyfzand [1986b] is presented in table 6.3. Obviously, there are
various other classification systems possible, e.g. because the definition for fresh ground-
water depends on the application of the groundwater. For instance, the drinking water
standard in the European Community equals 150 mg CI1~ /I [Stuyfzand, 1986b], while ac-
cording to the World Health Organization, a convenient chloride concentration limit is 200
mg Cl~ /I [Custodio et al., 1987]. A chloride concentration equal to 300 mg C1~ /I indicates
the taste limit of human beings according to ICW [1976], while Todd [1980] gives 100 mg

4The salinity is the concentration of dissolved solids in water, expressed in (M L™3) (g/1), p.p.t. (parts
per thousand) or p.p.m. (parts per million).
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Figure 6.4: Density of water as a function of the salinity and temperature (ILRI, 1972).

Tons ‘ ‘ mg/l ‘
negative ions cl~ 19,000
502 2700
HCO; 140
Br— 65
total negative ions 21905
positive ions Na* 10,600
Mgt? 1270
Ca™ 400
K™ 380
total positive ions 12650
‘ Total Dissolved Solids ‘ ‘ 34555 ‘

Table 6.2: Composition of ocean water. The three components with low concentrations are Stron-
tium (& 8 mg/l), Borium (£ 5 mg/l) and Fluoride (& 1 mg/1).

Cl~ /1 as the limit when salt can be tasted. The chloride concentration of sprinkler water for
horticulture should be less than 200 mg C1~ /I, while livestock can endure higher concen-
trations: up to 1500 mg C1~ /Il may be accepted, provided that the chloride concentration
stays constant.
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Table 6.3: Classification into six main types of fresh, brackish or saline groundwater depending on
the basis of chloride concentration, after Stuyfzand [1986b].

Main type of groundwater || Chloride concentration [mg Cl1~/I]
fresh Cl= <150
fresh-brackish 150 < C1~ < 300
brackish 300 < Cl~ < 1000
brackish-saline 1000 < C1~ < 10,000
saline 10,000 < C1~ < 20,000
hyperhaline or brine Cl~ > 20,000

Table 6.4: Variation of the dynamic viscosity p with temperature T at a pressure of 100 kPa (1
bar) [Verruijt, 1970; Bear, 1972; Voss, 1984; CRC, 1994].

Temperature T’ Dynamic viscosity p (kg/m s)
°C) Verruijt, Bear, CRC | Voss, equation 6.24

0 1.79-1073 1.76 - 1073

5 1.52-1073 1.50-1073

10 1.31-1073 1.30-1073

15 1.14-1073 1.14-1073

20 1.00-1073 1.00-1073

40 0.65-1073 0.65-1073

70 0.41-1073 0.40-1073

100 0.28 -1073 0.28 -1073

6.1.5 Dynamic viscosity

The dynamic viscosity p highly depends on the temperature [Huyakorn & Pinder, 1977],
see table 6.4. Voss [1984] uses in SUTRA the following expression:

p=f(T) 2 (239.4-1077) - 10TH8T kg /ms (6.24)

Note that this equation should only be applicable for T" < 100 °C. The dynamic viscosity
u is relatively insensitive to pressure within the range of groundwater systems that are
considered in these lecture notes. Furthermore, the dynamic viscosity also depends on
the solute concentration, though only for very high solute concentrations. In general, the
range in temperature in the deep aquifers of Dutch groundwater flow systems is small.
Temperature in the top layers in the Netherlands is about 9 a 10 °C, whereas the gradient
is about 3 °C' per 100 m. For instance, data from Stuyfzand [1986, 1988] in sand-dune areas
along the Dutch coast show that the temperature of groundwater in the aquifers directly
under the Holocene aquitard (at roughly -20 m N.A.P.%) is normally between 10.0 and 11.0
°C, while the annual mean air temperature near the coast is roughly 9.5 °C'. In deeper layers,
the mean temperature of the groundwater varies between 11.0 and 12.5 °C. In the United

5N.A.P. stands for Normaal Amsterdams Peil and is the reference level in the Netherlands. N.A.P. roughly
equals Mean Sea Level.
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States, most measured geothermal gradients for groundwater temperatures fall within the
range from +1.8 to +3.6°C' per 100 m below the zone of surface influence [Todd, 1980].
The geothermal gradient in strongly anisotropic karstic aquifers in the Salentine Peninsula,
Italy, is some 2.5 °C to 3.0 °C' per 100 m [Cotecchia et al., 1997]. In case groundwater
flows, smoother gradients could occur [Domenico & Schwartz, 1998]. This phenomenon was
pointed out by analysing temperature logs in a large number of boreholes. For instance,
several boreholes in the Murgia aquifer show an increase in temperature of less than 1.5 °C
over the top 200 m. On the other hand, changes in temperature near the groundlevel due
to geothermal flow could sometimes be significant.

6.1.6 Equation of continuity

Equation (6.25) describes the non-steady three-dimensional mass flow in a small element
of a saturated anisotropic, porous medium [e.g. Bear, 1972; van der Heide & Boswinkel,
1982]:

9(pigz) | 9(piay) | O(pigz)] _ 9(nepi)

IIV/
— pr— .2
Oz + oy + 0z ot Wi,y 2,%) (6.25)

where
e ¢t = time (7),
e n. = effective porosity of the medium (—),

e W'(x,y,z,t) = source function, which describes the mass flux of the fluid into (neg-
ative sign) or out of (positive sign) the system (M L=3T~1).

The effective porosity is a function of pressure, ne = ne(p). Due to the fact that a slightly
compressible fluid is present, it is necessary to introduce the specific storativity S (L™1)
[Bear, 1972]:

a(nepi)

Ss=y9 o9 =g(p

4 one
i 8]9

Ipi
—i—n—p)

e 6.26
with

S
So=7

(6.27)

where

e S = storage coefficient (—),

e b = saturated thickness of the aquifer (L).

The non-stationary equation of continuity is also obtained in another way by Verruijt, see
page 177 for a short review (in Dutch).

In many situations, the density is assumed to be constant: p;=p. Taking the partial
derivative of equation 6.16, that is % = pig%—f, and the pressure gradient can be replaced
by a term containing the gradient of the piezometric head ¢, equation 6.25 becomes:

94z  Oqy  9q:] _ 09  W'(x,y 21

|5t 3t 2 _SSE+7[) (6.28)

where
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e p = density of fresh groundwater at point [z,y, z] (M L=3).

In fact, however, the density of groundwater is a function of pressure, concentration of
dissolved solids and temperature of the fluid: p; = p;(p,C,T). First, the influence of
pressure p can be neglected in the hydrogeologic systems considered in these lecture notes.
Second, in many groundwater flow problems, the concentration of dissolved solids C' in
the groundwater is fortunately so low that the density of groundwater p; can be taken
equal to a constant value, e.g. of fresh groundwater p=1000 kg/m3. Third, the influence
of temperature T on the density is of minor importance with respect to the influence of
dissolved solids concentration within the range of many hydrogeologic systems. For the
Dutch situation, the temperature is often considered to be equal to 10 °C.

As such, equation 6.28 is a stripped version of the complete continuity equation 6.25, as
the density is assumed to be constant. This condition significantly simplifies the equation
of continuity. Assure yourself whether or not this condition is the case in your specific
groundwater flow problem.

6.1.7 Groundwater flow equation

The two equations 6.18 and 6.28 result in the so-called groundwater flow equation:

Ak, 29) Ok, 22) (k22 /
(kzg5) n (kygy) n (k-37) :Sﬁb Wiz, y,21) (6.29)
Ox oy 0z ot p

When the aquifer has a constant thickness b and a constant hydraulic conductivity k;, the
equation becomes:

0%¢ 0%¢

0%¢ 0o
o2 T Iwge

=05+ W(ﬂfa% Z?t) (630)

Tw 2 9
022 ot

+ T,

where
o Ty, Tyy,T,, = transmissivity in the principal directions (L2771,
o W(x,y,z,t) = (W'(z,y,2,t)b)/p; = volume flux per unit area (positive sign for out-

flow, e.g. well pumpage; negative for inflow, e.g. well injection and natural groundwa-
ter recharge) (LT~1),

Steady state groundwater flow equation

The determination of the steady state groundwater flow equation is mathematically de-
scribed below, see figure 6.5. Assumptions are:

e ground not deformable,
e ground completely saturated,

e 1o changes in the piezometric head as a function of time.
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Figure 6.5: Determination of the steady state groundwater flow equation.

Conservation of mass per unit of time gives (no change in storage of groundwater: S=0):

Balance in horizontal x-direction:  pgoAyAz — pq1 AyAz (6.31)
Balance in horizontal y-direction:  pgArAz — pgy1 AxzAz (6.32)
Balance in vertical direction:  pg,oAzAy — pg.1 AxAy (6.33)

Combination gives:
(quQA_xPQzI) AzAyAz + (7/)%2;:%1) AzAyAz
+ (7”%2&;’%1) AxzAyAz =0 (6.34)
or

Opq: | Opgy | Opq.
Ox oy 0z

=0 (6.35)
Combination with Darcy gives:

o0(h) (ki) on(kE)

Ox dy 0z (6.36)

When p and k; are constant in time and in space (this means that %’fii = 0) than the
Laplace equation is created:
0? 0? 0?
#g + % + % =0 (Laplace equation) (6.37)
or
Vi =0 (6.38)
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6.1.8 Equation of state

Numerous conversion formulas relating density to chloride concentration, salinity, temper-
ature and pressure, can be found in literature, see e.g. Sorey (1978), Weast (1982), Voss
(1984), Holzbecher (1998). For example, eqn. 6.39 gives an equation of state with a linear
relation between chlorinity and density.

o(C) = ps (1 + acg) (6.39)

S

where
e p(C) = density of groundwater (M L™3),

e p; = reference density, usually the density of fresh groundwater (without dissolved
solids) at mean subsoil temperature (M L~3),

e ps = density of saline groundwater at mean subsoil temperature (M L~3),
o o= (ps — py)/ps = relative density difference (—),

e C(; ) = chloride concentration or the so-called chlorinity (mg CI1~/l). The salinity .S
is related to the chlorinity C by the formula: C' = 0.554 S,

e (s = reference chloride concentration (mg CI~/l). In eqn. 6.39, a linear relation
exists between ps; and Cs.

The following data can be applied for sea (ocean) water: py = 1000 kg/m?; ps = 1025
kg/m3; thus (ps — pf)/ps = 0.025; Cs = 19,300 mg CI~/l; and TDS = 34,500 mg/I.
The TDS in oceans can be higher, due to, among others, a high degree of evaporation
and oceanic currents, and consequently, the density is higher than p, = 1025 kg/m?>. For
instance, the chloride concentration in the Mediterranean Sea can be as high as 22,000 mg
Cl= /1l (p=1028 kg/m?), and the TDS of the Red Sea and some areas of the Mediterranean
can reach some 45,000 mg/l (the Dead Sea even reaches p=1200 kg/m3).
Knudsen developed in 1902 the following formula:

ps.r) = 1000 + 0.80545 — 0.0065(7" — 4 + 0.22145)? (6.40)

Expression 6.40 (see fig. 6.4) gives a rather good approximation for the density as a function
of salinity and temperature, at a (constant) pressure of 1 atmosphere and for temperatures
< 15 °C' and salinity values < 20,000 mg/l or < 20 ppt. Sorey (1978) gives a temperature-
dependent formula:

pery = po [1 = B(T = To) — (T — Ty)?| (6.41)

or

pery = 1000 |1 =317 x 10~4(T = 4) = 2.56 x 1077 — 4)2] (6.42)

Hassanizadeh (1997) gives a formula which depends on temperature 7', pressure p and salt
mass fraction w:
P(Tpw) = poe—a(T—To)-i-ﬂ(p—po)-i-’Yw (6.43)

where
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e a=2 x 107 per °Kelvin,
o =4.45 x 10719 (ms?kg™1),

e v=0.7 (—).

Note that at high pressures, this equation is not applicable.

6.2 Solute transport: advection-dispersion equation

In so-called quality problems, the interest is focussed on the transport of dissolved solids®.
A further division of qualitative groundwater models is into:

I. solute transport” which does not affect the flow of groundwater through density differ-

ences. Examples of this type of quality problems are eutrophication, the transport of
contaminations caused by industry (e.g. oil pollution at dumps or petrol stations) or
agriculture (nitrogen and phosphorus contamination due to atmospheric deposition
and the application of fertilizers). Examples of computer codes of this type of problem
are: the original MOC code [Konikow & Bredehoeft, 1978], a random walk code by
Uffink [1990], MT3D [Zheng, 1990], MOC3D [Konikow et al., 1996].

Il. solute transport which affects the flow of groundwater as the density of the groundwater

is not constant: the so-called density dependent groundwater flow. This type of solute
transport is applied to model salt water intrusion in coastal aquifers where mostly
non-uniform density distributions occur. In many coastal hydrogeologic systems, a
relatively thick transition zone® between fresh, brackish and saline groundwater is
present because of various processes during geological history (regressions, transgres-
sions). In addition, the transition zone is also increasing as a result of the circulation
of brackish water due to inflow of saline groundwater (mixing with fresh groundwa-
ter due to hydrodynamic dispersion), the tidal regime and human activities, such as
(artificial) recharge and groundwater extraction at high and variable rates [Cooper,
1964]. For example, this situation occurs in Dutch hydrogeologic cross-sections with
Holocene and Pleistocene deposits of marine and fluviatile origin [Meinardi, 1973,;
Maas, 1989, see figure 3.2. Under such conditions, sophisticated models are required
which take into account variable densities. These models are referred to as solute
transport models or salt water intrusion models. They apply the advection-dispersion
equation to convert solute concentration (or total dissolved solids) to density. As
such, the solute transport equation and the groundwater flow equation are coupled
with each other. They are able to simulate, among others, changes in solute concen-
tration (e.g. near pumping wells due to upconing), changes in volumes of freshwater
in sand-dune areas and changes in the salinity of seepage in polder areas.

5Note again that simulating the transport of heat in groundwater is mathematically practically similar

to simulating the transport of dissolved solids, see subsection 6.3.

"Note that modelling the contamination of porous media by complex dissolved substances, such as the

so-called nonaqueous phase liquids (NAPL), goes beyond the scope of these lecture notes.

8Other terms are mixing zone, zone of dispersion or brackish zone.
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Examples of computer codes of this type of problem are: SUTRA [Voss, 1984], HST3D
[Kipp, 1986], SWICHA [Huyakorn et al., 1987; Lester, 1991], METROPOL [Sauter
et al., 1993] and the adapted MOC code (2D [Oude Essink, 1996], see section 9.5
and 3D, MOCDENS3D [Oude Essink, 1998], see the lectures notes of Hydrological
Transport Processes/Groundwater Modelling |I: Density Dependent Groundwater Flow:
Salt Water Intrusion and Heat Transport).

I1l. a special type of a qualitative groundwater model is the interface model. Though the
transport of dissolved solids is not directly considered, an interface model can simu-
late density dependent groundwater flow. They are based on the assumption that a
interface between fresh and saline groundwater represents the actual situation. This
is the well-known Badon Ghyben-Herzberg principle. These straightforward interface
models can be applied as an educational means to gain a clear insight in the be-
haviour of fresh and saline groundwater in coastal aquifer systems. As such, interface
models are still widely applied. Two important restrictions on the applicability of the
principle should be considered:

e First, the principle only approximates the actual occurrence of fresh, brackish
and saline groundwater in the subsoil. In fact, the brackish zone between fresh
and saline groundwater should only be schematised by a interface when the
maximum thickness of the brackish zone is in the order of several metres only.
This condition applies only in rare situations where the freshwater lens is evolved
by natural recharge, as occurs in undisturbed (viz. a system at rest) sand-dune
areas or (coral) islands.

e Second, the principle assumes a hydrostatic equilibrium, whereas in reality the
hydrogeologic system might considerably deviate from this equilibrium situation.
In those cases, e.g. in freshwater bodies near the shoreline, the Badon Ghyben-
Herzberg principle should not be applied, because the computed position of the
interface significantly deviates from the actual position.

Examples of computer codes of this type of problem are: van Dam [1976]; SALINA
[IWACO, 1987]; Beaversoft [Bear & Verruijt, 1987].

6.2.1 Equation of solute transport

Solute transport is caused by (see figure 6.6):

1. Advection:
process where groundwater flow is caused by gravity,

2. Diffusion:
molecular process where constituents are spread due to differences in concentrations,

3. Dispersion:
mixing process caused by differences in velocity (in magnitude and in direction) of
water particles, see figure 6.6
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Figure 6.6: Various processes involving solute transport in porous media.
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4. Adsorption:
process where certain constituents are attached to grain material

5. Decay:
change in concentration by biologic or radioactive decline

85

From an educational point of view, the solute transport equation is obtained in only the
z-direction (1D). Mass fluxes (M L~2T~1!) of each process of the solute transport equation

per unit of time per unit of cross-sectional area are:

ad 1. Advection

Mass flux:
fadv =V, C+ ‘/yC+ V.C

ad 2. Molecular diffusion (Fick's law)

oCc  oC  oC
faiff = —Dm (% + En + 5) =—-D,VC
ad 3. Dispersion
fdisp =-DVC

Dy,=D+ D, (where Dj=hydrodynamic dispersion coefficient)

Balance in z-direction:

—ne%AxAyAzAt — neMAa:AyAzAt = neAxAyAz@At
oz oz ot
ov,C O(—Dy2%)

—nea—xAxAyAzAt — Ne AxAyAzAt = neAxAyAzaa—fAt
x

X

¢C 00 _oc

* 022 Toxr Ot
ad 4. Adsorption

Mathematical description of adsorption in z-direction (1D):

(ppS)
ot

where

e pp = bulk density of the porous material (M L~3),

(6.44)

(6.45)

(6.46)
(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

e S = fraction of the solute sorbed (or exchanged) on the porous material (M M~1).
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8Cads. _ Pb oS
ot  ne Ot (6.52)

The linear sorption exchange reaction considers that the concentration of solute sorbed to
the porous medium S is directly proportional to the concentration of the solute in the pore
fluid C, according to the relation:

S = K,C (6.53)

where
e K, = distribution coefficient (M~ L3).

The slope (derivative) of the sorbed concentration versus dissolved concentration curve, %,
is equal to distribution coefficient K;. Examples of two nonlinear sorption isotherms are
the Freundlich and Langmuir sorption isotherms [Goode & Konikow, 1989]:

d
Freundlich sorption S =K;C" slope: % =nK;C"! (6.54)

where
e K; = Freundlich sorption equilibrium constant (units are a function of n),

e n = Freundlich exponent (—).

K K,QC *
ReC slope: a5 _ KQC nK;C" '  (6.55)

L i ti S = =
angmuir sorption iC 1+ KO

1+ K,C
where
e K; = Langmuir sorption equilibrium constant (M ! L3),

e () = maximum sorption capacity (M M~1).

These two nonlinear sorption isotherms, as well as ion-exchange [Goode & Konikow, 1989]
are not considered further. So, by including the linear sorption isotherm, equation 6.51

becomes: oS  dSoC . aC
acads. _ Pb oC
T neKd Y (6.57)
9%C oC . 0C  0C
9%C oC oC
Ro=(1+ %Kd) (6.60)
where

e Ry =1+ (pp/ne)Ky = retardation factor governing adsorption (—).
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ad 5. Decay
Mathematical description of decay in z-direction (1D):
C=Cye™ (6.61)
e Cy = original concentration of the dissolved solids (M L~3),

e )\ = first-order rate constant, governing hydrolysis and decay (T~!). Radioactive
decay rates are often expressed as halflives (t;/3), where the half-life is the time
required for the concentration to decrease to one-half of the original value: t;/,, =

(In2)/A.
W, __y = —x0 (6:62)
a‘s’dec. _

5 = —AS (6.63)
acagi.dec. _ _Fo (88_? + /\S) (664)

82C oC  py (. OC aC
D Ve, — ot (W +AKuC) =20 = (059

92C aC o aC
v~ Vagy — (1 T KOMC = (1+ Kd) 5 (6.66)

D, 9*C  V, dC e

o R T (6.67)

Three-dimensional equation of solute transport

Extending to three dimensions, the three-dimensional equation for solute transport in ho-
mogeneous isotropic porous media can be written as follows:

aC 9 aC. D C-CHYW ¥

5 = %(Dij%j) " 9z (CVi) + e S (6.68)

where
e C = concentration of the dissolved solids (M L~3),
e D;; = coefficient of hydrodynamic dispersion (L2T71),
o V; = ¢;/n. = effective velocity of the groundwater in the direction of z; (LT~1),
e (' = concentration of the dissolved solids in a source or sink (M L3),
e W(x,y,zt) = general term for sources and sinks (LT~1),

e n. = effective porosity of the medium (—),
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e U = chemical reaction source or sink per unit volume (M L=3T~1), where ¥ is based
on the equations 6.53, 6.62 and 6.64 when linear adsorption and decay are included.

Equation 6.68 is called the advection-dispersion equation, the solute transport equation
or the transport-dispersion equation. The first term on the right hand side represents
the change in concentration of solutes due to hydrodynamic dispersion. The second term
represents the effect of advective transport which is the movement of solutes attributed to
transport by flowing groundwater. The third term represents the contribution and removal
of solutes due to fluid sources and sinks, whereas the fourth term represents chemical
reactions.

If the velocity V; is equal to zero, no sources and sinks are considered (W = 0) and
no chemical reaction (adsorption nor decay) are taken into account, then the advection-
dispersion equation is reduced to the so-called diffusion equation (see page 101 for a nu-
merical example).

6.2.2 Hydrodynamic dispersion

Hydrodynamic dispersion Dy, is defined as the combined effect of two processes:
Dy =D+ D, (6.69)
where

e D (L?>T~!) = mechanical (or convective) dispersion coefficient. This process is caused
by velocity variations at the microscopic scale, see fig. 6.7. The spreading depends
on both fluid flow and the characteristics of the pore system through which the flow
takes place,

e D,, (L?>T~') = molecular diffusion coefficient. This process is caused by the random
movement of molecules in a fluid and depends on concentration gradients, the prop-
erties of the fluid and the soil. For a conservative solute as chloride, the molecular
diffusion D,, for porous media is approximately 1077 m?/s at a temperature of 25

°C.

Under normal groundwater flow conditions, molecular diffusion is of marginal importance
with respect to mechanical dispersion. In fact, the subdivision of the hydrodynamic dis-
persion into mechanical dispersion and molecular diffusion is artificial. The mechanical
dispersion coefficient, which is a second-rank symmetrical tensor, is given by Scheidegger
[1961]:

D;; = aijmn—vr;/“/n (6.70)

or
Vi

V]

Dyj = ar|V]di + (ar —ar) (6.71)

where

e D;; = coefficient of mechanical dispersion (L2T7Y),



Chapter 6: Mathematical description of hydrogeologic processes 89

| N

Differences in velocity Differences in velocity
in the pore due to variation in due to variation in
pore-dimension velocity direction

Figure 6.7: Causes of dispersion on microscale.

® Qijmn = geometrical dispersivity tensor of the aquifer (L),

Vi, Vn = components of the real velocity in m and n direction (LT~1),
e |V| = magnitude of the real velocity (LT~1),
e 0 =1ifi=jand &; = 0ifi#j.
Scheidegger defines the dispersivity tensor for an isotropic aquifer in terms of two constants:
Dy =ar|V]
Dr =ar|V| (6.72)
where
e oy = longitudinal dispersivity of the aquifer (L),
e ar = transversal dispersivity of the aquifer (L).

For example, the components of hydrodynamic dispersion (in the principal directions) for
two-dimensional and three-dimensional flow in an isotropic aquifer, considering mechanical
dispersion as well as molecular diffusion D,,, are as follows:

V)? (V)
D:c:c -
LIV T

V)2 (V)
Dzz -
Ty Y

Dy, = Dy = (OZL_OZT)—

+ D

+ D

(6.73)

()2 (V)2 (V)
Dmc -
LV T ATy

(V)2 (V,)? (V.)?
D = «o + af, + o
v TV v TV

+ Dpy,

+ Dpy,
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(Va)? (V)? (V2)?

D,, = ar + ar +ar + D
14 14 14
V.V,
Dm = D:c:(aL_aT)ry
Yy Y ‘V|
V.V,
sz = Dzm = (aL_aT) —
14
Vy V.
Dy, = D, = (aL—aT)‘yT| (6.74)

The exact determination of the hydrodynamic dispersion is very difficult, if not impossi-
ble, as it depends on many features (e.g. scale effect, fingering, transient effects [Anderson
& Woessner, 1992]). In fact, the more one knows about the hydraulic conductivity and
porosity distribution, and subsequently, the exact velocity distribution, the more the hy-
drodynamic dispersion value will converge to the value of molecular diffusion. As such,
one should model the heterogeneous and anisotropic medium as accurately as possible.
However, as it is not possible to determine the exact hydraulic conductivity distribution
as well as the exact velocity distribution, the exact value of the dispersion coefficient can
not be given. For this reason, the value of mechanical dispersion, which is inserted in the
model, may (somewhat) be increased to take into account these uncertainties in the subsoil
parameters. The less one knows, the higher the model dispersivities will often be.

Gelhar et al. [1992] reviewed 59 different field sites in order to classify the dispersivity
data into three reliability classes (see figure 6.8). The representative scale of the cases
ranges from 10~! to 10° m. They found that for these cases, the longitudinal dispersivity
ranges from 1072 to 10* m. In conclusion, the variation in dispersivity reflects the influence
of different degrees of aquifer heterogeneity at different field sites. They concluded that in
general, longitudinal dispersivities in the lower part of the indicated range are more likely to
be realistic for field applications. Therefore, the so-called scale-dependency of dispersivities
(ar, = 0.1 L, where L is the traveled distance of the contaminant), determined from field
data, should be reviewed critically. For instance, Schulze-Makuch & Cherkauer [1997]
show that for carbonate aquifers the relationship of longitudinal dispersivity to scale is
exponential according to a; = 0.2 L7, until an upper bound of traveled flow distance
L=100 metre (az,=27.6 metre) is reached, after which the longitudinal dispersivity remains
constant with scale.

Furthermore, Gelhar et al. indicated that there is a need for long-term, very large-scale
experiments extending to several kilometres.

In contrast with some field sites in especially the USA (see, e.g., the cases in Gelhar et
al., 1992), the best estimates of the longitudinal dispersivities in Dutch and Belgian large-
scale hydrogeologic systems with Holocene and Pleistocene deposits of marine and fluviatile
origin appear to yield rather small values. This manifests itself in sand-dune areas along the
Dutch coast, where freshwater lenses with (relatively sharp) fresh-salt interfaces have been
formed. This observation is based on various case studies, such as Lebbe [1983], Kooiman et
al. [1986], Stuyfzand [1991]; Walraevens et al. [1993]; and Oude Essink [1993]. For example,
computations have indicated that if a great hydrodynamic dispersion (that means a great
longitudinal dispersivity) is simulated during long simulation times, unrealistic solutions are
generated [Oude Essink, 1996]. In this example, the cross-section is situated in the sand-
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Figure 6.8: Longitudinal dispersivity versus scale with data classified by reliability [Gelhar et al.,
1992].

dune area of Gemeentewaterleidingen Amsterdam along the Dutch coast where a freshwater
lens has been formed. In figure 6.9, the effect of the longitudinal dispersivity ay, is evaluated
by comparing the results of simulations with four different values of ar: 0.02 m, 0.2 m, 2.0
m and 20.0 m. The chloride distributions of the cross-section are given after a simulation
time of 134 years: from 1854 (the reclamation of the Haarlemmermeer polder) till the end of
1987. The computed chloride distribution matches the measured distribution best if small
longitudinal dispersivities are applied, namely a;=0.02 m and a;=0.2 m. By contrast, the
case with a;=2.0 m shows a freshwater lens that is too thin compared to reality, whereas
the case with a,=20.0 m does not simulate a freshwater lens any more: the hydrogeologic
system only consists of a large brackish zone. Obviously, this situation does not occur in
reality.

6.2.3 Chemical reactions

The term W for chemical reactions in equation 6.68 includes equilibrium-controlled sorption
or exchange and first-order irreversible rate (radioactive decay) reactions. Here follows a
summary of processes associated with dissolved solids transport [Maidment, 1993]:

e Sorption is the reaction between solute and the surfaces of solids causing the solute
to bond (to varying degrees) to the surface.
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Figure 6.9: Chloride distributions (in mg C1~ /1) in 1987 in a cross-section through the sand-dune

area of Gemeentewaterleidingen Amsterdam and the Haarlemmermeer polder, computed for 4500
elements with MOC [Konikow & Bredehoeft, 1978] (adapted for density differences to model vertical
cross-sections [Oude Essink, 1996]) for four different longitudinal dispersivities: o, =0.02m, e, =0.2

m, ap,=2.0 m and ap=20.0 m. A thick freshwater lens is only simulated for small dispersivities.

e Radioactive decay is the irreversible decline in the activity of a radionuclide through
a nuclear reaction.

e Biodegradation or biologic transformation is the reaction involving the degradation
of organic compounds and whose rate is controlled by the abundance of the microor-
ganisms and redox conditions.

e Hydrolysis is the reaction on an organic compound with water or a component ion
of water. Substitution is the reaction with another anion. Often, hydrolysis and
substitution reactions make an organic compound more susceptible to biodegradation
and more soluble.

For example, if decay and linear sorption is included, equation 6.68 becomes [Goode &
Konikow, 1989:

el
R2C 2, 0 9 oy (C nc;)w

ot =z Pige,) " — RgAC (6.75)

where

e Ry =1+ (pp/ne)Ky = retardation factor governing adsorption (—). Ky is the distri-
bution coefficient (M ~! L) and pj, is the bulk density of the porous material (M L™3),
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Material | Thermal conductivity

k (cal m~t s~ °Celcius™!)
Quartz 2

Sandstone | 0.9

Limestone | 0.5

Dolomite | 0.4-1

Clay 0.2-0.3
Water 0.11
Air 0.006

Table 6.5: Thermal conductivity of rocks, water and air. To convert Calorie to Joule, multiply by
4.187.

e )\ = first-order rate constant, governing hydrolysis and decay (T~!). Radioactive
decay rates are often expressed as halflives (t;/3), where the half-life is the time

required for the concentration to decrease to one-half of the original value: t;/, =
(In2)/X\.

With regard to the transport of a conservative solute, viz. salt, ¥ is assumed to be equal
to zero: this means that Rz=1 and A=0.

6.3 Heat transport: conduction-convection equation

Mathematical description of heat transport in z-direction 1D (Fourier and convection):

T
Fourier's law: ¢ = _)\eg_x +neppes TV with Ao = nedp + (1 —ne)As (6.76)

where
e g=heat flux (Joule m=2 s71) or (Watt m=2),

e \.=thermal conductivity (Joule m™! s7! °Celcius™). A, As are thermal conduc-
tivities of fluid and solid material, respectively.

T=temperature (°Celcius),

e cr=specific heat capacity (Joule kg~! °Celcius™'),

pt, ps= density of fluid and solid material, respectively (kg m™3).

0 oT
Equation of continuity: — 8_aq: = p/c’a (6.77)
with p'd = neppes + (1 — ne)pscs.
T oTV 0T

)\ew — neprfW =pcC ot (678)



94 Groundwater Modelling, Part Il

oV o*T or or
Steady state: e 0= )\GW — nepfcfva—x = p'c'E (6.79)
e 0T npppeyr 0T 0T
Heat transport: ooz~ o Von =5 (6.80)
D,9*C 1 _08C oC
Analogy with solute transport: = (6.81)

Ry 022 Ry Ox Ot
See the lecture notes of Hydrological Transport Processes/Groundwater Modelling Il: Density
Dependent Groundwater Flow: Salt Water Intrusion and Heat Transport).



Chapter 7

Solution techniques

7.1 Introduction

Many solution techniques have been developed to solve the groundwater flow equation and
the advection-dispersion equation. Computer codes with suitable solution techniques are
already available since at least three decades.

In quantity problems, only the groundwater flow equation have to be solved. It appears
that most groundwater computer codes are based on the finite element method or the finite
different method. In quality problems, this means when the groundwater flow equation
and the advection-dispersion equation have to be solved simultaneously, e.g. for salt water
intrusion or contaminant transport, also the method of characteristics and the random walk
method come to the front. These methods can more easily simulate the flow of groundwater
in combination with the transport of solutes without (numerical) dispersion problems.

The problem to be solved and the preference of the user determine the choice of the solu-
tion technique (a combination of solution techniques is also possible). In this chapter, first
some basic numerical techniques are summarised: some iterative methods in section 7.2,
the Thomas algorithm in section 7.3 and the Gauss-Jordan elimination in section 7.4. Sub-
sequently, six solution techniques used by computer codes are discussed in the sections 7.5
to 7.10.

7.2 lterative methods

7.2.1 Taylor series development

0¢ 0%¢ B¢ Fo0)
<b¢+1,j:<bi,j+Aa + A282+ A383+ A48x4+ (7.1)
a¢ ,0%¢ 1 383¢ 484¢
(bi—l,j = ¢i,j - 8 A % - —A or 3 A or "y + ... (72)
Adding equation 7.1 and equation 7.2 gives:
62 64
Giv1,j T Gi—1,j = 2¢; ; + Ax 28 f + — A 48;‘? + .. (7.3)
¢ Giv1y — 2¢i5 + i1 &'
g = T Ol A ) (1.9

95
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>’¢ ~ Qit1y = 20i; + di-1,
0z Ax?

Subtracting equation 7.1 from equation 7.2 gives:

Pit1,j — Pi-1,5 = Tor T 3AT o+
09 bit1,j — dim1y 283¢
or 2Azx +0(= A O3 )

a¢ ¢z+1,] ¢i—1,j
or 2Ax

7.2.2 Laplace equation

Discretisation of the Laplace equation (2D) gives:

82¢ 82¢
922 "oz "

V24 =0

(7.5)

(7.9)

(7.10)

Note that when a source or sink term is included, viz. V2¢ = N, the equation is called to

be a Poisson equation. Using the Taylor series expansions gives:

% ~ Qit1y =200+ Pimny
822 Ax?

¢ ijr1 — 2005+ dij1

~

2 Ay?
Pit1,j —20i5 + Gi—1j | Pig+1 — 20i5 + dij
V24 — J J J J J J=1 _
¢ Az? + Ay?
If Az = Ay than:

Git1,j + Pi—1,j — 4¢ij + Gijr1 + Pij—1 =0

1 . .

i = 1 (Pig1,j + dic1; + Pij+1 + Pij—1) (five-point operator)

Example 7.1: Matrix of the Laplace equation

A solution for a grid of 25 points is given (figure 7.1). The assumptions are:
e Dirichlet boundary for the entire grid,
e Piezometric heads for the nine points 7, 8, 9 12, 13, 14, 17, 18 en 19.

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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o, 7 1 /4(¢i+1,j+¢i-1,j+¢i,j+1+¢i,j1)

= === Dirichlet boundary

16 17 |18 T9\|’20Q(|)13=1/4((|)14"'(|)12"'(|)18'|'(I)8)

21 122 |23 |24 125

Figure 7.1: Discretisation of the Laplace equation for a grid with 25 points. The boundaries are
of the Dirichlet type (constant head).

P2 + p6 — 47 + ¢ps + P12 =0
@3 + ¢ —4ds + P9 + P13 =0
¢4+ s — 4¢9 + P10 + P14 =0

ete. (7.16)
Combining the equations together in one matrix gives:
[ —4 1 0 1 0 0 0 0 0 7 b7 —¢2 — ¢e
1 -4 1 0 1 0 0 0 0 b8 —¢3
0 1 -4 0 0 1 0 0 0 b9 —¢4 — P10
1 0 0 —4 1 0 1 0 0 b12 —p11
0 1 0 1 —4 1 0 1 0 [x{ ¢35 p= 0 (7.17)
0 0 1 0 1 -4 0 0 1 P14 —d15
0 0 0 1 0 0 —4 1 0 b17 —p16 — P22
0 0 0 0 1 0 1 -4 1 P1s — a3
L O 0 0 0 0 1 0 1 —4 | b19 —¢20 — P24
or
[A] {¢} = {R} (7.18)

7.2.3 Steady state methods

Iterative methods are used to determine the piezometric head ¢; ;. The iterations stop
when the error tolerance or convergence criterium is reached. Here follow three well-known
iterative methods:

1. Jacobi iteration: uses only old values:

1 . .
(bﬁjl =1 ( i1 T Pii1j T Prj t ¢2j_1) (n=iteration-step)  (7.19)

2. Gauss-Seidel iteration: uses also two new values (this method is somewhat more effi-
cient):

1
ort =7 (Fay + O + 0l + ol (7.20)
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3. Overrelaxation: uses the Gauss-Seidel iteration method:

Ar = (qb”*’1 bi5) (Gauss-Seidel residue) (7.21)
¢”+1 ¢+ EAr ({=relaxation factor) (7.22)
n—l—l 1— n 5 n+1 n n—l—l 7.9

Optimal value for ¢ is between 1 and 2 (=~ 1.5 & 1.6).

7.2.4 Non-steady state methods

The basic equation for non-steady state groundwater flow is:

dp T82¢

Note that this type of the equation, which is called the diffusion equation, can also be applied
for many other geophysic processes, such as the diffusion processes, shoreline movements,
consolidation of soil, heat transport in solids and transport of solutes in a river.

e Explicit (forwards difference approach), see figure 7.2:

o Pl =20t +¢h_,
o2~ A (7.25)

00 o — 4l

T At (7.26)
TAt
A = 6!+ s (dh — 200+ 0l0) (7.27)
e Implicit (backwards difference approach):
o2~ Az (7.28)
9 _ ¢t — ol
TRy v (7.29)

SAz? SAx2
t+AL tLAt t—|—At ¢
ot (2 + ) e (7.30)
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explicit: forward in time
A @ unknown

H known
t+At

i-1 1 i+l

implicit: backward in time

A ® unknown
H known
t+At o ® o
i i
i i
i i
i i
i i
t i i .
] T K v
i-1 1 i+l
Crank-Nicolson: central in time
A @ unknown

B known

t+At

v

Figure 7.2: Numerical schemes: explicit, implicit and Crank-Nicolson.

— no direct solution possible,
— making use of the (three diagonal coefficients) matrix: [A]{¢} = {R},
— always stable,

— more memory necessary when explicit solution

e Crank-Nicolson (central difference approach):

Po (oD — 20 + g b — 200+ 00,
Crank-Nicolson:  a=0.5 (7.32)
aqs ¢t+At ¢t
S A (7.33)

¢§IlAt (2 +25Am ) ¢t+At + ¢t+1At _

At
—S8 0t — (0 — (2558 ) ol + 0ly) (7.34)




100 Groundwater Modelling, Part Il

— solving equal to implicit,

— stable though sometimes (temporary) oscillations occur.

Numerical solution of 1D non-steady state situation

The basic equation for an one dimensional non-steady state situation for a phreatic aquifer

is:
8(;5 B 82¢
at TO— + N (7.35)

where

e 1 = phreatic storage coefficient (—),

e N = recharge during a time step (LT~!),

e At = time step (7)),

e Az = length step (L),

e T = transmissivity (L27T71).
Discretisation of the system gives:

P Git1 —2¢i + ¢

dx2 Az? (7.36)
09 _ o7 — o}
o (7.37)
ot~ At
Combination gives:
AL _ gt t 2t + @t
s N o _pin A‘ZZQ Y1y N (7.38)
or
NAt  TAt
¢1;+At ot + . + AL ( §+1 — 24! + ¢§_1) (7.39)
Stability analysis: (N=0)
P — +e€ .
#t =10 7.40
7,+1 =¢i1=10—¢ (7.41)
TAt TAt
PrAt = de) =1 (1 —~ 4—> 42
o; 0+¢ +qu2( )=10+¢ AL (7.42)
TAt
‘1 - 4@ <1 (7.43)
TAt TAt
1- 4qu2 <1 U 1-— 4,uAa:2 > —1 (7.44)
At >0 U At <05 (7.45)
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Example 7.2: Non-steady situation of the diffusion equation

Diffusion in a saline environment is described by the diffusion equation. The time aspect of
smoothing a contrast in chloride concentration between three layers with different chloride
concentration is analysed. Molecular diffusion causes constituents to be spread due to
differences in concentrations. Here, the diffusion equation is applicable (only in x-direction):

oCc - C

where D,,,=the molecular diffusion coefficient (L?7~'). Consider the following composition:
between 0 m and 100 m: initial concentration Cj is 16000 mg CI~/l and D,,,= 0.69 x 10~*
m?/d; between 100 m and 160 m: Cj is 6000 mg CI~/l and D,,= 0.44 x 10~* m?/d;
and between 160 m and 200 m: Cy is 12000 mg C1~ /I and D,,= 0.69 x 10~% m?/d. The
equation is numerically modelled with an explicit discretisation (see the equations 7.25

and 7.26):
At
CEFA = O+ Dy (Ol — 201+ CLy) (7.47)
At t >0, the concentration at =0 becomes equal to 0 mg Cl~/l. At =200 m, no flux
of solute is assumed. Based on the stability criterion DmAA;Q < 0.5, the following model
parameters are chosen: Axz=5 m, At=250 year. Fig. 7.3 shows the change in chloride
content as a function of time. As can be seen, molecular diffusion smoothens the contrast
in concentration, though it is a slow process.

= 16000

| — Time (year):
o —=— 0
D 12000
é —— 500
‘E —=— 5000
o 8000
= Wx 20000
S i ] —— 80000
% —— 175000
'g o —e— 220000
= 100 150 200  ——350000
(&)

Depth (m)

Figure 7.3: Change in chloride concentration in mg C1~ /1 as a function of time in a layered aquifer
due to molecular diffusion.

Example 7.3: Non-steady situation

The following parameters are given:

o u=1/3,
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e N = 0.001 m/day,

e At =1 day and 10 days,

e Ax = 10 m,
e T =10 m?/day,
. NTN =0.003 and 0.03,

o o5 =03 and3.

7.3 Thomas algorithm

Groundwater Modelling, Part Il

The Thomas algorithm can be used to solve matrices with coefficients in only three diago-

nals.
By C; 0 0
As By Cy 0
0 A3 B3z Cs
0 0 A4 B
0 0 0 A5
0O 0 0 0
0O 0 0 0
0O 0 0 0
. 0 0 0 O
or

Introduction of dummy variables:

The solution of ¢; equals:

Prove

Suppose:

0O o0 0 0 0
0o 0 0 0 O
0O 0 0 0 0
C, 0 0 0 O
Bs Cs 0 0 0
A¢ Bg Cs¢ 0 0
0 Ay By C; 0
0 0 Ags Bg Cg
0 0 0 Ay By |
[Al{¢} = {D}
w; = Bj — 714]'0]'_1
Wj—1
Di— A:as_
g; = =2 wjjgj 1

$1
b2
¢3
G4
b5
b6
o7
¢s
b9

Ajpj1+ Bjoj + Cidj1 = Dy

C. .
¢] :g] o ]¢]+1

wj

D,

(7.48)

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)
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and Cird
Gj—1 = gjo1 — (7.55)
Wj—1
Substitution of equation 7.54 and 7.55 in equation 7.53 gives:
Ci 1
4; (gj—l - %) + Bj¢j + Cjdji1 = D;j (7.56)
i
Di— Aigi_q — Ci;
0 = L (7-57)
Bj — Aj w1
D._A.g._l C¢ 1
6; = BJ AJCJj_l - ]AjJer_l (7.58)
j - j’u)j,1 .7 - j’u)j,1
Suppose:
A;C;i_
w; = Bj — @ (7.59)
wj_l
and '
Jj — 5951
_ 7.60
9j w; (7.60)
then: Cio
¢; = gj — L2 (7.61)
wj

Example 7.4: Thomas algorithm
Find the piezometric heads ¢ of the the following matrix equation by means of the Thomas algorithm. Take

care what the coefficients A1, Bi, C1, A2, B2, etc. are exactly.

2 -1 0 b1 1
HITEE
0 1 2 @3 5

Answer: ¢1=2, ¢p2=3 and ¢3=1.

7.4 Gauss-Jordan elimination

The Gauss-Jordan elimination is a straightforward method to solve a matrix. From:

eq. (a) a1 a1 asi ®1 r1
€q. (b) aip Qa2 asg X (bg = T2 (762)
eq. (c) a13 azz as3 ¢3 T3
to eventually a matrix with the form:
1 bar b3 o1 51
0 1 b32 X ¢2 = S92 (7.63)
0 0 1 ¢3 S3
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gives a rapid solution:
¢3 = s3
P2 = 52 — b3as
$1 = 51— ba1d2 — b313

Equation (a) of equation 7.63 divided by aj; gives equation (d):

a1 asi
leq. (d)] ¢+ —<Z52 + —¢3 =—
an
eq. (d) L TR ¢ o
eq. (b) aip azy azx | Xq 2 o =4 T2
eq. (c) a13 a3 ass b3 T3
Equation (d) of equation 7.66 times aj2 gives equation (e):
az1 asi 71
leq. (e)] a12¢1 + a12—¢2 + a12——¢3 = arz—
a1 all aii
Equation (b) minus equation (e) gives equation (f):
asi 71
leq. (f)] (a22 - a12—) P2 + (a32 - a12—> ¢3 =ro—a1z—
arn ail ail
Equation (f) divided by (a22 — algaA) gives equation (g):
azy — a1 Gt r2-a12,-
lea- (g)] 2 + —( i) ¢3 = racon) i)
<a22 - 12;) (a22 - 12;)
1 ez az1 1
ail ail ail
€4 (d) (a32 a12%) 1 (7“2 a12ﬁ)
a. (g) 0 1 0 |x{ gy p=d L
eq. (C) (a22 a12m) ¢3 (a22 ai2 m)
a1z as3 ass r3
Etc., ete. !
Example 7.5: Gauss-Jordan elimination
[ eq. (1) T 1 0 2 4 o1 7
eq. (2) -2 2 6 2 o2 L _ ) 8
eq. (3) 1 1 2 4 3 - 8
eq. (4) | 0 -1 2 0 on 1
Equatlon [2]/2 and move equation [4] to second position:
q. (1) 1 0 2 4 b1 7
q. (4) 0 -1 2 0 e | )1
q. (5) -1 1 31 és () 4
q. (3) | 11 2 4 b4 8
Equatlo [6]+equation [1], equation [3]+equation [5] and equation [4]*-1:
[ eq. (1) T 10 2 4 ¢1 7
eq. (6) 01 -2 0 o2 | ) -1
eq. (7) 01 5 5 s () 11
| eq. (8) | 0 2 5 5 04 12

(7.64)

(7.65)

(7.66)

(7.67)

(7.68)

(7.69)

(7.70)
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Equation [7]-equation [6] and equation [8]-equation [6]*2:

[ eq. (1) T 10 2 4 o1 7
eq. (6) 01 -2 0 o2 | ) -1
eq. (9) 0 0 7 5 o3 [ 12

| eq. (10) | 00 9 5 @4 14

Equation [9]/7 and equation [10]*7-equation [9]*9:

[ eq. (1) ] 10 2 4 o 7
eq. (6) 01 -2 0 o2 | _ -1
eq. (11) 00 1 57 bs (T ) 12/7

| eq. (12) | 00 0 -10 b4 ~10

Gr=20 =1 ¢s=2 - 2xl=1,¢=241-1=1,¢1=-251-4x147=1

" eq. (1) 1 0 2 4 1 7
eq. (2) —2 2 6 2 1| ) s
eq. (3) 1 1 2 4 1 ( ) 8

| eq. (4) 0 -1 2 0 1 1

7.5 Finite difference method

The finite difference method (fdm) is probably the oldest, most popular, and conceptually
simplest of the numerical procedures governing groundwater behaviour. The finite differ-
ence method consists of discretising the problem area into rectangular elements which are
identified with discrete points or nodes. It is based on the Taylor series expansions in or-
der to determine approximations of the first-order and the second-order derivatives of the
variable in question.

The first-order derivatives of the piezometric head ¢ are obtained as follows:

96 026 (Ax)? 3¢ (Az)d 0% (Ax)d
o 2?0 (Az)?  0%¢ (Ax)? 0% (Ax)?
ng(a; — A.T) = ¢($) — %AJJ + @ ol — @ 3] + @ o — ... (772)

where
e 1z = centre of an element located at x (L),

e Ax = distance between this centre and the centre of the bounding element: the
stepsize (L).

After rewriting:

forward in space

o6 x4+ Az)—¢(z) oAz ¢ (Azx)? ¢ (Az)? (7.73)
or Az S92 2 93 6 o9t 24 T '

backward in space
¢ ¢(xr) —¢(x — Azx)  PpAxr  P¢(Azx)®  9'¢ (Ax)®

o As Y2 o 6 tamd o 0™
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In addition, subtracting equation 7.72 from equation 7.71 gives:

central in space

09  ¢(x+ Az) — ¢(x — Ax) B¢ (Ax)?

or 2Ax 013 6

_ (7.75)

As can be seen, the central in space approximation (equation 7.75) is one order of magnitude
more accurate: O(Ax)? instead of O(Az). By adding equation 7.71 to equation 7.72, the
second-order derivatives are obtained after rewriting:

o ¢z + Ax) —2¢(z) + ¢(x — Ax) 3¢ (Ax)?

o2 = (An)? ot 12 (7.76)
A similar approach leads to an approximation for the time derivative of ¢:
06 _ olt) — ot — A1) | 9 At
5 AL +O(8t2 5 o) (7.77)

where At is the so-called time step (T'). In summary, a set of approximating algebraic
equations thereby replaces the original continuous partial differential equation, such as
equation 6.30.

The general principle is that the piezometric head ¢, which is a function of space [z, y, 2],
is represented for every value of the time ¢. The values of the piezometric head in each
point is related to the values in the surrounding points at the beginning and at the end
of a time step. Combined with boundary conditions, the solution of the groundwater
problem can be found, by simultaneously solving the sets of equations of the aquifers. The
transformation of differential to differences can be done using various numerical schemes
(e.g. explicit, implicit, Crank-Nicolson), each having their advantages (accuracy, speed)
and disadvantages (complexity, stability of the numerical solution), see subsection 7.2.4,
page 98.

Note that the finite difference method is not often used for solving the advection-
dispersion equation because numerical dispersion can easily develop in the finite difference
scheme (see chapter 8).

For more information, see Konikow & Bredehoeft [1978]; de Marsily [1986]; and Kinzel-
bach [1987a].

7.6 Finite element method

The finite element method (fem) is a very well-known method to solve the governing partial
differential equations. It was already applied in the early 1950’s to problems of solid me-
chanics, whereas by the mid of the late 1960’s it was being used to solve the groundwater
flow equation with some success. When groundwater modellers began to look at transport
problems in the early 1970’s, they noticed that solving the advection-dispersion equation
by the finite difference method encountered numerical dispersion to a certain extent. As
such, they turned to the finite element approach, as the occurrence of numerical dispersion
was less dominant (though still possible).
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Figure 7.4: Basis-function in the finite element method.

For the finite element method an integral approach (instead of a differential approach for
the finite difference method) is applied. The domain is decomposed into a set of sub-regions,
the so-called elements. The corners of the elements are called nodes. In groundwater prob-
lems, the polygonal shape of the element is almost always triangular (in two-dimensions
triangles), whereas occasionally more complex quadrilaterals are used. An irregular polyg-
onal mesh allows the modeller to follow the natural shapes more accurately.

Two main solution principles of the finite element method can be distinguished [Connor
& Brebbia, 1976]: (1) the wvariational principle (using so-called functionals U) and (2)
the weighted residual technique. One of the most popular weighted residual technique for
groundwater problems is the Galerkin method.

In the Galerkin method, on each element the approximative value for the piezometric
head ¢4(z,y) is given as a combination of the real value of the level in node i (¢;) and
a so-called basis-function or shape function b;(x,y), see figure 7.4. The basis-function is
defined as follows:

N
qba(x,y) = Zgbzbz(l’,y) (778)
i=1

where N = number of nodes (—). This function varies between 0 and 1 along the sides of the
elements and has a value of 1 for node i and 0 for all other nodes. The basis-function is linear
in case of triangular elements, for rectangular elements a second-order function is applied.
For each node this equation can be developed. It should satisfy the general groundwater
differential equation, however, ¢,(x,y) is only an approximative value, a so-called on the
average value. As such, it will not exactly satisfy the partial differential equation and there
will be a residue. The method now is to minimise the residues, resulting in a piezometric
head which gives the best approximation for the whole model domain.

The finite element method treats each element separately and then assembles the equa-
tions for all elements into a global matrix equation. Systematic numbering across the
shortest dimension of the grid reduces the bandwidth of the coefficient matrix. As such,
the computer storage requirements and execution time reduce significantly.
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centre of element

element
element
o o o o o node
finite difference method finite element method

Figure 7.5: The finite difference method and the finite element method.

A disadvantage of the finite element method is the rather complicated computational
framework which makes the accompanying computer code rather inaccessible to non-mathematics.
Relevant information about this method can be found in Verruijt [1970]; Zienkiewicz [1971];
Pinder & Gray [1977]; Kinzelbach [1987a] and Bear & Verruijt [1987].

Finite difference method versus the finite element method

Both the finite difference method and the finite element method are most widely used
numerical techniques for solving mathematical models. These two groups have the division
of the domain into elements in common and the generation of one difference equation for
each element node.

In the case of finite difference models, the elements have to be rectangular!, whereas
in case of finite element models, not only rectangular but also triangular elements may be
used, see figure 7.5. In conclusion, the need for a rectangular grid is a major disadvantage
of the finite difference method, as irregular shaped boundaries cannot be covered too exact
and efficient. On the other hand, with the advance of fast computer systems, you can easily
increase the number of elements and, as such, irregular shaped geometries can be followed
more accurately.

It is easier to change a finite element grid because nodes can be added very easily with-
out redesigning the entire grid. This is in contrast with a finite difference grid, although
sophisticated preprocessors can relieve the effort to redesign the grid (e.g. Visual MOD-
FLOW). In addition, when the exact representation of the boundaries is important, a finite
element method is preferred above a finite difference method. In a model based on the
finite difference method, the number of nodes that fall outside the boundaries of the model
domain, the so-called inactive nodes, should be minimised. Inactive nodes are not part of
the solution but still use up storage space in the arrays needed by the code. Still, the finite
difference method is used in many computer codes, such as MODFLOW, and they serve
very well.

You should realize that the computations result in values at nodal points. This means

'Note that the so-called integrated finite difference method, a variant on the classical finite difference
methods, discretises the domain into irregular polygons of any shape or number of side rather than rectan-
gular elements [de Marsily, 1986].
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Figure 7.6: The influence area.

that the piezometric head is determined for a certain area around these points. So the
piezometric head is an average for the so-called influence area. Figure 7.6 shows influence
areas for triangular and rectangular elements. In areas of interest a more dense grid may be
required. In the finite difference method, fluxes through a boundary are inserted over the
area of the elements, whereas in the finite element method, boundary fluxes are inserted in
the node.

The finite difference method can cope with anisotropy provided that the anisotropy is
described to directions parallel to the sides of the elements. In addition, for solute transport,
the finite element method is superior to the finite difference method, as they can handle the
anisotropy of the dispersion tensor. As such, it is possible to seek a compromise between
stability and numerical dispersion.

Unfortunately, the finite element method is less easy to explain and far less easy to
program than the finite element method. For defining a grid for the finite element method,
it consumes much time to set up an input data file, though rapid preprocessors are available
to relieve the effort.

7.7 Analytic element method

The main difference between using the analytic element method and using other solution
techniques originates from the application of so-called analytic elements. Each analytic
element is used to describe a feature in groundwater flow in an infinite aquifer, such as an
extraction well, a river, a polder, an infiltration area, a domain with different transmissivity,
a sheet pile wall, etc. Each element can be used independently of other elements. Each
single element generates a piezometric head distribution and a flow in the entire infinite
aquifer. The analytic elements are combined through the principle of superposition: they
may cross, overlap and link together.

Hydrogeologic features have to be recognised and the appropriate type of analytic ele-
ment has to be chosen, instead of giving each element in a finite element or finite difference
grid the same standard properties such as hydraulic conductivity and thickness of the layer.
Reality is discretised using elements that are ezxact solutions of the differential equation,
instead of applying a discretised equation such as by the finite element method and finite
difference method.

Analytical solutions are determined for head and discharge that satisfy the governing
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flow equations and specified boundary conditions within the aquifer. The boundary of
a model of analytic elements is a zone of elements that globally simulate the behaviour
of the hydrogeologic features in that zone. As such, the most important advantage over
conventional numerical methods is its lack of a fixed grid. In addition, other advantages
are its simple input, accuracy, speed and direct graphical output. Due to its lack of a fixed
grid, it is possible to extend the model any distance to incorporate regional features without
sacrificing accuracy in the area of interest. Moreover, refinement of the discretisation and
zooming into a local problem can easily be accomplished.

The analytic element method is based on the theory of Strack [1989]. Some typical
analytic elements are [de Lange, 1996]:

e the point-sink, representing a fully-penetrating well.
Q(z) = Qu lIl(Z - ZO)/QW + q)ref (779)
where

— Q(z) = function of the complex potential ® + iW, describing both the potential
® and the stream function ¥ (L37T~1),

— @ = discharge or strength of the well (L37T1),
— z — 29 = distance between well and observation point (L),

— ®,.; = potential at the reference point (L3 T71).

e the line-sink, representing a river. Actually, a line-sink is an infinite number of point-
sinks (wells) along a straight line with the length L.

Q) = /L Ol In(z — 6)/21 A8 + By (7.80)

where

— 0yin = line-sink strength per unit length, function of § (L? T~1),
— z — § = distance between observation point z and point of integration § (L).
e the dipole, defining a sink and a source with equal but opposite strength, nearly at

the same place. It expresses no useful element in hydrogeologic practice, though it
appears to be an essential step in the theory of analytic elements.

Q(2) = Laip exp(i3° — ©) /277 + Ppey (7.81)
where
— Ty = strength of the dipole (L4T71),
— [3° = orientation of the dipole (—),

— © = orientation of the dipole with respect to the observation point (—),

— r = distance between dipole and observation point (L).
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e the line-dipole, representing an infinite number of dipoles along a line. The orientation
of each dipole is equal to the orientation of the line. It represents a thin zone of very
high hydraulic conductivity, such as a crack, a drain or a canal.

Q) = /L iy exp(iB°)/2m(z — 8) A5 + e (7.82)

where

— 0gip = strength per unit length, function of § (L2T71),

— (3° = orientation of the line-dipole (equal to orientation of dipole) (—).

e the non-connectable line-doublet, representing a leaky wall or impermeable wall. The
orientation of the dipole is perpendicular to the orientation of the line.

Qz) =1i/2m /L Odou €xp(10°) /(2 — &) db + Pypey (7.83)

where

— 040y = strength per unit length, function of § (L2 T~1),
— «° = orientation of the line-doublet (3° + 7/2) (—).

e the surface area-sink for surface conditions, generating a constant vertical in- or out-
flow,

e the leakage area-sink for the connection of two aquifers.

An example of a computer code, based on the analytic element method, is MVAEM [Strack,
1995]. Tt is the analytic element computer code MLAEM (Multi-Layer Analytic Element
Model) which has recently been extended with a variable density module. MVAEM is
now able to compute the three-dimensional water pressure distribution, on condition that
the three-dimensional density distribution within an aquifer is given. De Lange [1996] has
applied the analytic element method to develop the NAtional GROundwater Model (NA-
GROM) for density dependent aquifer systems in the Netherlands. Note that, at present,
MVAEM has some drawbacks. First, it is not (yet) possible to simulate hydrodynamic dis-
persion and anisotropy. Second, it is still a steady state code for the simulation of density-
dependent groundwater flow. The displacement of the points with densities through the
known velocity distributions is not solved yet. As such, salt water intrusion as a function of
time can not be simulated. Third, it appears that the so-called multiquadric-biharmonic in-
terpolator, which is used to provide the initial three-dimensional density distribution within
an aquifer and to control the smoothness and the spatial behaviour of the distribution, may
not be robust enough to produce reliable three-dimensional density distribution under all
circumstances [van Gerven & de Lange, 1994].
For more information on this method, see Strack [1989] and de Lange [1996].
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7.8 Method of characteristics

The solution of the advection-dispersion equation is faced with difficulties, since models
based on the standard finite element method and the finite difference method may yield
unreliable results if spatial discretisation conditions are not met. Both widely used methods
have in common that they produce poor results at great Peclet numbers?.

Which of the terms of the advection-dispersion equation (see equation 6.68) is more
dominant depends on the advective and dispersive fluxes at the level of the discretisation
element [Kinzelbach, 1987a]. The so-called grid-Peclet-numbers Peg,;q can be applied to
assess the most dominant process:

Vilx;
D;;

(7.84)

Pegrid,i = ‘

where
e Pey.iq; = grid-Peclet-numbers in 4direction (-),
e Ax; = size of the element in idirection (L),
e V; = real velocity of the groundwater in i-direction (LT ~!).

For small grid-Peclet-numbers (Pegiq < 1) the parabolic nature of the advection-dispersion
equation prevails, whereas for great grid-Peclet-numbers (Pegy,;q > 2) the hyperbolic nature
dominates. As it appears that advective transport of solute dominates over dispersive
transport in most field problems, the hyperbolic nature prevails. Unfortunately, numerical
solving of an equation with a hyperbolic nature is more difficult than solving an equation
with a parabolic nature. Fortunately, however, the method of characteristics can easily
handle hyperbolic equations, and as a consequence, numerical dispersion can be suppressed
to a large extent.

Originally, the method of characteristics was developed to solve hyperbolic partial dif-
ferential equations during the end of the 1950’s. A very well-known solute transport code is
MOC (Method Of Characteristics) of Konikow & Bredehoeft [1978] (see also section 9.5).
In the USA, MOC is even accepted in judicial matters on environmental pollution (con-
taminant transport) and cleaning costs ("who is the polluter 7’).

Anyway, the rate of change of concentration %—?, as measured from a fixed point (e.g.
the node of an element), can be redefined by:

dC 9C _9Cdr 9Cdy 9Cdz

W ot Tordt Oy dt = 0z di (7.85)

where

° % = the so-called material derivative of concentration: the rate of change of concen-

tration as measured when moving with the fluid particle,

ocC

e 5 = rate of change of concentration as measured from a fixed point.

2Tt is peculiar that this well-known fact does not have a broader attention in numerical modelling practices
of groundwater contaminant transport [Uffink, 1990].
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The material derivatives of position ‘fl—f, % and % in equation 7.85, which correspond with

the movement of fluid particles through the flow field, are defined by the real velocity:
dx v dy v dz

=V, Ly, V. (7.86)

Thus, combination of the equations 6.68, 7.85 and 7.86 yields:

ac 0 oC c-chw v
%—a—@( JaT) R (7.87)
The solutions of the system of equations 7.86 and 7.87 are:

v=uz(t); y=yi); z=z0t); C=0CQ) (7.88)

which are called the characteristic curves. Garder, Peaceman & Pozzi [1964] were the first
to introduce the so-called method of characteristics into the solution of multidimensional
miscible displacement (flow trough porous media). They stated that:

“Fach point corresponds to one characteristic curve, and the values of z, y and
C' are obtained as functions of t for each characteristic.”

The basis concept underlying the application of the method of characteristics is to decouple
the advective and the dispersive component of the equation, and to solve them separately
[Konikow & Bredehoeft, 1978]:

a. the advection term (equation 7.86) is solved through a so-called particle tracking proce-
dure. In fact, the method of characteristics is developed for solving the advective term.
The solution of equation 7.86 can be obtained by following the characteristic curves.
This following of curves is numerically achieved by introducing mowving points, namely
particles that can be traced through the flow field within the stationary coordinates
of the (e.g. finite difference) grid.

Each particle has a specific position and a concentration associated with it3. The
initial concentration assigned to each particle is the initial concentration associated
with the node of the element containing that particle. As a result, a number of
particles are placed in each element of the (finite difference) grid to form a set of
particles that is distributed in a geometrically uniform pattern. For each time level
k, every particle is moved over a distance through the flow field in proportion to the
length of the time step, the so-called solute time step Atg, and the flow velocity at
the location of that particle:

= :1:];_1 +dxp = a:];_l + Ats Vi

ESEES

z o
Yp = Yy O =Yy ALV gk
k k— k—
Z, =z, 1 + 6Zp =2, 1 + Aty V, [k, yk 2k] (7.89)

where

3 As such, the method requires a consecutive switching from element to particle concentrations.
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e p = index number for particle identification,

0z, 0yp, 02, = distances moved in the z, y and zdirection (L),

Aty = solute time step at time level k (T'),

° I/;[r;;’y;57z5} = real velocity at the position of any particular particle p in the

i-direction (L T~1).

b. the dispersion term as well as the term for sources and sinks and chemical reactions
(equation 7.87) are solved through finite difference approximations, using a coordinate
system at rest relative to the advective movement.

For more information on this method, see Garder, Peaceman & Pozzi [1964]; Konikow &
Bredehoeft [1978]; Kinzelbach [1987a, 1987b]; and subsection 9.5.2 (page 164).

7.9 Random walk method

The random walk method also uses the particle tracking method. Each particle represents a
fixed mass of pollutant. Both the advective and the dispersive transport are represented by
particle movements. The first step in the procedure is to follow particles along the direction
of the flow field while the second step consists of adding a random movement by means of
statistical properties in order to take into account the dispersive transport. This random
walk can be seen intuitively as a Brownian motion, which is known to be responsible for
molecular diffusion. If the number of particles is large enough, these random walks will
indeed correctly represent dispersion. Only the superposition of the particle paths and the
counting of mass gives the concentrations in each element of the overlain grid. The random
walk method can be used to simulate groundwater contaminant transport at great Peclet
numbers (see e.g. equation 7.84 and section 8.3). An advantage of this method is that
particles are only introduced where contaminants are present.

The method can easily accommodate chemistry if linear terms are involved: a first-
order reaction can be modelled by destroying particles with a constant probability or by
assigning to each particle a mass which diminishes with time according to an exponential
decay law [Kinzelbach, 1988]. If nonlinear reaction terms are required, the random walk
method becomes less efficient as the adjustment of the particle mass due to the reaction
requires the computation of concentrations after every time step. The advantage of this
method is that no numerical dispersion is introduced, because there is no switching from
element to particle concentrations as in the method of characteristics.

For more information on this method, see Kinzelbach [1987a, 1988] and Uffink [1990].

One-dimensional case of the random walk method

Now, for the sake of simplicity, the random walk method is illustrated for an one-dimensional
case (see figure 7.7). Assume at the start (¢=0) all particles are located at x=0. After one
time step t = 7 the average position of the particles is at x=V7, where V is the velocity.
The interval in which they are located is [VT — J, VT + J|, where J is the maximum jump.
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The probability distribution is constant in this interval*. The variance® is equal to J?/3.
After the second time step the average position is at z=V27. The interval now is [V 21 —

t=1 t=21

t=31

Vi-J Vi Vi+d V2t-2J V2t V2t+2J V3t-3J V3t V31+3J >

Distance

Probability density function
(

Figure 7.7: Probability density distribution of x-coordinate of a particle in a random walk after 1,
2 and 3 steps.

2J, V27 + 2J] and the variance of the second time step® is 2J2/3. Now, the probability
distribution is a triangle. After a few more time steps n the probability distribution will
approximate a Gaussian distribution with average position z=Vn7 and variance nJ?/3. As
n increases, the density distribution becomes Gaussian, which is represented by the next
probability distribution f,(z):

L 1 (x —np)?
fo(z) = Noroaa <_T2ﬂ> (7.90)

where
e 1= average (L),
e 02=nJ?/3 = variance (L?),
e n = number of time step.

This method can very easily be demonstrated by using a dice to determine the position of a
water particle. Starting at zero, the position after one throw can be 1, 2, 3, 4, 5, 6. Each po-
sition having the same probability. The location of the average will be (14+2+43+4+5+6)/6
= 3.5. After the second throw, the location of the average will be at 2 - 3.5 = 7. The
probabilities of the positions 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are 1/36; 2/36; 3/36; 4/36;
5/36; 6/36; 5/36 ... 1/36 respectively, which is a triangular probability distribution. The
third throw will already give a good approximation of a Gaussian distribution.

“The density distribution of the first time step is f(z)=55, V7 —J < x < V7 4 J (because
v

ffooo f(z)dz= fv:jj s7dz=1). The mean value or expectation of X with density function f(z) is

E(X)=["_ f(@)wde= [ Lade=Vr.

The variance Var (X)=E((X~E(X))})=E(X*-(E(X))%. As EQO)=Vr and B(X?)=[}7"] &
(V)2 + J?/3, the variance Var(X)=J%/3.

Var(X +Y) = Var(X) + Var(Y).

x2dx =
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In addition, the solution of the one-dimensional dispersion equation, viz. the concen-
tration C(x,t,) of a tracer injection of 1 kg/m? in a uniform flow with velocity V, is as

follows: )
1 (x — Vi)

. i 91

5 tnexp( D1, ) (7.91)

The analogy between the probability density in a random walk and this equation, the
concentration for a tracer injection, is evident. As a consequence, the process of dispersion
can be simulated by moving the particles with the average velocity and giving each of them
a random jump after each time step.

If t,=n7, when the next relations can be found by comparing the two equations:

C(x,t,) =

2 2
Voro? =2/rDt, <= D= o

= — 7.92
2t,, 67 ( )

and
w=Vr (7.93)

Solutions are possible for steady state and two-dimensional problems. Also horizontal
layering can be taken into account, via an approximative method.

7.10 Vortices method

The vortices method can be applied for the analysis of problems in the field of fresh and
saline groundwater, separated by an interface (see for more information on density depen-
dent groundwater flow the lecture notes of Hydrological Transport Processes/Groundwater
Modelling II). The principle is based on the fact that an interface at an inclination create
rotations in the groundwater flow due to density differences. As a result, the direction of
the rotation is such that the interface will eventually be situated in a horizontal direction,
as the density of saline groundwater is larger than that of fresh groundwater. This rotation
can be modelled with so-called wvortex distributions, which cause that the interface will be
horizontal again. The equation of the rotation per length is as follows:

q= g(’yS —7f)sin 8 (7.94)

where
e ¢= vortex strength (LT1),
e k = intrinsic permeability (L?),
e 1 = dynamic viscosity of both fluids (M L=1T~1),

® Vs, = psg, psg = specific weight (M L=2T2),

ps, pf = density of respectively saline and fresh groundwater (M L™3),

e g = gravity acceleration (L77?),
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Figure 7.8: The vortex at the fresh-saline interface is caused by the difference in density.

e (3 = inclination of the interface (—).

Over a line AL, the vortex V is (see figure 7.8):

V = g('ys—'yf)ALsinﬁ or
A

vV o= =PAx (7.95)
P

where

o k= % = hydraulic conductivity of fresh water (LT ~!).

The principle of superposition makes sure that the resulting flow can be computed by means
of two steps: (1) account for the effect of density differences, and (2) account for the flow
of the hypothetical fluid. The concept is to replace all fluids with different densities by one
hypothetical fluid and then to introduce singularities at those places where the densities of
the actual fluids change [Peters, 1983]. As such, the vortices generate the effect of varying
density. If the fresh-saline interface has an inclination in a steady state situation, this means
that other hydrogeologic factors such as groundwater extractions affect the system.

Note that the vortices method has an analytic character and that transient problems
can be considered. Obviously, this method is rather limited in its applications, for example:
the separation of groundwater with different densities by means of an interface is necessary
and mixing of the fluids is not possible.

For more information on this method, see de Josselin de Jong [1977]; Haitjema [1977];
and Peters [1983]. &
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Chapter 8
Numerical aspects of groundwater models

Whatever numerical approach is chosen, always inaccuracies or errors are induced. They
can be subdivided into [Spaans, 1992]:

e physical system errors, due to an wrong concept, an inadequate simplification or an
incorrect schematisation of the hydrologic system, variables, parameters and boundary
conditions,

e mathematical errors, due to wrong or incomplete expressions of the differential equa-
tions,

e numerical errors, due to an incorrect transformation of differential into difference
equations (e.g. order of approximation is too low, faults in the computer code, nu-
merical dispersion),

e computational errors, due to convergence and computer inaccuracies (e.g. machine
truncation).

In this chapter, the interest is focussed on the numerical errors. The numerical approxima-
tions, that define the derivatives of the groundwater flow and solute transport equations,
may introduce errors in the numerical solution. These errors limit the techniques that solve
partial equations.

Artificial numerical dispersion occurs in the solution as a result of numerical approxima-
tion of the nonlinear solute transport equation (see figure 8.1). It depends on the applied
discretisation scheme of the advective term in the solute transport equation whether or
not a truncation error arises. This truncation error has the appearance of an additional
dispersion-like term. It may dominate the numerical accuracy of the solution (see sec-
tion 8.1).

In addition, over and undershooting of the solute concentration values, which is called
oscillation (see figure 8.1), may lead to oscillation errors in the solution of the solute
concentration. If the oscillation reaches unacceptable values, the solution may even become
unstable.

There exists a close relation between numerical accuracy (numerical dispersion) and
stability (oscillation) [Peaceman, 1977; Pinder & Gray, 1977]. In fact, numerical dispersion
acts to stabilize the solution of the equation. Numerical dispersion spreads the sharp front
by generating a solution which applies a greater dispersion than the hydrodynamic disper-
sion. In order to suppress the numerical dispersion, the numerical scheme (spatial as well
as temporal) can be adapted. Meanwhile, this scheme may lead to over and undershooting,

119
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Concentration Concentration
Overshooting

C /,/-\
Exact solution

\
. . . X , N A - ~— X
Numerical dispersion Oscillation tUnderShooﬁng

Figure 8.1: Schematisation of numerical dispersion and oscillation (after Kinzelbach, 1987a).

and subsequently, oscillation can be amplified. For these reasons, the discretisation scheme
should be chosen carefully in order to control both numerical accuracy and stability.

8.1 Numerical dispersion

Standard finite difference methods may generate significant truncation errors. In this sec-
tion, an one-dimensional schematisation is applied to demonstrate in a simple way the prin-
ciple of assessing truncation errors. The standard (one-dimensional) advection-dispersion
equation is defined as follows:

QPC 9C  aC

Doz ~Var = ar

(8.1)
where

e V = real velocity of groundwater [LT~!],

e D = hydrodynamic dispersion [L?T~1].

In most examples, this equation is discretised as (backwards in space and time: implicit):

DCzk—H —2CF +CF | B VCz‘k - CF _ cy—cH!
Ax? Az At

(8.2)

Here, the interest is focussed on the truncation errors, made in the Taylor series development
of the partials (see the equations 7.71 to 7.76 for the Taylor series expansions), in order to
detect the numerical errors caused by the discretisation:

Backwards in space (implicit):
aC _ Ci—=Ci n E(‘)QC’ B Az? 93C
oxr Ax 2 Ox? 6 Ox3
Central in space (Crank-Nicolson):

80 . Ci+1 — Ci—l A.CL‘Q 830 4

+ O(Az?) (8.3)




Chapter 8: Numerical aspects of groundwater models 121

0*C Ciy1—2C; + Ci1 Ax? 9*C 4
ox? Az? 12 92t +0(Az7) (8:5)

Forwards in time (explicit):
oc  Ccft'-cF  Atd*C AP OC
ot At 2 0t? 6 ot
Backwards in time (implicit):
aC Ch—Cf'  Atd*C AP PC

i 2 A — _ 3
ot At + 2 Ot? 6 Ot +O(AL) (8.7)

+ O(A) (8.6)

Central in time (Crank-Nicolson):

oC CH1_cF AR dC

— = - o(At* 8.8

o Al 21 o T OB (8.8)
Inserting the three upper above-mentioned expressions in the discretised advection-dispersion

equation 8.2 gives:

0’C n Az? 9AC _ oc EWC n Az? 53C _oC At 23C (8.9)
Ox? 12 Ox* ox 2 Ox? 6 o0z3) ot 2 o3 ’
Neglecting third and fourth order terms gives:
0*C oC Az 9*°C oC  At9*C
Do =V (% - 7@) o2 oe (8.10)

Rewriting the term atg gives:

oc _ o (@) _9 <D82_C _ vﬁ) _p2 <@> v (@> (8.11)

otz ot \ ot ot Ox? Ox 0x? \ ot ox \ Ot
0?C 0? 0?C oC 0 0*C oC
a2 = Vo (DW ‘V%> Vo (DW ‘V%> (8.12)
2C 0 BC PC | ,0C
5 = D 9t VD8 VDF +V ) (8.13)
0*C ,02C
w7 ~ Vi (8.14)

Combining this result with equation 8.10 gives:

2 2 2
poc V(ac Aa:c‘)C) aC At d*C

022 \aw 2o "o Voo (8.15)

2
( Ax+V2A2t)8C o _ac (5.16)

D+V—
2 Ox? or ot
Here an interesting appearance occurs: approximations of the first-order derivatives gener-
ates errors in the order of second-order derivatives. Two extra terms have been added to
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the real hydrodynamic dispersion coefficient D: V% + V2%. These terms are called the
numerical dispersion terms:

backwards in space and time (implicit):
Az PYAN
Dapparent = D+ Dnum =D+ VT +V 7 (817)
Similar equations can be found for:

central in space (Crank-Nicolson) and backwards in time (implicit):

At
Dpum = V27 (8.18)
backwards in space (implicit) and forwards in time (explicit):
A At
Do = V% -V (8.19)

Suppose your discretised model has the following parameters: D=1.2 m?/d V=1 m/d,
At=0.4 d and Az=1 m. In this situation, the value of the dispersion coefficient (for the
backwards in space and time discretisation) used in the model is equal to:

1 4
Dapparent =D+ Dnum =12+ 15 + 1207 =19 m2/d (8.20)

Thus, the dispersion coefficient is larger and your computational results for the solute
transport will deviate significantly for what you would expect with a smaller dispersion
coefficient. Remedy to reduce the effect of numerical dispersion:

e make At and Ax smaller,

e use central in space and time discretisations: however, these solutions can easily create
oscillations of the solution,

e use another hydrodynamic dispersion coefficient D: e.g.: use D=0.7 m?/d instead

of D=1.2 m? /d in order to account for the numerical dispersion: now Dgpparent=1.2
2
m*/d.

In summary, the truncation errors depends on the chosen numerical approximation [Bear

& Verruijt, 1987]:

e Backward difference in space (upstream weighting)
The finite difference approximations in space also introduce truncation errors. It is
well-known that a backward difference in space approximation gives the following

: oC'.
equation for the term 4>

oC . CZ — Ci—l Az 82C

o Az 202
The term %—g should be multiplied with —V to be inserted properly in equation 8.1.
Thus, the approximation results in an additional truncation error term of the dispersion-
term: —%VA&:. Focusing on only the backward spatial approximation, the numerical
dispersion D, due to the truncation error in space will be:

A
Duum = +7xv (8.22)

(8.21)
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Approximation scheme

Numerical dispersion

Time

‘ Spatial

Truncation error

FIT: forward in time

BIS (upstream)

IVAz — 1V2ZA

(
(explicit) CIS (centered) —sV2AL
BIT: backward in time | BIS (upstream) SVAz+ 5V2AL
(implicit) CIS (centered) sV2AL
CIT: centered in time | BIS (upstream) SV Az
(Crank-Nicolson) CIS (centered) none

123

Table 8.1: Summary of numerical dispersion for the one-dimensional equation [modified from
Lantz, 1971; INTERCOMP, 1976; Bear & Verruijt, 1987].

Table 8.1 summarizes the truncation error forms for the one-dimensional equation.

e Central difference in space
As the central finite difference in space does not generate a space truncation error
of the second-order derivative, no numerical dispersion due to this approximation

occurs.

. —C. 3
0C _ Cin1~Cir | <(M)27 Q)

or 2Azx

e Forward difference in space
Forward difference in space also results in a truncation error term, as the derivation
for the term %—g gives:

Ox3

oC . Ci+1 — CZ _ Az 82C

or Az

2 Ox?

(8.23)

(8.24)

As this spatial difference approximation is not commonly used for the advective term,
this truncation error is not be displayed in table 8.1.

e Forward difference in time (explicit)
A truncation error in the time derivative may cause numerical dispersion for the finite
difference approximation in time:

oc _ ckt_ck At9*C

ot

2 o

(8.25)

By applying the original equation 8.1, this expression can be rewritten as [Lantz,

1971]:

6_0_0]{3"1‘1_0]{3_&
ot At

9*C
2—
2 v Ox? +

(8.26)

Accordingly, the term which contributes to the numerical dispersion is —%V2At (see

also table 8.1).
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e Backward difference in time (implicit)
Analogous to the forward difference in time, the backward difference in time induces
an equivalent error in numerical dispersion, though now the sign is opposite: +%V2At
(see table 8.1).

e Central difference in time (Crank-Nicolson)

This scheme is the most often used second-order time approximation, as the time
truncation error contribution to numerical dispersion is removed. Nonetheless, oscil-
lations in time can still occur INTERCOMP, 1976].

8.1.1 Stability analysis of the advection-dispersion equation

The so-called von Neumann stability analysis is often applied to analyse the stability of
a solution!. The question is asked whether or not the errors in the equation can grow
uncontrolled during subsequent time steps At.

Backwards in space (implicit) and forwards in time (explicit)

Here follows the analysis of the advection-dispersion equation which is discretised backwards
in space (implicit) and forwards in time (explicit):

Dczkﬂ —2CF +CF, VCz‘k -Cf, it - cf

8.27
Az? Az At (8.27)
It is assumed that the solution of the equation is defined as:

Ok =CF & = CF = CF 4 reif® (8.28)

where:
e C'=the correct solution on time k,

o c=rePP=the error written as a Fourier component, where i indicates that a complex
imaginary number is used.

The new solution is of the equation is:
Ck+Hl = Okl + Tt.q_Atewx (8.29)

Substituting these two equations in the discretised equation gives:

DCzk+l_2clk+Czk—1 + Drteiﬁ(:ﬂ+Aa))_2rteiﬁz+rteiﬁ(ac—Am)

Ax? Ax?
Ck_Ck Bz iB(xz—Ax)
_V 7 i—1 VT‘te —T‘te
Az Az
C*r{chl_C*«lk rHAtezﬂz_rtewx
= A T A7 (8.30)

!This section is based on lecture notes of A. Leijnse (LUW, RIVM).
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As the following equation is valid:

Ch, —2Cf +CF B

e ch-ck, gt

1% d (8.31)

Ax? Az At

and dividing the equation by ¢/%%, equation 8.30 becomes:

iBAx —iBAx —iBAx

rie — 2r; + e Ty — i€ TirAt — Tt
Ax? v Az At (8.32)
DAt /. . VAt .
T+ At = Tt |:]. + m (eZ'BAx —2 + e_zﬂAr> — E (]. — e_Z'BAx>:| (833)
Tt+At 2D At eiﬁAI + e_iﬁAI VAt —iBAx
= =1- 1— — 1-— 8.34
P T Ax? 2 Ax ( ¢ ) (8:34)
2D At VAt
-1 _ _ 8.35
P Az2 gi! Ax 72 ( )
where:
o p="tAL= the amplification factor
o le:]_ . eiﬂAz_BefiBA:E

° ,}/2:1_e—iﬁAa¢

The equation is stable when the absolute value of the amplification factor p is smaller than
or equal to one:

lpl <1 (8.36)
2DAt VAt 2DAt VAt
—1<1— - <1 —2< - - < .
- Az M Ar 25 = STA2 T A 25 0 (837)
2DAt VAt
< <2 .
0 zn+ - 0s (8.38)

Analysing v, and 7, gives the following equations (making use of the theory of complex

functions !):
) eiﬁA:c + e—iﬁA:c
yp=1-— — = 1 — cos BAzx (8.39)

Knowing that a cosine is always between -1 en 1 gives:
0<~y <2 (8.40)
The term -, is somewhat more complex:
vo =1—e A% = 1 — cos Az + isin Az (8.41)

To determine the length of this complex term o, the absolute value must be calculated:

|72| = |1 — cos BAx + isin fAzx| = \/(1 — cos BAx)? + (sin fAx)? (8.42)
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Iy2| = \/1 — 2cos BAx + cos fAx2 + sin BAx2 = /2 — 2cos BAx (8.43)

Knowing, once again, that a cosine is always between -1 en 1 gives:
0<7<2 (8.44)

Based on the equations 8.38, 8.40 and 8.44, it can be obtained that:

vat Dt a5
If this equation is valid then V% < 1 (V is positive) and 2£ ;‘J < 1. Suppose that
V% > %—t, then equation 8.38 becomes:
0§%§%+2—f72§2:>0§%(%+72)§2 (8.46)
As V% <1, then:
0<7m+7<2 (8.47)

Knowing the equations 8.40 and 8.44, this equation is valid if the terms V% plus %—t

is smaller/equal than 1 (check it). A similar analysis can be obtained if 2£ x%t > V%.
In conclusion, based on the von Neumann stability analysis, the following criterion can be

obtained for the backwards in space (implicit) and forwards in time (explicit):

At 2DAt
<

Vazs T Az =

1 (8.48)

In fact: this criterion is also used in the stability criteria of the MOC code (but then in
2D):

At
VA— < 1, where V%is the so-called Courant number (8.49)
x
2DAt
AT <1 or Zj?t < 0.5, which is the so-called Neumann-criterion (8.50)
x

Backwards in space (implicit) and backwards in time (implicit)

When applying a backwards in time (implicit) discretisation, the discretised equation be-
comes:

Cl—20F +CF, VCz‘k -Ch, _Cf-ci!

b= Az? Ax At (8:51)
or,if k=k+1:
k k k k k
Az2 Az N At '
The von Neumann analysis gives the following equation:
Ti+At 1
= = 2DAt VAL (8.53)

re 142250y 4+ Yoy,
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lp| <1 for each Az, At unless Dypparent = D — V% - V2% (8.54)
For this situation, p is stable if:
2Dgpparamt At VAL 2Dgpparamt AL VAL

> > .
Ax? e Ax 7220 or Ax? Ax — 0 (8.55)
2(D- VA - V24 A LVAL_ L 2DAt-VEAR (5.56)

Az? Az — Az? - '

2D

A< (8.57)

How to obtain the following central in time (Crank-Nicolson) approximation:

oCc Cfftt—ck A dC

Central in time (Crank-Nicolson): +O(AtY)  (8.58)

ot At 24 O3
gt AOCL L (A0 LAPO0 L (AND0, L (Ao
G =G 3 8t+2 2 8t2+6 2 8t3+24 2 8t4+120 2 ot
(8.59)
ot — i AOC L(ANTOC L(ANTO0 L (ANTOC_ L (Ao
T 2 ot 2\ 2 o2 6\ 2 o3 24\ 2 ottt 120 \ 2 otd
60)

Equations 8.59-8.60 give:

AtOC 1 (A2 &BPC 1 [At\® 9°C
k+1 otk _ 972" Y i i - [ = i
Ci G =2 2 Ot +26 ( 2 ) o3 + 120 ( 2 ) o> (8.61)
k+1 _ ik 2 53
0 _ Gt AR ) 502

ot At 24 O3
8.2 Oscillation

Oscillations may occur in case the total dispersion (that is the sum of hydrodynamic disper-
sion D and numerical dispersion D) is negative. Thus, the following expression should
be obeyed:

D + Dy > 0 (8.63)

A stability analysis indicates whether or not the approximation scheme for the solute trans-
port equation causes an instable solution [e.g. INTERCOMP, 1976; Peaceman, 1977]. Var-
ious analyses can be applied to determine the stability criteria for each approximation
scheme. Two examples of this scheme are briefly discussed in this section:

e Central difference in time (Crank Nicolson)
No numerical dispersion occurs if a central difference in time scheme is applied in
combination with central difference in space (see table 8.1). Hence, this approxima-
tion scheme seems to be ideal. There is, however, a tendency of central difference
approximations to over and undershoot the maximum and minimum limits, and sub-
sequently, oscillations in time are caused. These oscillation errors could be reduced
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by limiting the time step. This criterion appears to be related to the criterion of the
explicit scheme: in fact, it equals about one-half of the forward in time first-order
stability criterion [INTERCOMP, 1976]:

VAt
A <2 (8.64)

e Backward difference in time (implicit)
No stability criteria exist for implicit schemes. Still, however, a so-called spatial
oscillation may occur in the central in space approximation [Price et al., 1966; IN-
TERCOMP, 1976]. In order to limit this oscillation, the following equation should be

fulfilled:

A A
v xﬁD or Pegm-d:V x

<2 (8.65)

where Pey.;q = grid-Peclet-number (=), which determines the relative size of the
advective and dispersive fluxes on the level of a discretisation element.

8.3 Analysis of truncation and oscillation errors

The solution of the solute transport equation may be faced with difficulties, since standard
finite difference and finite element models may yield unreliable results if the discretisation
conditions are not met. Although, in general, representation of the dispersion by the
finite element method? is accurate if numerical dispersion is small with respect to the
hydrodynamic dispersion [Bear & Verruijt, 1987], it is recommended to analyse the solute
transport equation anyway.

In order to quantify numerical accuracy, an eigenvalue analysis of the advection-dispersion
equation should be performed. Such an analysis will demonstrate the importance of mesh
spacing [e.g. Frind & Pinder, 1983]. In addition, a stability analysis should determine the
stability condition. For example, the von Neumann criterion for stability defines that the
modulus of the amplification factor must be less than or equal to one for all the components
[Peaceman, 1977; Stelling & Booij, 1996]. In order to obtain real and distinct eigenvalues,
the spatial discretisation in the finite element formulations should meet the condition [Daus
et al., 1985]:

A
Vaz _, (8.66)

Pegrid =

In advective-dominant solute transport, the hydrodynamic dispersion D approximates D=ay, V,
and thus, equation 8.66 becomes:

A
Pegyiq = a—f <2 (8.67)

2The analysis of (truncation and oscillation) errors due to numerical dispersion and oscillation for the
finite difference method by means of central finite difference approximations is similar for the finite element
method [Pinder & Gray, 1977, Kinzelbach, 1987a].
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Figure 8.2: Schematisation of the Courant condition.

Daus et al. [1985] obtains for the temporal discretisation:

Co — V_At < Pegm'd
Ax — 2
where C'o = the Courant number [—]. The Courant condition Co is physically interpreted
as the ratio of the advective distance during one time step to the spatial discretisation. Fig-
ure 8.2 illustrates the Courant condition in a numerical scheme. If the grid-Peclet-number
Pegyriq is assumed to be maximum (viz. Peg,iq = 2), the Courant constraint becomes:

VAt
= <
Co =

Grid-Peclet-numbers and Courant numbers have been mentioned in various quantitative
descriptions. Whether or not the numerical dispersion is suppressed, depends on the dis-
cretisation technique applied [e.g. Jensen & Finlayson, 1978; Campbell et al., 1981; Voss
& Souza, 1987]. In summary, the criteria for the grid-Peclet-number are:

(8.68)

1 (8.69)

Pegrig <2 Finite difference algorithm, central-in-space
Pegrig <2 Finite element algorithm, linear basic functions
Pegyig < 4 Finite element algorithm, quadratic basic functions (8.70)

If mechanical dispersion dominates over molecular diffusion, the hydrodynamic dispersion
D in equation 8.65 can be expressed as D=qy, |V, and thus, equation 8.70 becomes:

Ax <2aj, Finite difference algorithm, central-in-space
Ax <2aj, Finite element algorithm, linear basic functions
Az <4 ap, Finite element algorithm, quadratic basic functions  (8.71)

Note that there are acceptable solutions obtained with values up to Az < 10 3. As such,
this restriction is not very compulsory. Under those circumstances, the solution can still be
satisfactory though in some places over and undershooting (viz. oscillation) may occur.

3Sudicky [1989] even obtained highly accurate solutions for grid-Peclet-numbers in excess of 30 for the
finite element method, based on a Laplace transformation of the temporal derivatives.
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Figure 8.3: Initial chloride distribution (values in mg C1~ /1) at the beginning of 1854 AD, com-

puted for 900 elements [Kooiman, 1989).

Effect of the magnitude of oy, on the numerical solution: a case-study

The influence of longitudinal dispersivities a, on the solution is analysed through simula-
tion of a specific cross-section in Noord-Holland with two groundwater flow computer codes:
SUTRA [Voss, 1984] (see the lecture notes of Hydrological Transport Processes/Groundwater
Modelling 1) based on the finite element method and the adapted MOC code [Konikow &
Bredehoeft, 1978; Oude Essink, 1996] (see section 9.5) based on the method of characteris-
tics. The cross-section through the sand-dune area of Gemeentewaterleidingen Amsterdam
up to halfway the Haarlemmermeer polder is taken as the reference case.

The simulations start with an initial chloride distribution at the beginning of 1854 AD
(see figure 8.3), as it is proposed by Kooiman [1989] through ’trial and error’. Each of
the models computes the chloride distribution after a simulation time of 134 years, from
the reclamation of the Haarlemmermeer polder till the end of 1987. The following two
longitudinal dispersivities are applied: a;=0.02 m and a;=20.0 m. In order to compare
the two models with each other, the dimension of the elements should be equal. The
dimension is set to Ax=250 m and Az=10 m. This implies for a cross-section with the
dimensions 12,500 m by 180 m = 50 columns by 18 rows = 900 elements.

Figure 8.4 shows four chloride distributions in the cross-section at the end of 1987,
after a simulation time of 134 years. The computed chloride distribution matches measured
chloride distribution (not shown here) best if the longitudinal dispersivity ay, is small. The
case with a small longitudinal dispersivity, that is a;=0.02 m, has a freshwater lens that
corresponds with measurements. For both models, the case with a;=20.0 m does not
simulate a freshwater lens any more. The aquifer system consists of only a large zone with
brackish groundwater. Obviously, this situation does not match reality.

Moreover, as can be seen in the figure 8.4, the chloride distributions by the adapted
MOC code are smooth. This is in contrast with the distributions by SUTRA. When lon-
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Figure 8.4: Chloride distributions (in mg Cl~ /1) in 1987, computed for 900 elements with MOC
and SUTRA for a,=0.02 m and ar=20.0 m. Note that here 900 elements are applied, whereas in
figure 6.9 4500 elements are applied.

Table 8.2: Influence of the longitudinal dispersivity on the accuracy of the solution: the minimum
and maximum chloride concentrations; and the number of elements undershooting a chloride con-
centration of 0 mg Cl~ /I and overshooting 17,000 mg Cl~ /I (the maximum chloride concentration
which is inserted in the cross-section).

SUTRA

afj, Minimum Maximum | Undershoot | Overshoot

(m) | (mg Cl= /1) | (mg Cl=/l) | (elements) | (elements)

0.02 -8707 37,580 66 133
0.2 -7506 25,436 50 130
2.0 -7063 27,089 21 70

20.0 -1958 22,970 6 14

gitudinal dispersivities are small, SUTRA computes inaccurate chloride distributions, and
over and undershooting of the maximum and minimum chloride concentrations frequently
occur. Table 8.2 shows that in SUTRA over and undershooting occur in several elements.
The smaller the longitudinal dispersivity, the more elements are subject to over and under-
shooting. The main reason for this phenomenon is that SUTRA applies the finite element
method, whereas the adapted MOC code applies the method of characteristics to simulate
solute transport. &
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Chapter 9

Some selected groundwater codes

9.1 Introduction

The number of computer codes available on the market is enormous, and as such, a complete
overview is not possible. Therefore, only a selection! is given.
For purposes of illustration, four groundwater codes are discussed more intensively:

1. MODFLOW? [McDonald & Harbaugh, 1984; 1988] is a three-dimensional code, which
considers groundwater flow through discretisation of the domain into grid blocks. It
is based on the finite difference method.

2. Micro-Fem [Hemker & Elburg, 1988] is based on the finite element method. The
computer code subdivides the hydrogeologic system into aquifers and aquitards, and
as such, a three-dimensional situation is schematised.

3. MOC3D? [Konikow et al., 1996] is a three-dimensional computer code. It combines
MODFLOW (simulation of groundwater flow) with the three-dimensional version of
MOC (simulation of solute transport). These two processes are coupled with each
other.

4. the adapted MOC code* [Konikow & Bredehoeft, 1978; Oude Essink, 1996] is a two-
dimensional groundwater code, which also considers solute transport. Through the
conversion from solute (salt) to density, also density dependent groundwater flow is
taken into account. The code is based on the finite difference method for groundwater
flow and the method of characteristics for solute transport.

The codes MODFLOW, MOC3D and MOC are treated intensively during the computer
workshop. Additional information on these two codes will follow.

!Note that computer codes, which can handle non-uniform density distributions (e.g. in coastal aquifers),
are mentioned in the lecture notes of Hydrological Transport Processes/Groundwater Modelling II: Density
Dependent Groundwater Flow: Salt Water Intrusion and Heat Transport).

2This computer code is present at the ICHU (Interfaculty Centre of Hydrology Utrecht) as a part of the
package Visual MODFLOW, together with the three-dimensional solute transport computer code MT3D
[Zheng, 1990].

3This computer code is present at the ICHU (Interfaculty Centre of Hydrology Utrecht) as well as
available on the web: ’http://water.usgs.gov/software/moc3d.html’.

4This computer code is present at the ICHU (Interfaculty Centre of Hydrology Utrecht), Institute of
Earth Sciences, Geophysics.

133
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9.2 MODFLOW

Introduction

MODFLOW is currently (one of) the most widely used groundwater flow code in the field of
hydrogeology. Within MODFLOW the groundwater system is modelled by a set of math-
ematical equations representing the flow phenomenon and physiographic characteristics of
the groundwater system. A finite difference scheme is utilised where the applied equations
incorporate the (groundwater) flow equation of Darcy and a continuity equation. MOD-
FLOW is able to simulate steady state and transient flow conditions in one, two, or three
dimensions. The overall structure of the MODFLOW programme consists of a preprocess-
ing, a processing and a postprocessing part. It has a modular structure that allows it to
be easily modified to adapt the code for a particular application. MODFLOW consists of
a core module, the 'main’, and a series of independent subroutines called 'modules’ which
simulate a specific feature of the hydrogeologic system. MODFLOW version 1401 of De-
cember 1996 [McDonald & Harbaugh, 1984; 1988; Harbaugh & McDonald, 1996], which is
fully integrated with MOC3D, is applied for the computer workshop.

Concept of the code

In concept of the mathematical model underlying the MODFLOW package, a number of
simplifications and assumptions are made in schematising and conceptualising to convert
the "real world” groundwater system into the mathematical (computerised) groundwater
system. For example, some concepts of the model are:

e the groundwater system can be simulated for steady state and for transient flow
conditions,

e the mathematical groundwater system utilises a block-centered finite-difference ap-
proach,

e there is no flow of water over the model boundary,
e the medium to be modelled can be heterogeneous,
e the medium to be modelled can be anisotropic,

e the flow system can be shaped irregularly in which aquifer layers can be confined,
unconfined, or a combination of confined and unconfined.

e flow can be fully three-dimensional.
Some model assumptions of MODFLOW are:

e in the original code, the density of the fluid is a constant, whereas in the one which
is used in the computer workshop (as a part of MOC3D [Konikow et al., 1996]) can
take into account density differences.

e water movement can be in three (orthogonal) directions (X,Y,Z),

e properties within a block are assumed to be distributed homogeneous.
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Discretisation of the model domain

In MODFLOW, the model domain is discretised in space by subdividing the area into
blocks. The sizes of the blocks in =z and y-direction are uniform over a row and over
a column and are defined by the modeller in the preprocessing stage. In this way it is
possible to obtain a varying spatial resolution for a region of interest. Note that when
you also simulating solute transport (with the solute module in MOC3D), the size of the
blocks should not vary too much. The elements may be of different sizes with different
volumes, but in each individual element hydraulic parameters are assumed to be uniformly
distributed. As MODFLOW uses since 1988 a dynamic memory allocation, you only have
to increase the so-called LENX number in the code (and to compile the FORTRAN-code)
to increase the number of elements of the computer code. For the order of magnitude: the
computer code of 1984 could cope with the 60,000 elements of the model domain, with a
maximum of 120 elements in z-direction, 120 elements in y-direction, and 80 elements in
z-direction.

In the z-direction is the spatial distribution achieved by dividing the system in a number
of layers. Each defined layer is characterised by a ”flag” indicating that the layer is modelled
under confined, unconfined or confined/unconfined flow conditions. Within a layer it is
possible to model varying layer thickness by entering the top and bottom elevation for each
element.

Modelling the time factor

In steady state simulations the values of the model input expressed in input and output flow
sources are constant as well as the values of the model output. In transient flow situations
the model input and output sources can be time variant and the model output is time
dependent. Examples of time variant input are the change of the natural recharge rate over
a certain period or the in time fluctuating discharge of a well.

The finite difference equation of groundwater flow

Equation 6.29 describes groundwater flow simulated by MODFLOW. If the fluid density is
constant, the water balance of a block, expressed by the sum of all flows into or out of a
block and its change in storage, represents the equation:

_ g B¢
> Qi = Ss i AV (9.1)

where
e S, = specific storage of the porous material (L),
e (; = total flow rate into the block (L3 7T71!),
e AV = volume of the block (L?),

e A¢ = change in head over a time interval of length At (L).
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block i,j,k block i,j+1,k

_.l =

Az 4

|4—

a.

Figure 9.1: a: block [i, j, k] with the surrounding blocks. b: flow between block [i, j, k] and block
fi,j+1,k].

Calculation of the flow rates in block [i, 7, k] is achieved through the calculation of the head
field of the (six) blocks surrounding block [i, j, k], see figure 9.1a. The flow at the interface
between two blocks in a-direction, [i, j, k] and [i, j + 1, k], can be calculated with Darcy, see
figure 9.1b:
Pijk — Pijt1k
Qi,j+1/2,k: = ki,j+1/2,k Ay - Az JA—xJH (9.2)

where

® Q;j+1/2 = flow discharge through the face between [i, 7, k] and [i,j + 1, k] (L3771,

® k; j11/2,0 = hydraulic conductivity between [, j, k] and [i,j + 1, k] (L T,

The orientation of the model is given in figure 9.2. Similar expressions can be written
for the other five blocks surrounding block [i, , k]. Applying equation 9.1 to block [z, j, k]
taking into account the flows from the six adjacent blocks, as well as an external flow rate
Qeczt (e.g. a well, a drain, evapotranspiration or river seepage) yields:

Qij-1/2k T Qijrijak + Qic1y2jk + Qivr2k + Qijr—1/2+ Qijrri/2 + Qeat, ;) =

Bt —pt Tt
SSZ'J,kiz’J’kAt Lagk AV (93)
where qﬁa ;i k—(bﬁ;’%t is a backward difference approach, which means that % is approximated

over a time interval which extends backward in time from ¢. The backward difference
approach is always numerically stable®. For reasons of stability, the backward difference
approach is preferred even though it leads to large systems of equations which must be
solved simultaneously for each time at which the piezometric heads are to be computed. In
MODFLOW, discretization of time can be in seconds, minutes, hours, days or years.

5Numerically stable means that errors introduced at any time diminish progressively at succeeding times.
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l layer direction Avk

Figure 9.2: Orientation of the three-dimensional groundwater code MODFLOW: NCOL=number
of columns; NROW=number of rows and NLAY=number of layers.

Hydraulic conductance

The groundwater flow equation 9.3 is simplified by introducing the so-called hydraulic con-
ductance which is defined as:

ki j+1/2sAyAz
CR;jr12k = % (9.4)

where CR; ;11 /2 is the hydraulic conductance between nodes [i, j, k] and [i,j + 1, k] in the
row direction (L?7T~'). As such, the hydraulic conductance is the product of hydraulic
conductivity and cross-sectional area of flow divided by the length of the flow path. The
same procedure can be followed for the hydraulic conductances in the respectively column
and layer directions:

k; G ATAz
i = =50 —— (0.5)
and
ki,j,k+1/2A$Ay
CVijk+1/2 = B e— (9.6)

The value of the hydraulic conductance depends on the layer characteristics and the satura-
tion rate. The exact determination of the hydraulic conductance can be found in McDonald
& Harbaugh [1984; 1988].

Introducing these hydraulic conductances in equation 9.3 gives the backward finite dif-
ference equation 9.7:

CR; i 1/20k(D7 1k — O k) T CRijrao (741 p — O754) +
CCi—1/2,j,k(¢?i1,j,k - ¢§,nj,k) + CCi+1/2,j,k(¢z@rl,j,k o qbzr,nj,k) -
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CVi,j,k—l/2(¢%,k_1 - w) +CVij k+1/2(¢;’nj 1 — 91, W) T Bijkbir+ Qijk =
5, ;5 2k A Ay Ay (9.7)
where

o P jk®ijk+tQijk = Qext,,;, = combined flow of all external sources and stresses into
block [i, 7, k],

e SS; ;i = specific storage of block [i, j, k] (LY,
e ¢/, = piezometric head at block [i, j, k] at moment of time m (L),
e Ar;Ac;Av, = volume AV of block [i, 7, k] (L?).

Rewriting this equation gives:

CVijk-12075 k-1 T CCii12 101 ik + CRij1/269 51 1
+H(—=CV,jk—172 = CCi_1y2jk — CR; j_1/2k
—CR; jy1/2k — CCit1y25k — CVijrr12 + HCOF, j )9
+COR; jr1/2401 5416 + CCit1/2,569i51 ik + CVijkr1/2905 k1
= RHS; ;1 (9.8)

where
o HCOF, ;= Pijr—SCLlji/(tm —tm-1),
o RHS; ;i =—Qi;r—SC1;; kgbwk (tm — tm—1), and
o SC1; 1 =SS kAr;Ac;Avy.

[A] x {¢} = {R} (9.9)

where
e A = matrix of the coefficients of piezometric head,

e ¢ = vector of piezometric head values at the end of time step m for all active elements
in the mesh,

e R = vector of constant terms, RH.S, for all elements in the mesh.

For each active block this equation can be written, deriving a system of n equations in
n unknowns. Such a system can be solved simultaneously. MODFLOW utilizes iterative
methods to obtain the solution to the system for each time step (e.g. strongly implicit
procedure; slice-successive overrelaxation solution and preconditioned conjugate gradient
solution).
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Water budget

A water budget is a summary of all inflows and outflows to a region. MODFLOW calculates
a water budget for the entire model domain as a measure to confirm the acceptability of the
solution and in order to provide summarized information on the flow system. The budget
module is activated for each time step in order to calculate the rate of flow into and out of
the system for the processes simulated by the combined (external) flow packages.

Boundary condition

In MODFLOW it is in fact only possible to define a constant piezometric head boundary,
the so-called Dirichlet problem, since due to the implementation of the block-centered dis-
cretisation scheme flow over the model boundary is not possible. However, groundwater
system boundaries with a constant flow or Neumann problem into the model domain can
be modelled by using external flow source terms just interior of the boundary.

Data requirements

The transmissivity and the hydraulic conductivity are required at each block in the grid.
For both these subsoil parameters the layer thickness and the hydraulic conductivity are
required. In case transient flow are simulated, every block must have a storage coefficient
S and/or a specific yield p (—) (depending on the condition of the groundwater system:
respectively confined and unconfined aquifers).

Mathematical description

The following features in MODFLOW are described mathematically:
e External sources into a block: packages,
e Layer types,
e Boundary conditions,

e Numerical solutions of the groundwater flow equation: SIP and SSOR).

9.2.1 External sources into a block: packages

External sources in MODFLOW are taken into account through the term Qegrijr =
P; j k9ijk + Qijk (lectures notes equation 9.7) where P, ;;, (head dependent term) is part
of HCOF; ;i and Q; ;1 of RHS; ;. In the original version of MODFLOW, six types of
external sources or packages® due to external stresses are available to simulate the different
(geo)hydrologic features (note that some types resemble each other):

1. River package
Rivers, streams, canals, or ditches contribute water to the groundwater system or
drain water from it depending on the piezometric head gradient between the stream

5These packages are discussed intensively in McDonald & Harbaugh [1984; 1988].
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a. conductance of prism: C=KLW/M b. leakage in aquifer system
¢riv
L=length of reach river —
K=hydraulic condug#fvity M
of riverbed ¢ - RBOT
/ / iJ, k\ \
Fthickness of riverbed .
element i,j, k
C. gaining river o losing river o
0 i,k riv o, K
= | riv = = L
M M
- RBOT
element 7,j,k element 7,7,k

Figure 9.3: Simulating a river: a. a riverbed viewed as a prism of porous material; b. leakage
through the bottom of the riverbed if ¢; ;. < RBOT; c. cross-section showing the relation between
head in the aquifer and in the river: rivers gaining and losing water.

stage and the groundwater table. The purpose of the river package is to simulate the
interaction of flow between surface water features and groundwater systems, using a
so-called leakage. Figure 9.4 shows the river package as a function of the head ¢ in the
aquifer. The purpose of the river package is to simulate the interaction of flow between
surface water features and groundwater systems, using a so-called conductance. The
following equation is valid (see figure 9.3):

KLW (¢riy — ¢aqm‘fer)

- (9.10)

Qm’v =

where:

Qriv=leakage through the reach of the riverbed (L371),
K=hydraulic conductivity of the riverbed (LT 1),
L=length of the reach (L),

W=width of the river (L),

M=thickness of the riverbed (L),

¢riv=head on the river side of the riverbed (L),

Gaquifer=head on the aquifer side of the riverbed (L).
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Rewriting the equation gives:

Qriv = Cm’v (¢riv - staquifer) (911)
where:
e C,.;y,=KLW/M=conductance of the reach of the riverbed (L?T~1!).

If the porous material at the side of the aquifer is fully saturated, the equation be-
comes:

Qm’v = Cm'v (¢riv - ¢i,j,k) (912)

where:
e ¢; i ;=head in the aquifer (L).

Inserting the river contribution in the basic groundwater flow equation gives: add
—Chiv to HCOF; j 1, and add —Cljy0ri to RHS; j 1. However, if the porous material
at the side of the aquifer is not saturated, the equation becomes:

Qm’v = Cm'v (¢riv - RBOT) (913)
where:
e RBOT=elevation of the bottom of the riverbed (L).

Inserting the not saturated river contribution in the basic groundwater flow equation
gives: add 0 to HCOF; j, and add —Cly (¢riv — RBOT') to RHS; j 1.

2. Recharge package
The recharge package is designed to simulate areal distributed recharge to the ground-
water system:
Qrch = IiJ”kATjACZ‘ (914)

where:

o Q,.p=areal distributed recharge into the aquifer system (L37~1),
o Ar;Ac;=horizontal area of the block (L2)7
e ; ; p=infiltration rate in block [i, j, k] (LT ).

Inserting the recharge contribution in the basic groundwater flow equation gives: add
0 to HCOF, ;1 and add —I; j ;ArjAc; to RHS; j . Most commonly, areal recharge
occurs as a result of precipitation that percolates to the groundwater system. It
is possible to insert recharge in other blocks than the blocks of the top layer (see
McDonald & Harbaugh, 1984; 1988).

3. Well package
The well package is designed to simulate wells in order to withdraw water from or
add water to the aquifer at a specified rate during a given stress period. Qe is
positive in case of infiltration and negative in case of extraction. Inserting the well
contribution in the basic groundwater flow equation gives: add 0 to HCOF; ;; and
add — Qe to RHSZ'J,]C.
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4. Drain package
The drain package is designed to simulate water discharge from an aquifer by little
ditches or agricultural drains. Figure 9.4 shows the drain package as a function of the
head ¢ in the aquifer:

if ¢i,j,k > di’ng then Qar = Cyr (¢i,j,k — di’ng) (915)
if ¢i,j,k < di,j,k’ then er =0 (916)
where:

e (Q4=rate water flows into the drain and out the aquifer system (L371),
e Cy.=conductance of the interface between the aquifer and the drain (L27~1),

e d; j ,=head in the drain (L).

Inserting the drain contribution in the basic groundwater flow equation gives: if
¢i,j,k > di,j,k then: add —Cy, to HCOFZ'J,]{ and add _Cdrdi,j,k to RHSZ'J,]{.

5. Evapotranspiration package
The evapotranspiration package simulates the effects of plant transpiration and direct
evaporation in removing water from the saturated groundwater system. Figure 9.4
shows the evapotranspiration package as a function of the head ¢ in the aquifer:

Qeva =0 when  ¢;x < EXEL (9.17)

iik— EXEL
Qeva = EVTR%ICEW when SURF > ¢i,j,k > FEXFEL (918)
Qeva = EVTR when  ¢;;x > SURF (9.19)

where:

o (QQono=evapotranspiration rate (L371),
e F X EL=extinction elevation; below this elevation, no evapotranspiration occurs
(L),

e EVTR=maximum evapotranspiration rate (L371),

e SURF=evapotranspiration surface elevation (L),

e EXDP=extinction depth (SURF — EXFEL) (L).
Inserting the evapotranspiration contribution in the basic groundwater flow equation
gives:

e for equation 9.17: add 0 to HCOF; ;. and add 0 to RHS; ; 1;

e for equation 9.18: add —g;(/;g?, to HCOF; jj and add —EVTR% to
RHSZ'J,]C;

e for equation 9.19: add 0 to HCOF; ; and add EVTR to RHS; j .
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Figure 9.4: Schematisations of four packages of MODFLOW as a function of the head ¢; ;. in the
aquifer: evapotranspiration, drain, river and general head boundary.

6.

General head boundary package

The function of the general head boundary package is mathematically similar to that
of the river or drain package. Flow into or out of a block [i,j, k] due an external
source, is provided in proportion to the difference between the piezometric head in
the block ¢; ; x and the head assigned to the external source f?tk, Figure 9.4 shows

the general head boundary as a function of the head ¢ in the aquifer:

Qgno = Cynp (@Zf:;tk - <Z5z',j,k> (9.20)
where:

o (Qgnp=rate at which water is supplied to the block from a boundary (L3T~1),

e Cypp=conductance of proportionality for the external source (L2T—1),
o ff;fk:head at the external source (L).
Inserting the general head boundary contribution in the basic groundwater flow equa-

tion gives: add —Cgyp, to HCOF; 1, and add —Cjypy, f?tk, to RHS; j 1.
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Figure 9.5: Discretisation of: I. the transmissivity T and II. the storage of groundwater in the
system.

9.2.2 Layer types

There are four layer types:

a. LAYCON=0
Confined: T=kD=constant
Change in storage of groundwater in an element can be written as:

m—1

m
Q — SA ivjyk — ivjvk

~ (9.21)

where:

e S=storage coefficient (—),

e A=Ar;Ac;=horizontal area of the element (L?),

° ngZlJ.Tkl =head at the end of the previous time step m — 1 (L),

° ¢>;ﬂj =new head being calculated for the end of the current time step m (L),

o At=length of the time step (7).

b. LAYCON=1
Unconfined: T=variable (see figure 9.5.1):

1. T =k(TOP — BOT) when ¢, > TOP (9.22)
2. T =k(¢;ijr— BOT) when BOT<¢; ;, <TOP (9.23)
3. T=0 when ¢, ;. < BOT (9.24)

where:
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e k=hydraulic conductivity of element [, j, k] (L?T~1),
e T'OP=the elevation of the top of the aquifer in element [z, 7, k] (L),
e BOT=the elevation of the bottom of the aquifer in element [i, j, k] (L).

If LAYCON=1, also the values of k, TOP, and BOT must be given in the *.bas file.
Change in storage of groundwater in an element can be written as:

m—1

m
— A bRk Thik 9.25
Q=upn A7 (9.25)

where:
e p=specific yield (—).
c. LAYCON=2

Confined as well as unconfined, depending on the circumstances, yet T'=k D=constant

Change in storage of groundwater in an element can be written as (see figure 9.5.11):

m—1
o —TOP TOP — ¢
— G AR T g m T Tk 9
Q=25 Az + 52 At (9.26)
if ¢} > TOP then use S (9.27)
if ) < TOP then use p (9.28)
where:
e S)=storage coeflicient in effect at the start of the time step (—),
e Sy=storage coefficient in effect at the current time step (—).
d. LAYCON=3
Confined as well as unconfined, depending on the circumstances, T'=variable: see
LAYCON=L1.

Change in storage of groundwater in an element is written as in LAYCON=2.

9.2.3 Boundary conditions

The IBOUND array contains a code for each element, which is inserted in the *.bas-file (see
figure 9.6):

e IBOUND<O: head is constant (constant-head element);
e IBOUND=0: no flow takes place within the element (no-flow or inactive element);

e IBOUND>0: head varies with time (variable-head element).



146 Groundwater Modelling, Part Il

area where heads vary with time aquifer boundary
Vs S B I N - ~:
\\
i
P
A \ i

(
area of constant head

of1)1)1|1[f1]0]J]0]J]O0)J]OJfOfO]J]O] 1)1 1[{1]1f[0]0O
i(1)1)1|1j1(1f1)1) 1| 1f 1| 1| 1) 1] 1f{ 1|1f11|0oO
i/1)1)1f(1f1}j1}1)1)1f1f 1] 1] 1] 1] 1f{1]1f1]0o0
o(f1)1)1f{1{1}j1}1})1) 1f{1f 1} 1] 1) 1] 1f{1]1f1]0
ofoj1)1|1f1|1f1)1) 1|1 1| 1| 1) 1] 1f{ 1|1|(1]|0O
o(fo|j1)1|1j1(1f1) 1) 11| 1|1 1)1 1f{1]1|1]|1
o(foj1j)1f1f{1}1}y1)1) 1f1f 1} 1] 1) 1] 1{ 1]1f[1]|1
o(foj1y1|1|1(1f1)1) 11| 1|1 1)1 1f{1]1f1¢|0O
ofojojojojo|1y1)1) 1| 1f 1| 1| 1) 1] 1f{ 1]J1|(0|O
ofojojojfjofjofof-1})-1|-1|-1f-1|-1|-1|-1|-1|(-1j0fO0|O
IBOUND codes: <0 constant head
=0 no flow
>() variable head
Figure 9.6: Example of the boundary array IBOUND for a single layer.
9.2.4 Strongly Implicit Procedure package (SIP)
The basic groundwater flow equation is:
CVijk-12075 k-1 T CCic1/2k® 1 ik + CRij—1/2k97 51 1
H(=CVijr—1/2—CCi_1j2k — CRij_1/2k
—CR;j112k — CCiy1y2k — CVijry1ye + HCOF, ;)07 .
+COR; ji1724P% 5416 T CCit1/2,60551 5k T CVijk1/297 5 k41
= RHS; ;1 (9.29)

or, based on the notation of the developers of SIP (Weinstein, Stone and Kwan, 1969), this
equation can be rewritten as:

ZZ?Jvk¢7ﬂJ7k—1 + BZJ?kQSZ_]-Jvk + DZ?]7I€¢7'7]_17]€ + EZ7]7k¢7'7]7k
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Figure 9.7: Correspondence between finite-difference equations and the matrix equation for a grid

with three rows, four columns and two layers.

(9.30)

er1 = Qigik

m
75

+FijkPig+1,k T Hijw®ii g + Sijk®

Figure 9.7 shows an example of such a matrix, whereas figure 9.8 shows the structure of

the matrix with the non-zero (seven) diagonals.

Symmetric matrix

As can be deduced, the Z; ; i-coefficient at element [i, j, k] is equal to the \S; ; ;. —1-coefficient

at element [i, 7, k — 1]. As such, the following statements are true:

SZ?JJ{:_]-

Zijk
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Figure 9.8: Structure of the coefficient matrix showing seven non-zero diagonals.

similarly Z; ;. = Hi—1k
and Di,j,k = F’i,j—l,k (931)
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Based on this information, a symmetric coefficient matrix can be produced. For example,
the following matrix is for a grid with two rows, three columns and two layers:

Eii11 Fiaa 0 Hiqa 0 0 S11,1 0 0 0 0 0
Fii1 Eip1 Fipn 0 Hio1 0 0 S1,2,1 0 0 0 0
0 F172,1 E1,3’1 0 0 H1,3’1 0 0 51,3’1 0 0 0
Hiii O 0 Esin Fars O 0 0 0 Seii O 0
0 Hia 0 Fr11 FEap1 Iy 0 0 0 0 S2,2.1 0
0 0 Hyz1 0 Fy21 FEa3: 0 0 0 0 0 S52.3,1
51’1,1 0 0 0 0 0 E171,2 F1,1’2 0 H1,1’2 0 0
0 S1,2,1 0 0 0 0 Fii2 FEi22 Fiapo 0 Hioo0 0
0 0 S13.1 0 0 0 0 Fi22 FEi32 0 0 Hiy 32
0 0 0 Sa.1,1 0 0 Hiq2 0 0 Er12 Foip 0
0 0 0 0 S2.2,1 0 0 Hyz2 0 Fr12 FEop2 Fooo
0 0 0 0 0 S2.3,1 0 0  Higzpe 0 Fro2 Ea3zo
(9.32)
or
[A] x {¢} = {R} (9.33)
where

e A = matrix of the coefficients of piezometric head,

e ¢ = vector of piezometric head values at the end of time step m for all active elements
in the mesh,

e R = vector of constant terms, RH S, for all elements in the mesh.

LU-decomposition

The SIP package uses the LU-decomposition to solve the matrix. For this purpose, the
matrix A is divided into two triangular matrices, L and U, such that in L, all non-zero
elements are below the main diagonal ("L of low’), and in U, all non-zero elements are above
the main diagonal (U of up’). Equation 9.33, A ¢ = ¢, is solved by:

LU ¢=q (9.34)
Equation 9.34 is divided into two equations:
Lv=gq (9.35)

U¢p=0v (9.36)

First equation 9.35 will be solved. This gives values of the vector v. With this information,
the vector ¢ can found through solving equation 9.36.

Example 9.1: LU-decomposition

For example, decomposition of the following matrix into a lower and a upper triangular
matrices gives:

A ¢ = q
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1 2 1 b1 1
-1 1 2 P2 = 2
3 2 -2 b3 -3
L U o = q
1 0 0 121 1 1
-1 3 0 011 p2 p = 2
3 -4 -1 0 01 o3 -3
First solving L v = ¢:
1 0 0 (%1} 1
-1 3 0 vy = 2
3 -4 -1 U3 -3
Starting at the top of the matrix gives:
V1 1
V2 = 1
U3
Then solving U ¢ = v:
1 21 1 1
01 1 by =14 1
0 01 ®3 2
Starting at the bottom of the matrix gives:
P1 1
P2 p =19 -1
¢3 2

Strongly Implicit Procedure: SIP

Now, the LU matrices must be found. As you can see in figure 9.7, many coefficients of the
matrix A are equal to zero: matrix A is called ’sparse’ ("dun bezaaid met getallen # nul’).
This will be used in finding the LU matrices. A matrix B is introduced such that [A + B]
is 'close’ to A: [A + B|¢p =~ A¢. Adding B¢ to both sides of equation 9.33 gives:

[A+ Bl{¢} =q+ Bo (9.37)

Now, we introduce the iterative part of the SIP package. As the value B¢ is not known, it
can be approximated by using the best estimate of ¢:

[A+ Bl¢™ = q+ B¢™ (9.38)

The vector ¢™ is the m-th iteration estimate of the vector ¢. On subsequent iterations, ¢™ !
would be the head vector calculated at the previous iteration. In addition, by subtracting
the term [A + B]¢™ ! from both sides of equation 9.38 gives:

[A+B{¢m —gm '} =q—Agm! (9-39)
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Figure 9.9: Desired structure of L en U, showing nonzero diagonals of the lower triangular matrix
L and the upper triangular matrix U.

So, now, the problem in SIP is to find two matrices L and U, such that LU is equal
to [A + BJ. It appears that there do exists two matrices L and U: see figure 9.9. You
can see that these matrices are also sparse. Multiplication of L and U gives [A + B], see
figure 9.10. The exact determination of these two matrices is not discussed here: see for
more information McDonald and Harbaugh (1984). Introducing the LU matrices gives:

LU{&”—¢m*@::q—A¢m”' (9.40)

Lu {¢m - ¢" '} = RES™ (9.41)
Lv=RES™ gives v (9.42)

U {gbm - gbm_l} =v gives ¢™—¢" 1 =A¢p (9.43)
" ="+ Ad (9.44)

The moment that A¢ in all elements are smaller than a so-called closure criterion HCLOSE
(head change criterion for convergence), the iteration stops.

9.2.5 Slice-Successive Overrelaxation package (SSOR)

This technique solves the system of linear equation iterative. The corresponding equation
is:

C‘/;,j,k—l/2¢§:;7]:—_11 + C'C'i—l/2,j,k¢§ﬁ;,lk + CRi,j—1/2,k¢§:;n__|le
H(=CVijr-1/2—CCi_1)2k — CR; j_12k
—CR; jy1/2 — CCiirak — CVijkr12 + HCOFi,j,k)(b?T]:_l
+COR; 12085 e + CCty2 kit o + CVigor1/205
— RHS (9.45)

NCOL*NROW
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— * marks diagonals which
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Figure 9.10: Structure of the matrix A + B showing nonzero diagonals.

where:
e t=the time step counter (—),
e m=the iteration counter (—).

Rewriting equation 9.45 in residual form (by adding terms of — ¢%™ on both sides) gives:

t,m+1 t,m t,m+1 t,m
C‘/;,j,k—l/2(¢i,j,k—1 - ¢i,j,k—1) + CCi—1/2,j,k(¢i—1,j,k - ¢i—1,j,k)
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Figure 9.11: SSOR reduces the number of equations that must be solved simultaneously by con-
sidering only a single vertical slice at a time.

+CRi,j—1/2,k(¢§:;n_+le - ¢§:;n_1,k) + (=CVijr-172—CCi_1jajk — CRi j_1/2%
—CR; ji1726 — CCit1y2k — CVij k12 + HOOE,j,k)(ng:ZLI;H - ¢f§nk)

+C Ry 1 2k(B05 0k — $ie1 ) + CCur o (B 5k — 01T 510

+CVi a1 2B — $iriern) = RHS ik — CVi 12605
_CCi—l/Q,j,k¢§ﬂ7j,k - CRi,j—1/2,k¢§:;n_1,k —(=CVijk-1/2—CCi_1y2jx — CR; j_1/21
—CR; 1126 — CCih1y26 — CVijry1y2 + HCOFi,j,kWZZ%
~COR,j10407 510 = CCis1/2,50 0001 e — CVighr1/207 k1 (9.46)
The left hand side of equation 9.46 consists of terms involving the seven head changes, e.g.

QSZTI;" 1o qbf;ﬂk, for iteration m + 1. The SSOR package reduces the number of equations by

simultaneously solving only those equations representing elements in a single slice (or row
number), see figure 9.11. The two assumptions which come with this approach are:

1. consider the equation for elements in slice 1: ¢ = 1. In this slice, the heads at the

positions i — 1 are equal to zero: CCj_y/9 (qﬁf_”?;lk — qﬁf_”} i k) =0,

2. furthermore, the head gzﬁg’fi*;lk, which is the head in row 2, is approximated by gzﬁffi ik

which is the head in row 2 calculated at the previous iteration: this means that
tmtl _
CCi1jzn (1315 — 011 i) = 0.
As such, equation 9.46 can be rewritten:
“tm41 £, “tm41 £,
CVi,j,k—l/2(¢z’,;?,lk—1 - ¢i,;7,1k—1) + CRi,j—1/2,k(¢i,T—1,k - ¢i,§n—1,k)
H(=CVijk—172— CCi_1y2jk — CR; j_1/2% — CRijr120 — CCis1yak — COVijrti)2

Jt,m+1 t, Jt,m+1 t,
+HCOF, k) (5% — &i5%) + CRi 1o (95 n — bisin)
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+C'Vz',j,k+1/2(¢~5§:;7;+11 - ¢§:Tk+1) = RHS; i — C‘/i,mk—lﬂ‘b;’?k—l
—CCi—1/2,j,k¢§ﬁ,j,k - CRi,j—l/Q,kqbl;:;n—l,k —(=CVijr-12—CCi_1j21 — CR; j_1)2
~CR; ji1/2) — CCitryag — CVijpsrjo + HCOF; j ) ol
—CR; 12068071 1 — CCit1/2Biin ik — CVigika1/200 7k (9.47)
where:
J éf;nlj = ¢§;nk:
It is approximately equal to ¢

first estimate of the head change for element [i, j, k] at iteration m+ 1.
t,m+1 ¢t,m
i

i7j7k 7j7k'
The equations constitute a system of n simultaneous linear equations (where n is the number
of elements in a row) in n unknowns. As in most groundwater problems n is relatively small,
the system is solved directly by means of a Gauss-Jordan elimination. The result is a set
of values of gbf;”,: - (bf;ﬂk in slice 1. The value qbf%"’ ! can be calculated by the equation:
t,m+1 _ tm tm+1 t,m

Pk = Pijptw (¢z‘,j,k - ¢i,j,k> (9.48)

where:

e w=is an acceleration parameter, usually between 1 and 2.

The rest of the slices are handled in a similar manner. Terms in equations for slice I which
involve heads in slice I + 1 use heads of the preceding iteration m. At the end of each
iteration m + 1, the maximum head change for the iteration is compared to the closure
criterion. The iteration loop is terminated if the maximum head change is smaller than the
closure criterion.

9.3 Micro-Fem

Micro-Fem” (Hemker & Elburg, 1988: version 2.0; Hemker & Nijsten, 1996: version 3.1)
is a computer code for groundwater modelling in saturated multiple hydrogeologic systems
(confined, leaky and unconfined). From version 2.50 on, also transient groundwater flow can
be modelled. Micro-Fem can be applied for single density regional groundwater flow. Micro-
Fem simulates two-dimensional horizontal flow in multiple layers using the finite element
approach, and one-dimensional vertical flow between the layers using a finite difference
technique. It handles multiple time-varying sources and sinks, as well as spatially and
temporally varying boundary conditions, including connected and unconnected streams,
drains, and evapotranspiration linearly varying with depth to ground water. Micro-Fem
can simulate drains, streams, evapotranspiration, heterogeneous aquifers and aquitards,
and anisotropy.

The software supports mesh generation, input preparation, model computation, graphic
postprocessing and plotting of results. The code, version 3.1 [Scientific Software Group,
1996]. is able to solve sixteen hydrogeologic systems (aquifers or sublayers). The domain

"Not public domain, thus quite expensive: complete version 3.1 US$ 2330 (march 1997). University
discount is possible: a reduced-problem size, operational demonstration version is available.
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Figure 9.12: Overview of the programmes which accompanies the Micro-Fem code, version 2.0

is subdivided into triangular elements, interconnected through nodes (version 2.0: 3000
nodes, 6000 elements; version 3: 4000 nodes per aquifer for the 640 kB RAM version and
12,500 nodes for the Extended Memory RAM version). Waterbalances can be presented for
each aquifer or subarea.

The code is based on the finite element method ("Fem’) for calculating heads. Micro-
Fem consists of a pre- and postprocessor for easy data handling. Its capacity, ease-of-use,
and flexibility in representing complex field geometry has made Micro-Fem a widely used
ground-water flow modelling package in the Netherlands. Figure 9.12 gives an overview of
the programmes of the Micro-Fem code version 2.0:

e FemGrid
to generate a triangular mesh for irregular geometries.

e FemCalc
to calculate nodal heads and internal and external fluxes.

e FeModel
-preprocessor: to modify the grid, to specify and to change aquifer and aquitard
parameters, discharges and extractions and boundary conditions, and to provide a
graphical representation of entered data.
-postprocessor: to observe, to analyse, to present and to interpret model results, such
as contour lines of heads, travel times.
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e FemPlot
to plot (hardcopy) the grid mesh, the distribution of heads, aquifer and aquitard
model properties, flowlines and travel times.

e FeMerge
to compile a new model based on an existing model and new mesh data.

e FemMesh (optional)
to generate a grid for complex grids requiring gradually changing node-spacing to
accomplish high contrasts in spacing.

e FemCat (optional)
to calculate transient flow including display of time series of heads for selected nodes.

e FemPath (optional)
to generate three-dimensional particle tracking with display of individual flow lines
or a series of evenly distributed flow lines in two or three dimensions.

e Femlnvs (optional)
to automatically calibrate steady state Micro-Fem models with horizontal flow in up
to 16 layers (based among others on nonlinear regression).

In version 2.50 (1995) and 3 (1996) of Micro-Fem, a few new programmes have been im-
plemented: FemCat calculates transient situations, Femlnvs automatically calibrates steady
state Micro-Fem models, and F3Model traces three-dimensional flowlines.

During the computer workshop, the programmes FemGrid, FeModel and FemCalc will be
used to examine the groundwater system, whereas FemPlot will be used for hardcopy output.
Because the generation of the mesh, the input of parameters and boundary conditions, etc.,
is rather laborious, the regional model has already been completed during the computer
workshop.

A few remarks on Micro-Fem

e The use of triangular -as compared to rectangular- elements has the advantage of
an easy adaptation to the shape of the boundaries. Also the course of a river, the
locations of wells or areas with fixed head can easily be taken into consideration.

e To each element individual parameters can be allocated, such as transmissivity and
hydraulic resistance. The heads are defined at the nodes, the heads in an element are
described by a linear interpolation function. The flow across the side of an element
is allocated equally to the nodes to which it is connected. In case of vertical flow, the
recharge or discharge is distributed over the nodes by a polygon through the centre
of the triangle, as shown in figure 7.6.

e As far as boundary conditions are concerned, there are two possibilities: (1) a fized
head boundary: the program calculates the horizontal flow across the boundary of the
node; and (2) a no-flow boundary, e.g. a water divide: the program calculates the
head in the node.
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e Rivers and canals can be introduced in the program, by allocating a fixed head to
the nodal points. The relation with the underlying aquifer can be defined using a
hydraulic entrance resistance. The in- or outflow is calculated from the difference in
head between river and aquifer and the hydraulic resistance of the river bed.

9.4 MOC3D

The three-dimensional computer code MOC3D [Konikow et al., 1996] is developed by the
U.S. Geological Survey. The groundwater flow equation is solved by the MODFLOW mod-
ule of MOC3D. The advection-dispersion equation is solved by the MOC module, using the
method of characteristics. Advective transport of solutes is modelled by means of particle
tracking and dispersive transport by means of the finite difference method. An advantage
of applying the method of characteristics is that the condition of spatial discretisation is
not strict (section 8.1).

Characteristics of MOC3D

MOC3D (in total some 15000 FORTRAN lines including remarks) consists of two robust
modules which are fully integrated with each other. First, it comprises a solute transport
module, here called the MOC module®, to simulate ordinary solute transport. Second, it
comprises a groundwater flow module, here called the MODFLOW module?, to compute
transient groundwater flow. Some characteristics of MOC3D are:

e the code takes into account hydrodynamic dispersion (molecular diffusion as well as
mechanical dispersion) and chemical reactions such as adsorption (by means of a
retardation factor) and radioactive decay,

e solute transport is modelled through splitting up the advection-dispersion equation
into two components: (a) an advective component which is solved by means of a
particle tracking technique (the so-called Method Of Characteristics: MOC), and
(b) a dispersive component which is solved by the finite difference method. Due
to the splitting up, numerical dispersion can be kept within bounds, even if coarse
elements and small longitudinal dispersivities are used (see section 8.3, page 128). As
such, numerical problems don’t occur when elements are measured e.g. 250%250*10
m in combination with a longitudinal dispersivity of ay=1 m. Especially in this
characteristic MOC3D differs from codes which solve the partial differential equations
with the standard finite element or finite difference methods. With these methods,
severe numerical implications can occur when the spatial discretisation condition is
not met. This spatial discretisation condition is characterized by the so-called grid-
Peclet-number [Frind & Pinder, 1982; Daus et al., 1985; Kinzelbach, 1987a and 1987b;
Oude Essink & Boekelman, 1996].

$MOC3D [Konikow, Goode & Hornberger, 1996], version 1.1 of May 1997, is the 3D successor of MOC
[Konikow & Bredehoeft, 1978].

9The MODFLOW module is just MODFLOW-96 [McDonald & Harbaugh, 1988; Harbaugh & McDonald,
1996], version 3.0 of December 1996, but now fully integrated in MOC3D.
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e the variation of the pore volume of the elements should be relative small, as otherwise
the demand of mass conservation of solute is violated too much. This numerical
characteristic is related to the particle tracking technique; as a matter of fact, the 3D
solute transport code MT3D [Zheng, 1990] suffers the same problem. The applied
version of MOC3D uses a uniform grid.

e though numerical dispersion is limited, deviations in the mass balance of solute trans-
port still occur. A substantial difference between the initial mass (in the appearance
of the concentration distribution) and the mass after a large number of particle dis-
placements can arise, in particular when discretisation of the elements is coarse or
when time steps are large.

9.5 MOC, (2D) adapted for density differences

The original two-dimensional computer code MOC (Method Of Characteristics), which was
developed in 1978 by Konikow & Bredehoeft for the United States Geological Survey, is
a widely applied and widely accepted groundwater flow code throughout the world. The
adaptation implies that the variations in fluid density now affect the velocity distribution.
In order to obtain the adapted MOC code from the original MOC code, small adjustments
due to density differences have been accomplished. As a consequence, the code is capable
to simulate density dependent two-dimensional groundwater flow with solute transport.

As MOC applies the method of characteristics to solve advection through a particle
tracking procedure, numerical dispersion is suppressed considerably. This property makes
the adapted MOC code a very suitable groundwater flow code for simulating groundwater
flow systems with Holocene and Pleistocene deposits of marine and fluviatile origin such as
occur along the Dutch coast.

Note that a computer code similar to the adapted MOC code came on the market
in 1985: MOCDENSE [Sanford & Konikow, 1985]. It is a modified version of the original
MOC code. Whereas the original and the adapted MOC code are still based on (freshwater)
heads, MOCDENSE is based on pressures. Although MOCDENSE was removed from the
software-list of the IGWMC (International Ground Water Modeling Center) for a few years
because of (small) errors in the computer code, it is gaining ground again. It is now
beginning to enjoy a good reputation with respect to other solute transport codes such as
SUTRA [Voss, 1984].

History

Originally, MOC was only applied as a horizontal two-dimensional groundwater flow code.
It appeared that the code could easily be adapted in order to model groundwater flow
systems with non-uniform density distributions. In August 1981, Lebbe [1983] was the first
to adapt MOC for vertical groundwater flow and density differences. In 1986, van der Eem
and Peters also adapted MOC for density differences. In March 1990, Oude Essink adapted
the updated version 3.0 of MOC [1989]. He used documentation of Lebbe [1981, 1983] and
van der Eem [1987].
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9.5.1 Theoretical background of the groundwater flow equation

This paragraph comprises the fundamentals of the numerical algorithm to represent two-
dimensional density dependent groundwater flow. The equation of motion is already de-
scribed in subsection 6.1 (equation 6.14, page 71):

Kz Op k2

QI:_E% q, = E

(2 4 ) (9.49)

where y=p;g=the specific weight (M L~2T~2). The relation between the pressure and the
so-called, fictive, freshwater head is as follows (if the atmospheric pressure equals zero):

b
br=—— 42 9.50
T oty (9:50)

where

o ¢¢ = fictive freshwater head (L),

e -2 = pressure head, expressed in fresh water (L),

Pfg

e p; = density of fresh groundwater (M L73),
e 2z = elevation with respect to the reference level (L).

The horizontal and vertical hydraulic conductivities of fresh groundwater are defined as
follows (see also equation 6.17):

k, = ZzPr9 k, = 2P19 (LT (9.51)
1y py

The density distribution in the deep groundwater flow systems is assumed to be non-uniform
and varies with depth. As the density p; (77 in equation 9.49) varies with position, effects
of density difference have to be considered. Henceforth, the Darcian specific discharge
in vertical direction takes into account density differences. Inserting equation 9.50 into
equation 9.49 gives:

4o — P19 0%y 4 = _fepsd (%_H&) (9.52)
pi Oz i 0z Pf

As the density varies with position, the intrinsic permeabilities k,, x, and the dynamic
viscosity p should be applied instead of the hydraulic conductivities k, or k,. However,
small viscosity differences may be disregarded in case density differences are taken into
account in groundwater problems in vertical profiles [Bear & Verruijt, 1987]. As such,
the factor ps/p;, which is close to 1, is ignored in the development of the adapted MOC
code from this point on, also because of the lack of accuracy by which the horizontal and
vertical hydraulic conductivities are determined. Making use of equation 9.51, equation 9.52
becomes:

0 0
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where T = (p; — ps)/py is the relative density difference, the so-called buoyancy'® (—). As
can be seen, the vertical Darcian specific discharge has an extra term in comparison with
groundwater flow with a uniform density: this term is called the vertical density gradient
velocity.

Rewriting equation 6.28 gives the equation of continuity for density dependent ground-
water flow in two-dimensions:

 [04s &JZ] _ o 95 W'(z,2,t)
[8m+8z _558t+ Di

(9.54)

Through combining the equations 9.53 and 9.54, and multiplying the obtained equation by
the thickness of the aquifer b, the groundwater flow equation can be defined:

0 0
Twgt)  OTgh) | OTT) _ 00
oz 0z 0z ot

+ W(z,2,t) (9.55)

where

o T..,T,, = kb, k,b =respectively horizontal and vertical transmissivities in the prin-
cipal z and z-directions (L?T71),

o W(x,z,t) = (W'(z,2,t)-b)/p; = volume flux per unit area (positive sign for outflow,
e.g. well pumpage or groundwater extraction; negative for inflow, e.g. well injection
and natural groundwater recharge) (LT~ 1).

Numerical algorithm

To solve the groundwater flow equation numerically, the derivatives are replaced in the finite
difference approximation by values of the difference quotients of the function in separate
discrete points, using Taylor series, see the equations 7.75 to 7.77, page 106. In addition,
T is discretised as follows, see figure 9.13:

PN TP+
S P (9.56)
Pr

Tig)
where p(; jy and p(; j41) are the densities of groundwater in respectively the elements [i, 7]
and [i,7 + 1]. The Darcian specific discharges at the boundary of the element [i,j], the
so-called boundary velocities are given by the explicit finite difference formulations (see
figure 9.13):
ok =k
k f(.5) fi41,5)
Qe(i+1/2,5) = ky(iv1/2,5) & Ar T (9.57)

and

S~ P
k 7;7' i7 +
Txij+1/2) = Ka(ijt1/2) ( ’ A T+ T(m’)) (9.58)

where

Dutch: 'drijfvermogen’.
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Figure 9.13: Nodal array for development of finite difference expressions. The buoyancy of the
vertical velocity q,(; j+1/2) is determined over the hatched area.

° q];(i +1/25) = boundary velocity in the x-direction at the k-moment in time on the
boundary between the nodes [i,j] and [i +1,5] (LT™1),

° q’;(i’j t1j2) = boundary velocity in the z-direction at the k-moment in time on the
boundary between the nodes [i,j] and [i,j + 1] (LT™1),

® ky(it1/2,5) ko(ij+1/2) = weighted harmonic mean of the hydraulic conductivity in re-
spectively the x and z-direction:

2k (i+1,5) K (i) 2k i 11k g)

) k(i jr1/2) = (9.59)
Ku(it1,5) T Ka(ig) GH1/2) k(i j+1) + Faig)

Ka(it1/2,5) =

Writing out equation 9.55 in terms of finite difference approximations (and applying equa-
tion 7.77) yields:

0 dg\F B dg\k B
B, () BT -

(4,9) (4.9)
T 1) k
s { B ] LW (9.60)
To solve equation 9.60, the first term in the z-direction should be rewritten:
0 o\ " Py Mauiij) 0y
ox < ox >(i7j) (0:9) 92 + ox Ox (9.61)
or, by applying the equations 7.75 and 7.76, after rearranging:
9 9¢y N I 1 (g k ik
oz (TII Ox )(i,j) - { (Ar)% 2Ax ox : } [qsf(i—l,j) ¢f(7,,])]

+ [T+ AT Wi — ) (9.62)
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i ies i _IA2P00y (L L pA,20%
The expressions of the Taylor series in the form (—gAx“—53"), (—7542°5,4), etc., are
neglected. Similarly, the same procedure can be followed for the z-direction.
The transmissivity midway between [i, j] and [i — 1, j] in the a~direction is given by the

Taylor series:

Ax 0Ty (A2?) P T
Toatig) = Taoti-120) t 5 5, — g 2 T (9.63)

and similarly

Az 0Tpaig)  (A2?) PTaa(iy)
= Tow(i1/25) — 9r 8 o2 T (9.64)

T,

zz(i,j)

Substituting the equations 9.63 and 9.64 into equation 9.62, the finite difference approxi-

mation in the z-direction becomes!!:

P oo\
2 (Tma—;)(m) B

1 Az Twa(i ) 1 oaii) ] 14k k
[ (Toatimrjza + 55 7502) = akz o0 [Bmr) — i)

Az Ta(iny) 1 9Taa(ig) | 14k k
+ [(A_fx) (Tm(i+1/2,j) R ) tone o } (9% 611.5) — PFp)] (9.65)

or
Toi1yo) <¢7(i—zg)x—)¢7<i,j)) + Toutirryoy) <¢?<i+zg>x—)¢7(i,j>> (9.66)
To obtain the final finite difference approximation for the groundwater flow equation, the

equation 9.66 and a similar equation for the situation in the z-direction are substituted into
equation 9.60:

P10 i1, Pr(is)
Taw(i-1/2,5) aor )t Tee(ivr/2,) An)Z
¢ki'— _¢ki' T j— ¢ki' _¢ki' T
+Tzz(i,j—1/2) ( £ ,J(i)z)2 FG0) (AJz 1)) + Tzz(i,j+1/2) ( £ ,]z—i)z)Q fGg) ézﬂ)) =

ok —gFTl
S [ f(m)At f(m):| + W(Iz,j) (9.67)

Alternating-direction implicit procedure

The iterative Alternating-Direction Implicit procedure (ADI)!? is applied to solve the equa-
tions. This (backward difference in time) technique is unconditionally stable, and thus,

"Note that the Taylor series in the equations 9.63 and 9.64 have been truncated after the second term,

. x 2 82 x(i,] .
so0 that expressions of the form 22 % have been neglected [Pinder and Bredehoeft, 1968].
12This procedure has intensively been used by the petroleum industry for predicting oil and gas reservoir

behaviour.
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there are no stability restrictions on the length of At as in an explicit (forward difference
in time) technique [Pinder & Bredehoeft, 1968].

The piezometric heads ¢ in equation 9.67 are unknown in only one coordinate direction,
the known piezometric heads are calculated at the time level k. During one complete cycle
of 2NN calculations, the entire matrix is solved twice, using the two equations 9.68 and 9.69:

column: implicit in z—direction, explicit in z—direction
Trzz 1/2,5) (¢ ¢ ) Trz (i4+1/2,7) (QS ¢ )
(Ax)? fi—13) f(@.9) (Ax)? f+1.5) f(@.9)

zz(z /2)

GG (S — Sy T Tes-ndz)
zz(z j+1/2) k —

TR (¢f (ig+1) ~ Piig) ~ T(i,j)AZ) =

ok, =t &
S |: f( :J)At f( ,J)] + W(i,j) (9.68)
and

row: implicit in x—direction, explicit in z—direction
:m:(z 1/2,5) k zz(1+1/2 7) k
=G (G~ Fhip) +m L (s — )

+%1/_2 (be (i.j—1) ¢f(z',j) + (m_l)Az
zz(1 / k .
G2 (Hgan) — S — Teade) =

k
g |:¢ (i, ]) d’f(l ])] + W(]z]) (969)

N——

The technique first calculates values by sweeping the matrix column by column (using equa-
tion 9.68), and then recalculates the matrix by sweeping row by row (using equation 9.69).
For example, rewriting equation 9.68, the finite difference expression for any column gives:

column
zz(z 1/2) zz(i,' 1/2) Tzz(i, j—1/2) S k zz(z /2)
%@ -1 ~ [TESE TG T Al %st(wﬂ
zr(z 1/2, za:(ifl/Q7 j) Tzr(i+l/2, j) Tre (i41/2,
(Ax)? = ¢f (i—1,5) [ (Az)?2 =+ (Az)?2 : At]¢f(zg (Ax)? = ¢f (i+1,5)
zz(1,j— Tzz 1,7
— DY ) DY 4 W ) (2, 2,) (9.70)
Analogous expressions for these equations are of the form:
Bigs1+ Cigpa = Dy
Aj¢pj—1+ Bi¢p;+Cidpjn = D, for 2<j<n-1,
Apdpn—1+ Byosy = Dy (9.71)

where
e 7 is the length of the row or column under consideration,

e A;, B; and Cj; are the coefficients of the unknown piezometric head values. A; stands
for the term that belongs to qﬁf (ij—1) in equation 9.70, B; to qﬁf and C; to gzﬁf(Z 1)
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e D; is the sum of all known parameters, namely all terms on the right hand side of
equation 9.70.

This matrix is solved by means of the Thomas algorithm, see section 7.3, page 102. The
following dummy variables*3 w; (T~')and g; (L) are defined:

A;Ci 4
wj = Bj—;‘ij
7—1
Dj — Ajgj—
gj = L2 (9.72)
J w;

When the last node in the row or column is reached, the piezometric head is calculated in
order of decreasing j as follows:

_ Cidgj+1.
(bf’.j - g] w] )
if j=mn then ¢s;=ug; (9.73)

To take into account the boundary conditions, some small adjustments must be executed.
For example, if the edge is a barrier boundary, the reflection technique is employed: ¢ ;1 =
¢f,j+1 and Al = Cl.

9.5.2 Theoretical background of the solute transport equation

The applied two-dimensional advection-dispersion equation for solute transport in homo-
geneous isotropic porous media is similar to equation 6.68, page 87. Already since August
1985 (and modified again for more intensive chemical reactions by Goode & Konikow in
1989), MOC is suited to simulate non-conservative solute transport in saturated ground-
water flow systems. The solution technique of the advection-dispersion equation in the
adapted version of MOC does not differ from the solution technique in the original ver-
sion. The solution technique, based on the method of characteristics, is summarized in
section 7.8.

The advection-dispersion equation used in Konikow and Bredehoeft [1978] is as follows
(somewhat simplified):

(9.74)

ot 8—;16Z ”8—.7)] 0x; T b

oC a( ac)_va_c (C-cHw
where

e b= saturated thickness of the aquifer (L),

e W= volume flux per unit area (LT~1).

13In MOC, additional terms are appended in the dummy variables. These terms represent iteration
parameters, as the iterative version of the Alternating-Direction Implicit procedure ADI is applied. Iteration
parameters are applied to compute rapidly the acceptable freshwater head ¢y. The determination of the
iteration parameters is not discussed here. See for more information Trescott, Pinder & Larson [1976].
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The changes in concentration caused by hydrodynamic dispersion, and fluid sources and
sinks are solved by an explicit finite-difference approximation of equation 7.87:

) oC (C - "W
k _ R - 7
ACT; = At [ o1, <Dm axj> A ] (9.75)
or
ACE; = (ACE) 1 + (ACE )11 (9.76)
where

. (AC’Z-’fj) 1 = change in concentration by hydrodynamic dispersion,

° (AC’fj) 17 = change in concentration by sources and sinks.

As computation of the concentration gradient for a large number of particles appears to be
laborious, equation 9.76 is solved in MOC at each node of the grid rather than directly at
the location of each particle. The first right hand term in equation 9.76 can be rewritten
as follows:

(9.77)

o . oC oc, 9,  oC aC
(ACE) = At )]

—(Dyp—=—+Dpo—)+ = (D,y— + D, —
8;16( T ox + m@z)—i_@z( 0z + = Ox
Substitution of spatial derivatives of the concentration gives an explicit finite-difference
approximation. The second right hand term in equation 9.76 can also be rewritten by an

explicit finite-difference approximation:
Aty _

= k
Te bi,j

The change in concentration is the sum of the following terms:
C; = Cf; + ACE; (9.79)
where

o Cgfj = new nodal concentration at the end of time level k& (M L™3),

. Cf; = average of the concentration of all particles in cell [, j] for time level k after
only advective transport (M L™3),

. ACZlfj = change in concentration caused by hydrodynamic dispersion (dispersion
term), sources and sinks (M L~3).

The procedure to solve the advection-dispersion equation is as follows:

1. first, the concentration gradients at the previous time level (k — 1) are determined at
each node,

2. second, based on equation 7.89 in the lecture notes, the particles are advected to new
positions for time level £*, which is a new time level k prior to the adjustments for
concentration for dispersion and mixing (sources and sinks). The time index is distin-
guished with an asterisk *, because this temporarily assigned average concentration
represents the new time level only with respect to advective transport,
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3. after all particles have been moved, the concentration at each node is temporarily

assigned the average of the concentration Cf] of all particles which are at that moment
located within the area of that specific grid cell,

. at the new positions of the particles, the concentration gradients are computed again

at each node from concentrations at the time level k*,

. finally, since the concentration gradients are continuously changing with time, e.g.

from the k—1 to the k time level, a two-step explicit procedure is applied to adjust the
concentration distribution at each node: thus first based on concentration gradients
at k — 1, and second based on concentration gradients at k*. Thus, the change in
concentration due to dispersion and sources and sinks is determined by:

ACE. =05At iD..BCf,;l
1,7 . s |a ( 17 85!?] )+

bne

k—1/~k—1_ k-1
Wi,j (Ci,j _Ci,]' )
Ty

k* k (ok™ _ork
+0.5 At, [ 2 (D 8;;,_]- )+ Wi,]msze cm)} (9.80)

Stability criteria

A number of stability criteria determine the explicit numerical solution of the advection-
dispersion equation in Konikow & Bredehoeft [1978]. These criteria may require that the
flow time step At, applied to solve the groundwater flow equation, must be subdivided
into a number of smaller solute time steps At to accurately solve the advection-dispersion
equation. During such a solute time step, particles are moved to new positions. The distance
over which a particle is moved is proportional to the length of that solute time step and the
velocity at the location of that particle (see equation 7.89, page 113). The three stability
criteria of the advection-dispersion equation, which must all three be satisfied in MOC, are:

1. The explicit solution of hydrodynamic part of the advection-dispersion equation 9.77

is stable, according to Redell and Sunada [1970] (see also section 8.1.1), if:

D . At D, At
< 0.5 9.81
Bo? T ane S (9.81)

This expression is called the Neumann-criterion. Solving equation 9.81 for At yields:

0.5
over grid) | Dog | Deg

(Ax) (Az)?2

At < min( (9.82)

From equation 9.82 can be deduced that the maximum permissible time step in the
simulation is the smallest At; computed for any individual node in the entire grid.
Thus, the smallest permissible time step Atg for solving the advection-dispersion

equation occurs in the node that has the greatest value of (g—;’)”g + (2—32.

. Consider the mixing of groundwater of one concentration C; ; with injected or recharged

(surface) water of a different concentration C’Z(J-. The change in concentration in that
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specific source node is not allowed to exceed the difference between the concentration
in the aquifer C; ; and the source concentration Cj ;:

(ACE) i < Cf = C'%; (9.83)

In combination with equation 9.78, equation 9.83 produces:

: ne b
Atg < M (yer grid) | ik (9.84)
Z?]

3. The last stability criterion for the maximum permissible time step At involves the
particle movements to simulate advective transport. Equation 7.89 in the lecture
notes shows that the distance a particle moves is a linear spatial extrapolation from
one time level to the next. However, as the streamlines are curvilinear, an error is
introduced into the numerical solution. In order to suppress the deviation of the
particles from the streamline, the solute time step should be such that no critical
distance is exceeded:

Atst [Ilg’zm < CAIL’
AtsVZ [Ilg’zg] < CAZ (985)
where

e ( = the maximum relative distance across a grid cell, in which a particle is
allowed to move during one solute time step Ats. It is usually a fraction of the
grid dimension (0 < ¢ < 1) in order to ensure that the particle movements are
controlled within one solute time step.

Obviously, this criterion is based on the Courant number C'o. Rewriting equation 9.85

gives:
(Ax
Ats < ———
(V:c)ma:c
A
Ats < (‘f)iz (9.86)
where

¢ (Va)mazs (Vz)mar = the maximum real velocity at a node or boundary of a grid
cell respectively in the x and zdirection.

Finally, the smallest solute time step Ats is applied which is determined by the equa-
tions 9.82, 9.84 and 9.86. If the flow time step At is greater than the smallest solute time
step Atg, then the flow time step At is subdivided into the appropriate number of smaller
time steps At required to solve the advection-dispersion equation. It may occur that the
stability criteria are not so strict that the smallest required solute time step Ats is greater
than the flow time step At. Then, Aty must be equal to At.



168 Groundwater Modelling, Part Il

Numerical dispersion

Numerical dispersion is caused by the numerical calculation process. Although the method
of characteristics itself does not introduce numerical dispersion [Garder, Peaceman and
Pozzi, 1964], solving the advection-dispersion equation generates numerical dispersion due
to, among others, the movement and tracking of particles, the conversion from particles
to elements and finite difference approximations. Examples of how numerical dispersion
occurs in MOC are:

e solving the concentration gradient, e.g. %—g, by finite difference approximations. For

example, the spatial derivatives of concentration in equation 7.87, %Dij(%), (rep-
i J

resenting the concentration by hydrodynamic dispersion) are approximated by the

average (weighted arithmetic mean) of the concentration in adjacent elements,

e averaging the concentration C’Zk; in an element, based on all particles that are located
within an element at the time level k*,

e assigning concentrations at nodes of sources and sinks to the entire area of the element.
Concentration variations within the area of the element are eliminated,

e climinating concentration variations within individual elements. This occurs when too
many grid cells have become void of particles (e.g. two percents of all participating
elements). Then, a procedure (called GENPT) is executed that initiates again a
uniform distribution of tracer particles throughout the entire grid. The procedure
attempts to preserve an approximation of the previous concentration gradient within
each element,

e calculating zero change in concentration due to advective transport (equation 7.89)
at nodes which became void due to divergent flow, though the nodal concentration is
still adjusted due to hydrodynamic dispersion, fluid sources and sinks (equation 7.87).

Some special problems associated with MOC, in particular moving and tracking of particles
in the particle tracking procedure, are pictured only briefly here. See for further information
Konikow & Bredehoeft [1978]. Some special aspects are:

e to prevent that groundwater or solute cross a no-flow boundary, particles have to be
relocated within the aquifer by reflection across the boundary, see figure 9.14,

e in areas with fluid sources or sinks in grid cells, a special procedure is required to
maintain a reasonably uniform and continuous spacing of particles,

e in order to maintain the total number of particles in the entire flow field at a nearly
constant value, new particles have to be created at sources and old particles have to
be removed at sinks or discharge boundaries.

Changes in the solute concentration of particles due to chemical reactions or physical pro-
cesses may also cause problems in the particle tracking procedure. Finally, numerical dis-
persion also occurs in combination with numerical instabilities in the (vertical) velocity field
due to, among others, density differences.
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Figure 9.14: Possible movements of particles near an impermeable (no-flow) boundary [after
Konikow and Bredehoeft, 1978].

Numerical instabilities in the velocity field

Numerical instabilities, which make the solution of the solute transport inaccurate, are
caused by: (1) numerical approximations that already occur in the original MOC code;
and (2) density flow that additionally arises in the adapted MOC code. The latter cause is
discussed here (figure 9.15).

Numerical instabilities in the (vertical) velocity field can occur when particles from an
element with a high solute concentration and thus a high density enter in an element with
a low solute concentration. At the end of every flow time step, new solute concentrations
and thus new densities are determined for both the elements. This may lead to abrupt
differences in density between the two adjacent elements. Subsequently, the groundwater
flow equation is solved again at the beginning of a new flow time step, and thus a new
velocity field is calculated. The new vertical velocity field could have changed significantly,
as it depends on the changed density distribution. Occasionally, the direction of the vertical
velocity may even alter in some elements, at least if the initial vertical velocity was small.
During that subsequent flow time step, the new computed velocity field may move particles
in the opposite direction. This may, once again, lead to new abrupt changes in density of
some adjacent elements, etc., and the velocity fluctuations in vertical direction can cause
numerical instabilities. Under certain circumstances, these instabilities may get out of hand
and could locally disturb the solute concentration to such an extent that the result of the
simulation is not accurate anymore.

Numerical instabilities occur at those places where the densities in adjacent elements
differ rapidly, for example at places where the transition zone between fresh and saline
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Figure 9.15: Schematisation showing how numerical instabilities due to density flow can occur.
The solute and the flow time step have the same length of 1 year. Only the vertical groundwater flow
is displayed. Because particles are moved to other grid cells, abrupt changes in solute concentration
and thus in density in several grid cells can create fluctuations in vertical velocity.

groundwater is small or at places where surface water is injected with a density different from
that of the original groundwater at that depth. It depends, among others, on the geometry
of the hydrogeologic system whether the vertical velocities in the elements fluctuate in
direction with approximately equally small amplitudes, or diverge to (unacceptable) strong
amplitudes.

The causes of numerical instabilities in the velocity field due to density flow are closely
connected with model and subsoil parameters. Numerical instabilities can be limited by
adapting model parameters, such as by enlarging the number of particles per element, by
shortening the length of the flow time step or smoothing the initial density differences in
the vicinity of transition zones. Furthermore, by increasing the dispersivity, the numerical
instabilities due to density flow can somewhat be reduced.
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Parameters in MOC

In MOC, parameters are specified in the input data file to properly compute the freshwater
head distribution, the solute concentration distribution and both horizontal and vertical
velocities as a function of specific moments in time. They are subdivided into:

a. model parameters which determine the setup of the computation,

b. subsoil parameters which determine the geometry and hydrogeology of the schematised
profile,

c. initial and boundary conditions.

ad a. Several model parameters are briefly discussed here, see for more information Oude
Essink [1996]. In figure 9.16 the influence of different model parameters is illustrated
with the model through the Gemeentewaterleidingen Amsterdam (see also figure 3.13
on page 41):

1. Number of elements
MOC uses rectangular, block-centered elements, as the finite difference method is
applied. Personal computers with only some Mb RAM can already accommodate
a much larger number of elements than originally possible: e.g. 20,000=500-40
elements with 180,000 particles on a 8 Mb RAM computer instead of originally
400=20-20 elements with 3200 particles (in 1978), see also table 3.4, page 43.

When vertical profiles are simulated, the number of elements in horizontal di-
rection is usually greater than the number of elements in vertical direction. The
ratio horizontal length Ax to vertical height Az can range from 25 to 1 without
numerical problems.

2. Number of particles
In the original MOC code of 1978, 4, 5 and 9 particles per element could be
inserted. Since June 1985, the computer code was adapted in order to specify 16
particles per element, as this could lead to an increase in numerical accuracy of
the solution of the solute transport. Since August 1985, it is allowed to specify 1
particle per element in order to reduce the calculation time if input data files are
only tested or if the interest is just focused on the groundwater flow equation.

3. Flow time step At
After each flow time step, the buoyancy is deduced from the computed solute
concentration, and a new freshwater head distribution as well as a new velocity
field is calculated. The flow time step in the adapted MOC code should be chosen
with care. The reason for this is that the groundwater flow equation depends
on density differences, and thus the solute concentration also determines the
solution. The salinity distribution changes after every solute time step Atg, while
the velocity field is kept constant during that flow time step (see figure 9.17).
It may happen that the salinity distribution changes so rapid during one flow
time step (there is a number of solute time steps within one flow time step), that
the velocity field does not closely match any more with the salinity distribution,
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Figure 9.16: Chloride concentration as a function of time in the observation point at £=3475 m

and z=-105 m N.A.P. The influence of different model parameters is shown.

and thus, with the current density. This could lead to numerical instabilities.
In order to remedy this problem, the length of the flow time step should be
shortened.

4. Convergence criterion TOL
The convergence criterion TOL for the iterative calculation of the freshwater
head in the groundwater flow equation is presented in ft. The criterion should
range from about 107 to 1076 ft, which seems to be rather strict. Nonetheless,
the freshwater head should be given precisely, especially at the constant piezo-
metric head boundaries of vertical profiles where hydrostatic conditions ought to
apply. At those boundaries, small deviations in the fixed freshwater head could
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determination of a
new velocity field

At = flow time step = 1 year

determination of a new solute
concentration in each particle

At = solute time step = 1/6 year,
depends on stability criteria

* velocity field remains constant during 1 year
* solute concentration changes during each solute time step

Figure 9.17: Example of the relation between the flow time step and the solute time step.

lead to significant (erroneous) velocities in vertical direction.

ad b. The conversion from the original horizontal code to the adapted wvertical code has its

ad c.

effects on several subsoil parameters:

1. Saturated thickness of the aquifer

As the adapted MOC code is applied, the saturated thickness b of the aquifer,
which could vary spatially, represents the thickness of the aquifer perpendicular
to the vertical profile. This parameter is set to the unit length of one foot,
the so-called stretched foot. As a consequence, the hydraulic conductivity k;
corresponds with the transmissivities T;; through:

T;; = bk; (9.87)

2. Specific storativity S

The storage coefficient S which is applied in the original MOC code represents
the specific storativity S5 in the adapted MOC code, as the saturated thickness
b is equal to one foot: S; = S/1 foot. In some cases, it may occur that the
time lag of solute transport is so great in relation to the time lag of groundwater
flow that the transient component of groundwater flow can be neglected. As a
consequence, the specific storativity Sy can be taken equal to zero. Note that a
specific storativity Ss equal to zero significantly simplifies the calculations with
the adapted MOC code.

The hydraulic resistance of aquitards, the extraction and injection wells, and the
spatially varying (natural groundwater) recharge or discharge are simulated in the
adapted MOC code by means of a conversion of certain subsoil parameters in the
original MOC code. Discussion of these parameters goes beyond the scope of these
lecture notes (for more information see Oude Essink [1996]).

The initial distribution of solute concentration of the entire hydrogeologic system must
be known, as the density distribution is applied in the groundwater flow equation of
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the adapted MOC code. The conversion from chloride concentration to density is
given by equation 6.39.

Two different types of boundary conditions for the groundwater flow can be imposed
in MOC:

e a constant piezometric head boundary, the so-called Dirichlet problem.
As MOC computes freshwater heads, the constant piezometric head boundary
has to be converted into a freshwater head boundary in case density differs from
fresh groundwater (see equation 9.89).

e a constant flow boundary, the so-called Neumann problem.
This type of boundary can be implemented in the adapted MOC code by means
of two tools: (1) 'Extraction and infiltration’ (e.g. lines of extraction and injection
wells), and (2) 'Recharge and discharge’ (e.g. natural groundwater recharge into
the hydrogeologic system).

In the MOC code of 1989 an additional procedure is included to implement so-called
pumping periods with different freshwater heads and salinity distributions during one
complete simulation.

The density of groundwater

The density of groundwater should be considered to be a function of pressure, tempera-
ture of the fluid and concentration of dissolved solids. However, you must assure yourself
whether or not the influence of pressure and the influence of temperature on the density
is of minor importance with respect to the influence of dissolved solids concentration for
the circumstances of your specific hydrogeologic system. Fortunately, this situation is true
for many hydrogeologic systems. Under those circumstances, the density of groundwater
can be related to the concentration of dissolved solids in the groundwater. For example,
the conversion from chloride concentration to density, that can be applied in the adapted
MOC code, is as follows:

ps = pf C(zm)
P Cs

Equation of state: PGy = pr- 1+ (9.88)

where
® p(,j) = density of groundwater in element [i, j] (M L73),

e ps = reference density, usually the density of fresh groundwater (without dissolved
solids) at mean subsoil temperature (M L™3),

e ps = density of saline groundwater at mean subsoil temperature (M L~3),

(ps — pr)/ps = relative density difference (—),
e C(; ;) = chloride concentration or the so-called chlorinity in element [, j] (mg C1~ /1),

e ( = reference chloride concentration (mg C1~/I).

In equation 9.88, a linear relation exists between ps; and Cs. For more information, see
section 6.1.8, page 81.
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Figure 9.18: Conversion from observed piezometric head to freshwater head.

Conversion to freshwater head

As a non-uniform density distribution in the groundwater flow system is simulated with the
adapted MOC code, the piezometric heads in fresh, brackish or saline groundwater must
be converted into freshwater heads ¢¢. The determination of the (fictive) freshwater head
is as follows (see also figure 9.18):

¢f = (h - Zobs)ppo—;s + Zobs (989)

where
e ¢; = freshwater head of the observation well with respect to the reference level (L),
e 1 = observed piezometric head relative to the reference level (L),
e 2,5 = elevation of the point of observation relative to the reference level (L),
e pops = density of the water column in the observation well (M L™3).

For example, at a vertical boundary with a constant piezometric head the freshwater head
configuration can be assessed assuming that no vertical groundwater movements occur.
This means the situation is supposed to be hydrostatic. If the piezometric head in the
upper element, ¢f(i,2)14> and the density distribution in vertical direction are known, the
freshwater heads in all elements underneath the upper element in the same column can be
determined. For each element at an increasing depth with respect to the reference level,
e.g. N.A.P., the freshwater head in the center of the element [z, j] is as follows:

Dfig) = Prig—1) T YAz (9.90)

HMOC uses dummy elements around the finite difference grid, thus the upper row which participates has
the index j = 2.
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where
® Gy ) Pri,j—1) = freshwater heads respectively in the elements [i, j] and [i, j — 1] (L),

e T; ;) = relative density difference, the buoyancy between the elements [i, 7] and [i, 7+
1] (=), see equation 9.56.

e Az = height of an element (L).

For more information on this computer code, see Konikow & Bredehoeft [1978] and Oude
Essink [1996].
e



Continuiteitsvergelijking: niet stationair

(uit: ”Grondwatermechanica” [Verruijt, 1983])

In een afgesloten watervoerend pakket kan, alhoewel er geen freatisch (vrij) oppervlak
is, toch enig water worden geborgen door expansie van de grond. Ruwweg gesproken:
als de druk in het water toeneemt, dan neemt de gem. korrelspanning o af. Hierdoor
zal een vergroting van het poriénvolume optreden. In deze extra poriénruimte kan water
worden geborgen. Door de beschouwingen te beperken tot de belangrijkste gevallen van
niet-stationaire grondwaterstroming kan één en ander vereenvoudigd worden, waardoor de
complexe vergelijkingen van deze zgn. consolidatietheorie behoorlijk simplificeren.

Volumeverandering AV van met water verzadigde grond wordt veroorzaakt door twee
vormen van volumeverandering in de porién: AV = AV; + AV, (N.B.: samendrukbaarheid
korrels te verwaarlozen):

e water uitzetten of comprimeren onder invloed van drukverandering Ap:
AVl = _ﬂvap
waar

— [B=compressibiliteit of samendrukbaarheid van zuiver water (m?/N): £ 0.5-107°
2
m*/N,
— Vy=volume water=nV,

— V=volume beschouwde grondelementje.

e verandering van hoeveelheid water in de porién door netto stromingsverlies:

Avgz—(%Jr%Jraqz —Q’) VAL
X z
waar

— Q' =instroming per volume-eenheid, bijv. bron of put in het betreffende elementje
(1/T),

— At=beschouwde interval (7).

Combineren:

AV ¢z O 9
% | 09y | q_Q)

vV —nBAp - ( or Oy 0z

Stel nu: dat % = Ae, waarin e de volumerek is. Met behulp van de wet van Darcy
(¢ = —k..., enz.) wordt de vergelijking:

de op k (0*p *p
a—‘”a‘@<@+@+— +Q

177



178 Groundwater Modelling

Dit is de zgn. bergingsvergelijking.

Nu moet er een relatie worden gevonden tussen e en p, kijkend naar de vervorming van
de grond. In sommige complexe gevallen wordt een ingewikkelde afleiding gebruikt die
gebaseerd is op de 3D consolidatietheorie van Biot. Meestal gebruikt men echter een vereen-
voudigde theorie (van Jacob en Terzaghi), dit is gebaseerd op vier min of meer redelijk
lijkende aannamen:

1. in laag alleen vertikale deformaties (verandering in horizontale afmetingen te
verwaarlozen t.o.v. vertikale):
€= ¢y,

2. zgn. korrelspanningsbegrip (Terzaghi): grondspanning=korrelspanning+waterdruk
Ogr =0k +D

3. grondspanning constant, geen funktie van de tijd: spanningen worden voor-
namelijk veroorzaakt door gewicht bovenliggende lagen, hetgeen niet beinvloed
wordt door veranderingen in de grondwater randvoorwaarden:

&;gr . Jo k ap .

a0 o eV

Ogr = const,

4. lineair verband tussen vervorming en korrelspanning:

€2z = —QOk

waar

e a=compressibiliteit van het korrelskelet (ook wel weergegeven in literatuur met m,,)
(m?/N):

e klei: 1076-1078 m?2/N

e zand: 1077—107° m?/N

e grind/gesteente met breuken: 1078—10710 m?/N

e massief gesteente: 1077—1071t m?2/N

e water (=£): 4.4-1071° m2/N (£ 0.5-107? m?/N)
Deze vergelijkingen combineren geeft:

Ode @

— =
ot ot
Deze vergelijking combineren met de bergingsvergelijking en ¢ = 2z + % geeft na enige
omwerking:
o¢

- = 2 !
58875 EV<e +Q
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waar Ss=pg(a+n3)= specifieke bergingscoefficient (L~1): bijv. 5-107°— 5-107% 1/m. N.B.:
a > nf als het zuiver water betreft, echter: als lucht in porién, dan 3 vele malen groter.
Als S = S - D (D=dikte van het watervoerend pakket en S=elastische bergingscoefficiént
(—), engels: storage coefficient); T' = k - D (T'=doorlaatvermogen van het watervoerend
pakket (L?/T) engels: transmissivity) en Q'D = instroming per dikte van het pakket
(L/T), bijv. neerslag N (L/T) (!) dan:
0¢ 2
i Vg + N
e Specifieke bergingscoefficient S; watervoerend pakket
de verhouding tussen het volume water dat bij toe- of afname van de stijghoogte
per eenheidsvolume watervoerend pakket extra wordt geborgen, resp. vrijkomt bij de
betreffende stijghoogteverandering

Ss = (a+nB)py

e Elastische bergingscoefficient S afgesloten watervoerend pakket
de verhouding tussen het volume water dat bij toe- of afname van de stijghoogte
per eenheid van horizontale oppervlakte van het pakket extra wordt geborgen, resp.
vrijkomt bij de betreffende stijghoogteverandering

S =S5:D

e Freatische bergingscoefficient p freatisch watervoerend pakket
de verhouding tussen het volume water dat bij toe- of afname van het freatisch vlak
per eenheid van horizontale oppervlakte van het pakket extra wordt geborgen, resp.
vrijkomt bij de betreffende verandering van het freatisch vlak
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Formula sheet for Groundwater Modellering |

Re = # (Reynolds number)

¢ 0% 9% .
57 + @ + 5 = =0 (Laplace equation)

ot =2 (¢?+l,j o1+ b+ dr1) (Jacobi iteration)

¥

ort = (¢1+1 PO bl or ) (Gauss-Seidel iteration)

i—1,7

i (Overrelaxation iteration)

it =(01- )i + % (Cb?ﬂ,j + i i T Qbu 1)

2]

9 _ v+ N Ss=(a+np)pg S=5D

ot
% = T% STA—A‘?; < 0.5
B = G gl (0l — 29 4 0)  (Bxplicit)
B - (2 . STAAf) SR =SB (mplict)
pibe - (2 + 2%5) sty = 55T g (¢§+1 - (2 - iﬁ) o+ ¢§_1) (Crank-Nicolson)
= k?kiklzg (Harmonic mean)

ke O°T _nepgey 0T _ 9T
o'c dx? o' Vo 9 ot (Heat transport)

Ke = Nekf + (1 — ne)ks p'c =neprey + (1 —ne)pscs

T 10V Al
D.C Voo |\ oC
Ry 022 Ry Oz oot
Dy, =D+ D,, DL:OéL|V| DT:OéT|V|

Rs=(1+ 2o Kq) (Rg=retardation factor)
ne

A= In2 (A=decay rate; t; ;,=half-life time)
t1/2
BIS=backwards in space: implicit; BIT=backwards in time: implicit
FIS=forwards in space: explicit; FIT=forwards in time: explicit
CIS=central in space: Crank-Nicolson
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Cha—-20f+Cr, _CF-Ck, cCF-Ci

D AL? 1% Ar = At BIS and BIT
Da,ppearent =D + Dnum
Duum = vﬁ + VQH BIS and BIT
Do = VQ% CIS and BIT
A A
Dpum = VT““" - V27t BIS and FIT
von Neumann stability analysis:
At 2DAt
pa—— <
VAx + Az = 1 BIS and FIT
if D —D-VAz _y2at oy Ap < 2D BIS and BIT
1 appearent — - S R en > W an
MOC
) o\ F b a6\ " ¢y — Pein) .
= (1, == =7 = ZG5)  Tg) wg .
B ( ax)(i,j) oy ( yyay)w At + W
Qi ks
k (i5)
Wen =Nan + xoa, ~ 7P i) — $i)
w; = Bj — 4;Ci-1 g = Dj—49i—1 b; =g; — Cidjt1 (Thomas algorithm)
Wj—1 wy wy
Stability criteria:
, 0.5 . ne by
L Ats < mm(over grid) [ﬁ] 2. Ats < 1mm(over grid) [QT
Ax)? ]
3. AL, < S8 Aty < S8V
(Vm)max (‘/y)max
MODFLOW
COVigk—172075 k-1 FCCi_1/2 519721, +CRij_1/2 £P7 -1,k
+(—CV;jr—1/2—CCi_1y2,j6 —CR; j_1/2.k
—CR; i,7+1/2,k — CCz+1/2,],k - CV,],k+1/2 + HCOFZ s k)¢1»J»
+COR; ji1/2k07 541,5 + CCig1/2,56P5 01 5.5 + OVigntr1/2085 ki1
=RHS;
where:

o HCOF, k=P, jr—SCLli/(tm —tm-1),
. RHS”kf—Q”k—SCLngf)”k (tm — tm—1),
o SCli,j,k = Ssi,j,kATjACiAvk.

ik — EXEL
External sources: Qren = Ii jrArjAc; Qeva = EVTRW
KLW (b'riv — ¢a uifer
Qar = Car (¢ij.k — di k) riv = ( N . Qano = Conv (77 — biin)
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adsorption, 85

advection, 85

advection-dispersion equation, 61, 82, 88, 95, 112,
120, 128, 164

Alternating-Direction Implicit procedure, ADI, 162

analogue model, 9, 63

analytic element method, 109

analytical method, 66

analytical model, 10, 61

assessive model, 16

backwards in space, 120
backwards in time, 120

Badon Ghyben-Herzberg principle, 83
basis-function, 27, 107
biodegradation, 92

black box model, 11, 13

block, 27

boundary condition, 31

boundary condition Cauchy, 32
boundary condition Dirichlet, 31
boundary condition mixed, 32
boundary condition Neumann, 32
boundary condition no-flow, 32
boundary velocity, 160

buoyancy, 160, 171

calibration, 19, 35, 49

calibration target, 35

Cauchy condition, 32

central in space, 120
characteristic curve, 113
chlorinity, 174

classification, i, 9, 61

closure criterion, 151

code verification, 25

compiler, 42

computer code, 6, 24

computer programme, 6

concept, 21, 26

concept of a mathematical model, 21
conceptual model, 12
conduction-convection equation, 93
convection-diffusion equation, 61
convergence criterion, 39, 172
coupled process, 82

Courant number, 126, 129, 167
Crank-Nicolson, 99, 120, 124, 127
critical time step, 31
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Darcy’s law, 69
debug, 25
decay, 87
density, 75

density dependent groundwater flow, 82

density, conversion from CI™, 174
design model, 15

deterministic, 10

diffusion equation, 88, 98, 101
dimension, 15

Dirichlet condition, 31

Dirichlet problem, 139, 174
discretisation, 11

dispersion, 85, 88, 119, 127, 129
dispersion mechanical, 88
dispersion, numerical, 119, 168
dispersivity, longitudinal, 89, 130
dispersivity, transversal, 89
distributed model, 11

dummy variables, 164

Dupuit assumption, 32

dynamic, 13

dynamic viscosity pu, 77

eigenvalue analysis, 128
element, 27, 107

empirical model, 12
equation of continuity, 78
equation of motion, 69
equation of state, 81

error, 119

error criterion, 39

error mean, 39

error mean absolute, 38, 39
error oscillation, 119

error residual, 38

error root mean squared, 38, 39
error truncation, 119
execution time, 43

explicit, 98, 121

Extended Memory RAM, (EM RAM), 42

Fick’s law, 85

finite difference method, 27, 32, 95, 105

finite element method, 27, 32, 95
first model execution, 42
Fisherian statistical framework, 37
flow boundary, 32

flow time step, 166, 171

forwards in time, 121
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fractured medium, 74 Langmuir sorption, 86
freshwater head, 159, 175 Laplace equation, 65, 80, 96
Freundlich sorption, 86 level of calibration, 39
fysische geografie, 7 linear, 13
linear programming, 14
Galerkin method, 107 linear sorption, 86
Gauss-Jordan elimination, 103 longitudinal dispersivity, 89, 130
Gauss-Seidel iteration, 97 LU-decomposition, 149
geochemie, 7 lumped model, 11
geofysica, 7
Geographical Information System, GIS, 57 management model, 16
geohydrologie, 8 material derivative, 112
geologie, 7 mathematical model, 9, 61
geometrical dispersivity tensor, 89 mean absolute error, 38, 39
grey box model, 13 mean error, 39
grid, 27 mechanical dispersion, 88
grid cell, 27 memory problem, 42
grid refinement, 33 method of characteristics, 95, 112, 133, 158
grid-Peclet-number, 112, 128, 129, 157 methodology of modelling, 19
groundwater flow equation, 61, 79, 160 METROPOL, 83
Micro-Fem, 69, 133, 154
head boundary, 31 mixed boundary condition, 32
head change criterion, 151 MLAEM, 111
head-dependent flow boundary, 32 MOC, 158
Holland profile, 23 MOC, adapted, 40, 44, 83, 92, 130, 158
HOMS, 26 MOC, original, 13, 82, 112
HST3D, 44, 83 MOC3D, 82, 133-135, 157
hydraulic conductance, 137 MOCDENS3D, 44
hydraulic conductivity k, 73, 74 MOCDENSE, 44, 158
hydraulic head, 72 model, 4
hydrodynamic dispersion, 88, 119, 127, 129 model analytical, 10, 61
hydrogeologie, 8 model mathematical, 9, 61
hydrologic system, 6 model numerical, 10, 61
hydrologie, 7 model parameter, 171
hydrology, 3, 6 model scale, 63
hydrolysis, 92 model validation, 46
hydrostatic, 83, 175 model verification, 46, 49
hyperbolic nature, 112 MODFLOW, 13, 44, 133, 134
molecular diffusion, 85, 88
IGWMC, 26, 187 moving-boundary-problem, 31
imitation, 5 MT3D, 82
implicit, 98, 120
input data file, 171 NAGROM, 111
interface, 83, 116 Neumann problem, 32, 139, 174
interface model’ 83 Neumann—criterion, 126
Intergovernmental Panel of Climate Change, IPCC, no-flow boundary, 32
52 non-stationary, 13
intrinsic permeability &, 71, 73 non-steady state, 13
inverse problem, 36 Nonaqueous Phase Liquids, NAPL, 82
nonlinear, 14
Jacobi iteration, 97 Normaal Amsterdams Peil, N.A.P., 77
number of elements, 171
Kozeny-Carmen, 73 number of particles, 171
kriging, 45 numerical dispersion, 119, 122, 127, 168

numerical instability, 169
laminar, 74 numerical method, 67
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numerical model, 10, 61 solute time step, 113, 166
solute transport equation, 164
oscillation, 119, 128 solute transport model, 82
oscillation error, 119 solution technique, 95, 164
overrelaxation, 98 sorption, 91
specific storativity Ss, 31, 78, 173
parabolic nature, 112 speed of the computer, 43
parameter, 6 stability analysis, 100, 124
parameter crisis, 55 statistical, 10
parameter, model, 171 steady state, 13
parameter, subsoil, 171 stochastic, 10
particle tracking, 113, 158, 168 stretched foot, 173
Peclet number, 42, 112, 114, 128, 129, 157 Strongly Implicit Procedure, SIP, 146, 150
permeability, 73 subsoil parameter, 171, 173
physical model, 9, 63 SUTRA, 44, 83, 130, 158
physically based model, 12 SWICHA, 83
physiographic characteristics, 34 symmetric coefficient matrix, 149
piezometric head, 72
piezometric level, 72 time step, 30, 106
Poisson equation, 96 time step, critical, 31
postaudit, 19, 51 time step, flow, 166, 171
predictive model, 16 time step, solute, 113, 166
preprocessor, 42 total dissolved solids, TDS, 75, 82
pressure head, 72 transient, 13
principle of superposition, 14, 109, 117 transition zone, 82
process model, 15 transversal dispersivity, 89
truncation error, 119
quality problem, 61 turbulent, 74
quantity problem, 61
quasi-transient, 13 unsteady, 13

upconing, 82
radioactive decay, 91

Random Access Memory, RAM, 42 validation, 25

random walk method, 95 validation, model, 46

REGIS, 58 variable, 7

regression analysis, 10, 12 variational principle, 107

relaxation factor, 98 verification target, 46

Representative Elementary Volume, REV, 27, 56 verification, model, 19, 46, 49
residual error, 38 vertical density gradient velocity, 160
retardation factor, 92 von Neumann stability analysis, 124
Reynolds number, 70 vortices method, 116

root mean squared error, 38, 39
water balance, 40

salinity, 75, 171 water resources assessment, 18

salt water intrusion, 82, 111 weighted arithmetic mean, 168

salt water intrusion model, 82 weighted average technique, 50

scale model, 63 weighted harmonic mean, 161

scatterplot, 38 weighted least square statistical framework, 37
schematisation, 20 weighted residual technique, 107

Scientific Software Group, 26, 187 white box model, 12

semi-distributed model, 11

sensitivity analysis, 45, 49

simulation, 5

size of the model, 43

Slice-Successive Overrelaxation Package, SSOR,
151
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