(日) (四) (王) (王)

2

Probabilistic Design

Fedor Baart

May 27, 2011

Fedor Baart

the Dutch coast		Alternative approach: respond
Introduction		

Fedor Baart

PhD thesis: Operational forecasts of morphological effects of storms

Links

http://citg.tudelft.nl http://www.deltares.nl http://www.openearth.nl http://www.micore.eu

1 the Dutch coast

- 2 the 1/10000 storm
- 3 sea level rise
- 4 Alternative approach: respond

・ロト ・聞 ・ ・ 画 ト ・ 画 ト ・ 回 ト ・ の へ の

Fedor Baart

the Dutch coast		Alternative approach: respond
Outline		

1 the Dutch coast

2 the 1/10000 storm

3 sea level rise

4 Alternative approach: respond

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Fedor Baart

The Netherlands below sea level

Elevation

40% Of the Netherlands is below sea level.

Fedor Baart

How safe should it be?

Norm

Dutch safety standard of 1/10000 (exceedance probability for the Holland Coast per year) is based on economic evaluation of the hinterland.

Fedor Baart

How was the 1/10000 calculated?

Insurance problem, see Van Dantzig (1956)

$$L = p(h > H)V \sum_{t=0}^{\infty} (1+\delta)^{-t}$$
(1)

L reservation needed to deal with costs of a flood, p(h > H) probability of a flood, *V* value of the goods, δ interest rate, *t* time (years).

Minimize loss

$$\frac{dI}{dX} + \frac{dL}{dX} = 0 \tag{2}$$

I cost of heightening the dikes (per meter). X change in dike height.

Fedor Baart		
Probabilistic Design		

What else is important for determining the heights of the dikes

Other aspects taken into account

- Increase of wealth
- 2 Sinking of the land

Not taken into account

- 1 Quality/Cost of life
- 2 Recovery speed/cost
- 3 Deflation
- 4 Consequential losses
- 5 Risk perception

Figure: Sir William Petty

Fedor Baart

ъ.

イロト イロト イヨト

How much confidence do we have in our estimates relevant to our coastal defence?

Fedor Baart

the Dutch coast	the ½/10000 storm	Alternative approach: respond
Outline.		
Outline		

1 the Dutch coast

2 the 1/10000 storm

3 sea level rise

4 Alternative approach: respond

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ▼ のへの

Fedor Baart Probabilistic Design

How big is the 1/10000 storm?

Figure: Confidence interval of storm surge for Hoek van Holland (van den Brink 2004)

Fedor Baart

Alternative approach: respond

How to reduce the size of the confidence interval?

The size of the confidence interval $\frac{1}{\sqrt{n}}$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ○○○

Fedor Baart

How to reduce the size of the confidence interval?

How to get a bigger n?

- Pre-historic storms
- Historic storms
- Measured storms
- Modelled storms

Fedor Baart

Statistical methods

Peak over threshold

$$F_{\left(\xi,\mu,\sigma\right)}(x) = \begin{cases} 1 - \left(1 + \frac{\xi(x-\mu)}{\sigma}\right)^{-1/\xi} & \text{for } \xi \neq 0, \\ 1 - \exp\left(-\frac{x-\mu}{\sigma}\right) & \text{for } \xi = 0. \end{cases}$$
(3)

Needs high resolution (multiple measurements per day) time series.

Block maxima

$$F_{(\xi,\mu,\sigma)}(x) = \exp\left(-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right)$$
(4)
$$F_{(\mu,\sigma)}(x) = e^{-e^{-(x-\mu)/\sigma}}.$$
(5)

Needs information about maximum per year (ordering).

Fedor Baart

Available data

Pre-historic information from geological records (-1500) Historic information from letters, reports, paintings, flood stones (1500–1800) Measured information from measurements (1800–) Modelled based on assumptions (-)

The 3 biggest storms of the 18th century

Use historical records and give an estimate of the size of the biggest storms of the 18th century.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Fedor Baart

the Dutch coast	the 1/10000 storm	Alternative approach: respond
Ordering		

Table: Storms of the 18th century

Year	Classification ^a	Order ^{b,*}
1715	D	5 ^c
1717	D	3
1741	/	4 ^d
1775	D	1 ^e
1776	С	2 ^f

The area of interest

Figure: Northern part of the Holland coast. Locations mentioned in presentation

Fedor Baart

The Christmas Flood of 1717

Source gallica.bnf.fr / Bibliothèque nationale de France

Figure: Flood map of the 1717 Christmas Flood

Fedor Baart

Data for the 1717 storm: paintings

Figure: Paintings from Egmond aan Zee between 1600–1750

- Water levels from Amsterdam
- 1 floodstone
- Letters, poems, reports
- Maps
- Paintings

Fedor Baart

Using paintings as a data source

Figure: Estimating painter reliability

3D model of Egmond at 1717

Figure: Reconstruction of erosion in the period 1600-1717

Fedor Baart

Post storm profile

Torp Comends of Sur Vil tatanot Junto Phiendt - 1' 1910, Son of filman Holde is miles and beauto in filterate one whe give the filterate a firmater ran wanted One Norther war to balo town to General of the soil and the state of any stander on these drives of filterat 10 Bu is Level 25 film, widers on A off more to lever to the stand Bais off C and 25 tide, you A to D & login See, horse Signa as better a A to F for horse to Sign 35 film , You Ato France hat Silver Varbalan 52 Dan van A tot O novers hot Northe Varbachen B. Roben , van A tot H her vagen from 7 al and by Batter and an port that the bot the for her and her form A aff tot and har belling is bol 200 it to 12 John Den Hant by the end days Conten theyer als of her Farmer's you zu his y on wound of the good Deadle Turn of hart by & 20 parter town her Prant by A un + Diger, Reliade hat to manut che De & worker file Grow Former by X (Legende van brown mast outernet & seet Suip) tot brigten hat Die

Figure: Post storm measurements (1718).

Fedor Baart

Pre and post storm profile

Figure: Estimating the pre and post storm profile. Inverse model the magnitude of the storm.

Fedor Baart

The storm of November 1775

Figure: Paintings of the 14-15 November storm at Scheveningen

Fedor Baart

Data for the 1775 storm: shell deposits

Figure: Shell deposits found after the storm of November 2007, OSL dating by Cunningham, pictures: M. Bakker

Modelling the 1775 storm

Figure: Modelling the storm run up, source A. Pool

Fedor Baart

Modelling the 1775 storm

Figure: Modelling the storm run up, source A. Pool

Fedor Baart

The storms of the 18th century

Table: Estimated magnitude of the three largest storms of the 18th century

Year	Water	Wave	Wave pe-	Return pe-
	level	height	riod	riod
1717	3.1 m	6.8 m	10.4 s	20 years
1775	4.6 m	8.8 m	13.9 s	3300 years
1776	4.3 m	8.5 m	13.4 s	1300 years

Fedor Baart

The updated confidence interval

Figure: 30% smaller confidence interval using the Gumbel method. Higher estimate 1.4 with bigger confidence interval using the GEV method.

Conclusions

Can we reduce the size of the confidence interval of the $1\!/10000$ surge?

Only if we assume a constant shape.

Are paintings useful as a data source?

Yes but multiple paintings should be used because they have a low precision.

the Dutch coast	sea level rise	Alternative approach: respond
Outline		

1 the Dutch coast

2 the 1/10000 storm

3 sea level rise

4 Alternative approach: respond

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ のへの

Fedor Baart

the Dutch coast	sea level rise	Alternative approach: respond

How much confidence do we have in our sea level rise estimates?

(日) (四) (三) (三) (三)

Fedor Baart

Erosion -Tide += Surge = Waves = Sea level + Subsidence -

Figure: Possible changes affecting coastal safety

Fedor Baart

Erosion

Erosion

Coast is extending due to extensive nourishments.

Figure: Sand engine, source: Rijkswaterstaat/Joop van Houdt

Figure: Growth of coast at Katwijk, source: Kustlijnkaartboek 2011

(ロ) (四) (E) (E)

Fedor Baart

- 2

Sea level measurements

(c) Tide gauge

3

Sea level rise

Relative sea level rise

Constant trend of 19cm/century

Fedor Baart

Spectral analysis

Figure: Spectral analysis of sea level measurements

Fedor Baart

2

-≣->

< 🗗 🕨

< ≣⇒

Spectral analysis

Figure: Spectral analysis of sea level measurements

Fedor Baart

the Dutch coast	sea level rise	Alternative approach: respond

Multiple linear regression

Equation fitted for all stations and satellite grid.

$$h(t) = \underbrace{\beta_{0}}_{\text{mean level}} + \underbrace{\beta_{1}t}_{\text{trend acceleration}} \underbrace{(+\beta_{2}t^{2})}_{\text{mean level}} + \underbrace{a\sin(\frac{2\pi t}{18.6}) + b\cos(\frac{2\pi t}{18.6})}_{\text{nodal cycle}}$$
(6)
$$A = \sqrt{a^{2} + b^{2}}$$
(7)
$$\phi = \arctan\frac{a}{b}$$
(8)

Dutch coast

Fedor Baart

Global effect

Fedor Baart

the Dutch coast	sea level rise	Alternative approach: respond
Trends		

Global trends

Based on global tide gauges and recently on satellites.

 1900 - 1979
 0.175 cm/year [?]

 1993 - 2001
 0.25 cm/year [?]

 1993 - 2003
 0.28 cm/year [?]

 1993 - 2003
 0.31 cm/year [?] (based on [?])

Fedor Baart

2

Estimates and scenarios

Figure: Sea level rise, source IPCC

Fedor Baart

Estimates and scenarios

Absoluut

Relatief

Fedor Baart Probabilistic Design

Estimates and scenarios

Fedor Baart

Estimates and scenarios

Paintings

Sea level trends in Venice.

Using paintings as a source for sea level rise estimates.

Figure: Sea level rise (source: D. Camuffo 2010)

the Dutch coast		Alternative approach: respond
Outline		

1 the Dutch coast

2 the 1/10000 storm

3 sea level rise

4 Alternative approach: respond

・ロト ・聞 ・ ・ 画 ト ・ 画 ト ・ 回 ト ・ の へ の

Fedor Baart

Operational modelling

Forecasts

Predicting coastal changes 3 days ahead.

Figure: Operational model for coastal morphology (Baart et al 2009)

Fedor Baart Probabilistic Design

Operational modelling

Forecasts

Improvements to several aspects of the operational coastal morphological model.

Figure: Improvements to several aspects of the operational coastal morphological model.

Improving the coverage

From local empirical model (applicable to 60%) to a general numerical model (applicable to 90%)

Figure: Duros 1D model versus XBeach 2D model, http://www.xbeach.org

Fedor Baart

Open Source models

Delft3D

Open source modules: FLOW, MOR, WAVE. XBeach

Figure: Delft3D simulation of Rhine rofi, source: De Boer, http://oss.deltares.nl

OpenEarth

Collaboration to share data model and tools.

Figure: Visualizations made with OpenEarthTools, http://www.openearth.eu

Fedor Baart

Fill your toolbox

Relevant tools

Python Good for scripting and programming, glue, numerics, plots.

- R Preferred language by statisticians.
- osgeo Set of open source GIS tools.

Figure: Application of programming scripting languages

Fedor Baart

Operational modelling

Figure: Forecasting water levels and currents nearshore and erosion

Figure: Swimmer simulator

э

< 日 > < 四 > < 三 > < 三 >

Fedor Baart

Response measures

Figure: Twee gebroeders, 1953

Figure: Research: Emergency measures Delfland, Walstra≣et al = ∽ ⊲ ⊲

Fedor Baart

Ensemble forecasts

Figure: Ensemble forecasts during the November 2007 storm

Probabilistic Design

Fedor Baart

the Dutch coast		Alternative approach: respond

Figure: XBeach model of Petten met hyperstorm (p < 1/10000).

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへで

Fedor Baart

References

P H A J M van Gelder.

Statistical methods for the risk-based design of civil structures.

PhD thesis, Delft University of Technology, January 2000.

J van Malde.

Historische stormvloedstanden.

Technical Report 2003.08.1, Agua Systems International, August 2003.