

Kickoff MSc Thesis O.C.P. Bots

Resuspension of fine sediments near a coral reef (Ras Ghanada), Case Khalifa Port - Abu Dhabi UAE

Khalifa Port Project Boskalis / (Hydronamic) / Deltares

TUD: Deltares:

Hydronamic

Prof. Dr. Ir. M.J.F. Stive ir. Arjen Luijendijk ir. Roderik Hoekstra Prof. Dr. Ir. Dano Roelvink (IHE) Ir. Fokko vd Goot Dr. Ir. Stefan Aarninkhof

Khalifa Project, where?

<u>98% of time:</u> Hs < 2m And windspeed < 6 Bft

Pred. wind and (highest) waves direction: N-E

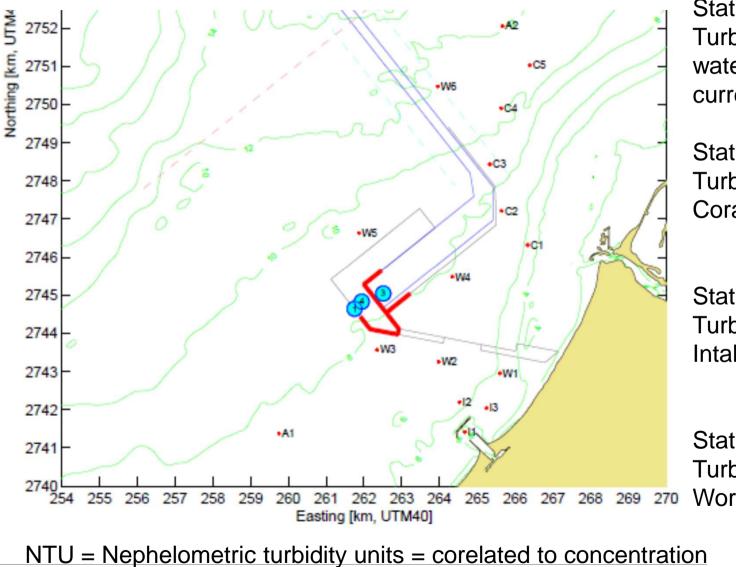
Tm0.1 < 5 sec

Shamal conditions:

Hs_max: 4.43m

Windspeed: 17.45 m/s

Period: October 2007 – January 2012



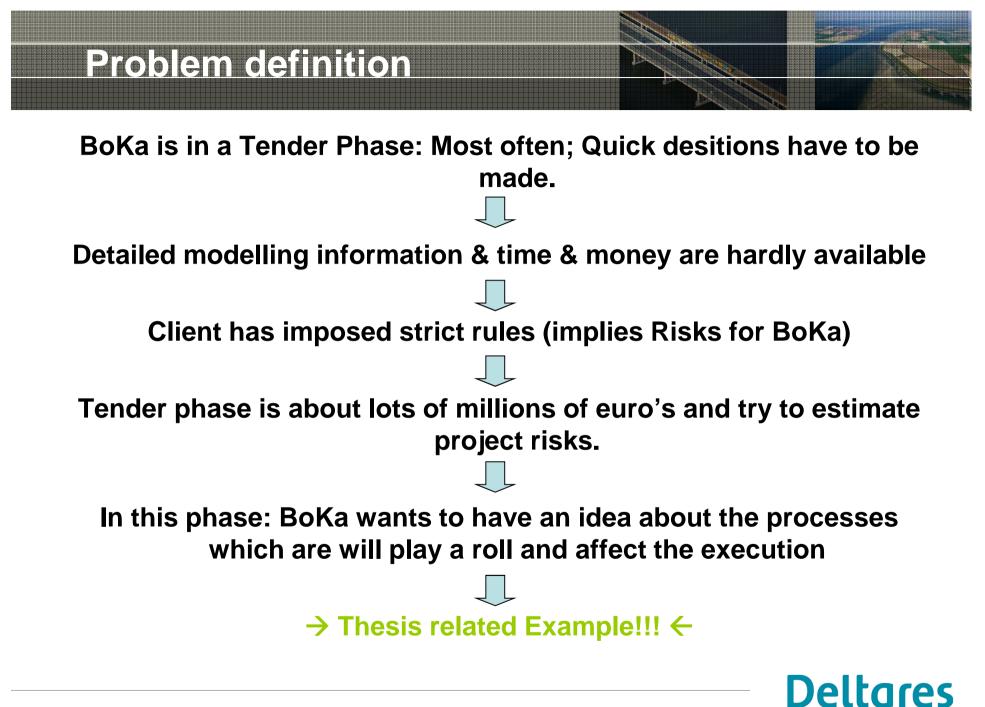
Khalifa Project = Unique project

Measurements at site, 14 fixed stations

Stations A1-A2 Turb limit: [-] water levels, waves, currents, temp.

Stations C1-C5 Turb limit: 10 NTU Coral reef

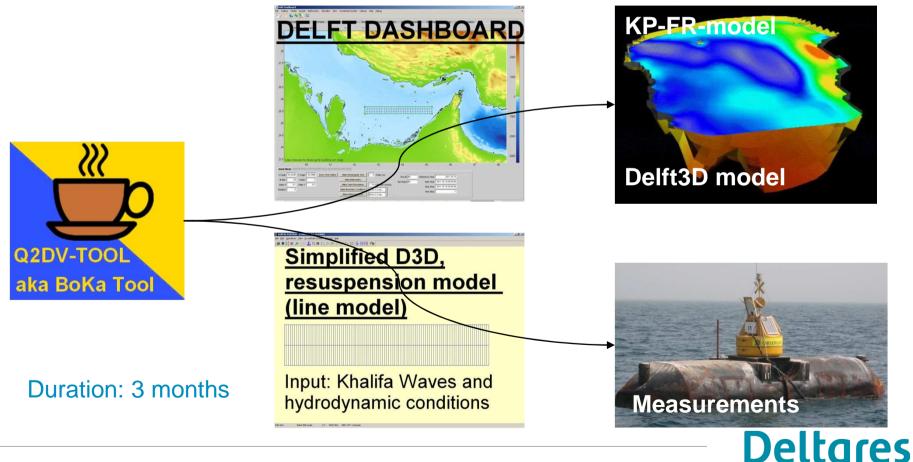
Station I1 - I3Turb limit 10 NTU Intake sea water


Stations W1 – W6 Turb limit 29 NTU Work area

Measuring characteristics

- Measuring frequency: 2 Hz, 24/7, during whole operation
- Monitoring of Pressure, Turbidity, Currents, Waves, Water temp.
- Data send to shore: averaged value of 1200 NTU measurements
- Result of exceeding NTU limits: stop execution at whole project
- Most of the time: cause of exceedance was outside KPMC's influence (KPMC = building consortium for Khalifa Port)
- Unique dataset!!!!

Goals for Thesis


Goals:

- 1. Study behaviour of fine sediment under the influence of natural circumstances and dredging activities.
- 2. Develop: BOKA-TOOL.
 - a. Develop Quasi2DV tool → Name: BoKa Tool
 - b. Validate Khalifa Port Delft3D; modified for resuspension of fine bed material
 - c. Test tool for different cases to test functionality and restrictions

Research questions 1 – Part of goal 2 (BoKa tool)

1. Is it possible to use a Q2DV tool assessment tool in the tender phase to get a better feeling for the resuspension behaviour of fine sediment during different conditions?

2. What are the driving forces that cause seabed material to resuspend?

Literature study /

Implement forcing if necessary into tool

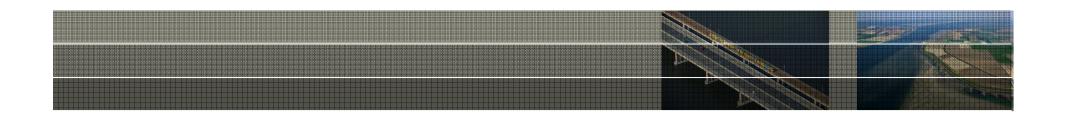
Research question 3 – part of goal 2 (BoKa tool)

3. What's the dynamic behaviour of a silt blanket on the bed?

Think of: When does deposition takes place? What is the influence of the initial concentration in suspension? Cohesive behaviour? Compaction/consolidation? Bed strength? Differential settling? Flocculation and deflocculation?


(Split up in 2 periods, total duration 1.5 - 2 months)

Research question 4 – 6. Part of Goal 1


- 4. How does a bed covered/build-up with a fine sediment fraction behave on a short time scale? With the effect on a short time scale is intended: what is the influence of a single representative storm condition on fine sediment deposited on the bottom? (flush system clean): Planned duration: 1 month
- 5. Does the build-up of the silt blanket during execution affect the resuspension behaviour of fine sediment? What silt-blanket-thicknesses deposited at the bed can be expected at different construction phases. What is the range of a silt blanket when being transported? Planned duration: 1 month
- 6. What is the dynamic behaviour of the fine sediment; a few years (so long term) after dredging activities have been completed? Can you still observe the impact of dredging activities from the presence of fine sediment on the bed after a few years after execution? Planned duration: 1 month

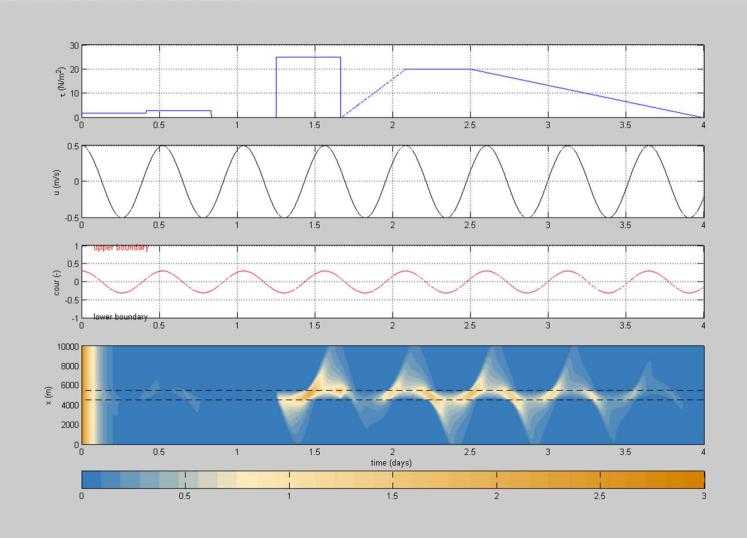
- Develop Q2DV tool
 - Research questions 1, 2, 3 (research question 3 has been split up in two parts, see planning)
- Do research on question 5
- If there is time: Do research on question 4
- Leave question 6 for another graduation study, perhaps combine with ecological landscaping (EcoShape)

END

1 januari 2008

Project phase vs. Models/tools

<u>₽</u>			-	
Overview project	Q2DV tool – model	U,V (2DH) –	Stripped Delft3D	Full Delft3D model
phase vs. tools	along a single	(Spatial model)	(short run, simple	or equivalent like
	trajectory, depth		input). For	Mike21 from DHI
	averaged		example Delft-	
	information		Dash-Board.	
Project		-	+/-	++
development				
phase				
Tender	++	+	+/-	
Project preparation	+/-	+	+	++
phase (tendering				
stage won)				
Execution phase				
(to solve semi-				
short term				
problems)				
Operational phase				++
(long term)				
++ (very well applicable), + (well applicable), +/- (applicable in some occasions), - (not recommended),				
(not applicable at all)				
Decision may depend on factors like: available time and money, available data for input, accuracy of				
obtained results,				



-

Q2DV tool (a.k.a. BOKA-TOOL)

Figure 3 Ele Edit View Insert Iools Desktop Window Help

es

- 🛛 🗙

Simplified Delft3D model – forced with KP_data

Why use a simplified D3D model?

• To check output of tool in 'tool development phase' assuming simple model is correct.

Full KP-Delft3D model vs. Simplified D3D line-model

• Simple check for a 'simple' tool, instead of complex check for a simple tool.

DELFT DASHBOARD (Based on Delft3D)

Can be used in two ways:

- To check output of tool in 'tool development phase' → DDB has same purpose as self created simplified D3D tool.
- 2. Once tool is finished: To have better input for tool, think of.....
- Bathymetry
- Bed Shear stress
- Tidal variation

Full Delft3D model: name: KP-FR-model Task: adjust for resuspension

Khalifa model <u>already used for</u>:

- Wave modelling
- Hydrodynamic modelling
- Suspended sediment studies
- Sediment transport and coastline evolution
- Water quality assessment
- Assessments on site

------ and can be used for...

- Checking tool accuraccy
- Answering research question on resuspension topics

Possible Test Cases:

- a. Transport of sediment deposition along approach channel Khalifa Port (real life problem).
- b. Case to prove hypothesis that current is not the main driver behind resuspension.
- c. Case at different trajectories offshore to prove the behaviour at different depth.
- d. A run near a complex geometry to test the functionality and get insight into the tool's restrictions.

