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ABSTRACT 
 
 
In this paper, the three-dimensional (3D) computer code MOC3D (Konikow et al., 1996) is adapted for 
density differences: MOCDENS3D. As a result, it is possible to simulate transient groundwater flow in 
large-scale 3D hydrogeologic systems where non-uniform density distributions occur. The groundwater 
flow equation is solved by a module which is in fact the MODFLOW computer code. Density differences 
are taken into account through adding buoyancy terms to the right-hand-side-term of the basic equation of 
MODFLOW. The advection-dispersion equation is solved by the MOC module, using the method of 
characteristics. An advantage of applying the method of characteristics is that the condition of spatial 
discretisation, characterised by the so-called grid Peclet number, is not strict. As a consequence, the 
displacement of fresh, brackish and saline groundwater in large-scale 3D hydrogeologic systems can 
easily be simulated without severe numerical implications such as non-convergence as well as heavy 
over- and undershooting. In this paper, the evolution of a freshwater lens in a phreatic aquifer is shortly 
discussed. 
 
 
INTRODUCTION 
 
Developments in the field of computer codes for simulating 3D density dependent groundwater are 
advancing rapidly. Several 3D codes, such as HST3D (Kipp, 1986), SWICHA (Huyakorn et al., 1987), 
METROPOL (Sauter, 1987), SWIFT (Ward, 1991), FEFLOW (Diersch, 1994), are already capable of 
simulating complex geometries, whereas other codes are in a (final) testing phase such as MVAEM1 
(Strack, 1995) and FAST-C 3D (Holzbecher). Nevertheless, there are still some substantial restrictions. 
For instance, when geometries are large-scaled, viz. at least several tens to hundreds of square kilometres 
by a few hundreds metres depth, sophisticated hardware such as a UNIX background and many tens to 
hundreds of Mb’s EM RAM2 is required to cope with the enormous number of elements. Moreover, there 
is the perpetual data availability problem, since 3D modelling needs a large amount of data sets for 
calibration and verification whereas reliable data sets are in practice rare. As such, it has to be accepted 

                                                           
1 Note that the code MVAEM neglects the process of hydrodynamic dispersion, as only advection is taken into 
account. This is probably not allowed when large time periods are considered or when groundwater velocities are 
substantial (e.g. in case of high extraction rates of groundwater). 
2 EM RAM stands for Extended Memory Random Excess  Memory. 
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that data collection (even intensified substantially) will always lag behind the developments in computer 
possibilities (Oude Essink & Boekelman, 1996). 
In this paper, a new computer code for three-dimensional density dependent groundwater is presented, 
which is based on the computer code MOC3D (Konikow et al., 1996). Note that the Testing and Research 
Institute of the Netherlands Waterworks (KIWA) is simultaneously developing a combination of 
MODFLOW (adapted for density differences) and the solute transport code MT3D96 (Schaars, 1996; 
Van Gerven & Schaars, 1998, see this 15th SWIM). It is relatively easy to adapt MOC3D, from now on 
called MOCDENS3D, in order to model transient 3D density dependent groundwater flow. An important 
feature of this code is that it can model large-scale geometries by using coarse elements without causing 
severe numerical implications. In this set-up, also hydrodynamic dispersion is taken into account. The 
code is capable to simulate transient groundwater flow of fresh, brackish and saline groundwater in the 
coastal areas where non-uniform density distributions occur. Possible applications are simulating the 
effect on salt water intrusion into coastal aquifers of natural processes (e.g. sea level rise) or human 
activities. Examples of human activities are land reclamation, groundwater extractions in favour of 
drinking water supply and lowering of phreatic levels due to land-subsidence. Note that, in addition, 
normal computations can still be executed with ‘ordinary’ solute transport and no density differences, 
such as the displacement of contaminations through the subsoil. 
In the paper the most important features of MOCDENS3D are shortly discussed. In addition, the basic 
finite difference equation of the MODFLOW module, adapted for density differences, is derived by 
applying so-called freshwater heads. A problem on the evolution of a freshwater lens, schematised by a 
sharp interface between fresh and saline groundwater, is shortly discussed. Finally, some conclusions are 
drawn. 
 
CHARACTERISTICS OF MOCDENS3D 
 
MOCDENS3D (in total some 15000 FORTRAN lines including remarks), which is in fact MOC3D 
(Konikow et al., 1996) but now adapted for density differences, consists of two robust modules which are 
fully integrated with each other: (a) a solute transport module, here called the MOC module3, to displace 
the density field (originally, this module was applied to simulate ordinary solute transport); and (b) a 
groundwater flow module, here called the MODFLOW module4, adapted for density differences to 
compute transient density dependent groundwater flow. This is possible by inserting a so-called buoyancy 
term in the basic equation of the MODFLOW module, a relatively simple adaptation as can be seen in the 
following section. The velocity field distribution is derived from the computed freshwater head 
distribution. Subsequently, the velocity field is used in the MOC module to model changes in density 
field. As such, the two modules are coupled with each other. Some characteristics of MOCDENS3D are: 
• MOCDENS3D is one computer code which solves the groundwater flow as well as the solute 

transport equation, 
• the code takes into account hydrodynamic dispersion (molecular diffusion as well as mechanical 

dispersion) and chemical reactions such as adsorption (by means of a retardation factor) and 
radioactive decay, 

• solute transport is modelled through splitting up the advection-dispersion equation into two 
components: (a) an advective component which is solved by means of a particle tracking technique 
(the so-called Method Of Characteristics: MOC), and (b) a dispersive component which is solved by 
the finite difference method. Due to the splitting up, numerical dispersion can be kept within bounds, 
even if coarse elements and small longitudinal dispersivities are used (Oude Essink & Boekelman, 

                                                           
3 MOC3D (Konikow, Goode & Hornberger, 1996), version 1.1 of  May 1997, is the 3D successor of MOC 
(Konikow and Bredehoeft, 1978). 
4 The MODFLOW module is just MODFLOW-96 (McDonald and Harbaugh, 1988; Harbaugh and McDonald, 
1996), version 3.0 of December 1996, but now fully integrated in MOC3D. 

 3



Proceeding SWIM 15, Ghent, Belgium, 1998.                                Natuurwet. Tijdschr., vol. 79 (1999), p. 69-79. 

1996). As such, numerical problems don’t occur when elements are measured e.g. 250*250*10 m in 
combination with a longitudinal dispersivity of αL=1 m. Especially in this characteristic 
MOCDENS3D differs from codes which solve the partial differential equations with the standard 
finite element or finite difference methods. With these methods, severe numerical implications can 
occur when the spatial discretisation condition is not met. This spatial discretisation condition is 
characterized by the so-called grid Peclet number5 (Frind & Pinder, 1982; Daus et al., 1985; 
Kinzelbach, 1987; Oude Essink & Boekelman, 1996). 

• the variation of the pore volume of the elements should be relative small, as otherwise the demand of 
mass conservation of solute is violated too much6. This numerical characteristic is related to the 
particle tracking technique; as a matter of fact, the 3D solute transport code MT3D (Zheng, 1990) 
suffers the same problem. In this paper, the applied version of MOCDENS3D uses a uniform7 grid. 

• though numerical dispersion is limited, deviations in the mass balance of solute transport still occur. 
A difference between the initial mass (in the appearance of the concentration distribution) and the 
mass after a large number of particle displacements can arise, in particular when discretisation of the 
elements is coarse and/or when time steps are large. 

 
ADAPTATION OF THE MODFLOW MODULE FOR DENSITY DIFFERENCES 
 
The discretised continuity equation for a uniform grid in MODFLOW is as follows (McDonald & 
Harbaugh, 1988): 

Qi Ss
 h
 t

V� = ∆
∆

∆         (1) 

Rewriting this equation in MODFLOW terms, using the six volume flows Qi, gives (see the description of 
the symbols at the end of the paper): 
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m CRi j khi j k
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          (2) 
The attention is focused in the vertical volume flow in element i,j,k, see figure 1. First the basic vertical 
Darcian velocity (specific discharge) is defined as follows (note that the z-axis is pointing downward, as 
used in MODFLOW): 

 qz
z  p

 z
g= − − �
�
�

�

�
�

κ
µ

∂
∂

ρ        (3) 

                                                           
5 The grid Peclet number Penum is defined as v∆x/Dh, where v=effective velocity [L T-1], ∆x=characteristic length of 
the element [L] and Dh= hydrodynamic dispersion [L2 T-1]. At great grid Peclet numbers, e.g. Penum>10 (in theory 
>2), standard finite element and finite difference methods can cause severe numerical problems, such as non 
convergence of the solution of the groundwater flow equation, unacceptable numerical dispersion and over- and 
undershooting of the solute concentration values. Great grid Peclet numbers especially occurs in case of coarse 
discretisation of large-scale hydrogeologic systems in combination with small longitudinal dispersivities. 
6 As a matter as fact, the density dependent groundwater flow equation in the MODFLOW module could be 
discretised for elements with a variable pore volume by taking into account density differences in horizontal direction 
(see e.g. Olsthoorn, 1996). However, elements in the MOC module are considered to be uniform. Therefore, 
adaptation of density differences in horizontal direction is unnecessary and, as such, not applicable. 
7 The length of the element in column direction can differ from the length of the element in row direction. 
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Under normal conditions, MODFLOW applies piezometric heads. However, here so-called freshwater 
heads8 are used because density differences are taken into account. Introduction of this freshwater head hf 
gives (z-axis is pointing downward): 

hf
p

f g
z= −

ρ
        (4) 

Inserting of eq. (4) in eq. (3) gives:  

             qz
 hf
 z

f= − −
− �

�

�
�

�

�

�
�

κ ρ

µ

∂

∂

ρ ρ

ρ
z f g

f
       (5) 

In many cases small viscosity differences can be neglected if density differences are considered in normal 
hydrogeologic systems (Verruijt, 1980; Bear & Verruijt, 1987). Equation (5) can then be written as9: 

qz kz
 hf
 z

f= − −
− �

�
��

�

�
�
�

∂
∂

ρ ρ
ρf

       (6) 

where kz=κzρfg /µ=hydraulic conductivity for fresh water and (ρ−ρ f) /ρf=the so-called buoyancy term. 
Discretisation of this buoyancy term, which is required in the MODFLOW module, gives (see figure 1b): 
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Figure 1: MODFLOW elements with corresponding density terms. 
 
The MOC module relates the density ρi,j,k to the solute concentration Ci,j,k in groundwater for each element 
through the equation of state: 

ρ ρ
ρ ρ

ρi, j,k
s f= +

− �

�
��

�

�

�
�f

f

Ci j k
Cs

1 , ,      or    ρ ρ    (8) βi, j,k = +f Ci j k( , , )1

                                                           
8 Definition: fictive piezometric head as will be measured when the observation well is filled with fresh groundwater instead of 
saline or brackish. 
9 Note that in cases with high groundwater densities, such as simulating brine groundwater in salt domes with densities up to  
1200 kg/m3, MOCDENS3D should apply eq. (5) instead of eq. (6). In some cases even more sophisticated codes such as 
METROPOL should be used. 
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where Ci,j,k=solute concentration in groundwater in element i,j,k (in mg TDS/l); Cs=reference solute 
concentration in saline groundwater (e.g. 35000 mg TDS/l); β=coefficient of compositional expansion 
(e.g.=0.025/35000=7.14≅ 10-7 l/mg TDS). Rewriting eq. (6) in discretised terms of the MODFLOW 
module and using eq. (7) gives for the flow at the top of element i,j,k: 

qi, j,k-1/2 KVi, j,k-1/2
hf,i, j,k hf,i, j,k-1

vk-1/2
= −

−
− −

�

�
�
�

�

�

�
� ∆

BUOYi j k, , 1    (9) 

and for the flow at the bottom of element i,j,k: 

qi, j,k+1/2 KVi, j,k+1/2
hf,i, j,k+1 hf,i, j,k

vk+1/2
= +

−
−

�

�
�
�

�

�

�
� ∆

BUOYi j k, ,    (10) 

 
The vertical Darcian velocity q is multiplied by the area ∆rj ∆ci to derive the volume flow Q. By using the 
so-called conductance value in vertical direction, CVi,j,k-1/2 = KVi,j,k-1/2 ∆rj ∆ci / ∆vk-1/2 (McDonald and 
Harbaugh, 1988), eq. (9) becomes: 

)Qi, j,k-1/2 CVi, j,k-1/2 hf,i, j,k-1 hf,i, j,k vk-1/2= + − + −
�
�
� BUOYi j k, , 1∆    (11) 

Similar for eq. (10): 

Qi,j,k+1/2 CVi,j,k+1/2 hf,i,j,k+1 hf,i,j,k vk+1/2= + − − �
�
��

�
� BUOYi j k, , ∆    (12) 

As can be seen, in Qi,j,k-1/2 the density contribution is positive (+CVi,j,k-1/2BUOYi,j,k-1∆vk-1/2) and in Qi,j,k+1/2 
negative (−CVi,j,k+1/2BUOYi,j,k ∆vk+1/2). This is because the direction of flow at the bottom of element i,j,k 
Qi,j,k+1/2 is the opposite to the direction of the z-axis and the gravity. In the MOC module the thicknesses 
THCKi,j,k of all elements in the grid are known: consequently, ∆vk-1/2 and ∆vk+1/2 can be rewritten as 
(THCKi,j,k-1+THCKi,j,k)/2 and (THCKi,j,k+THCKi,j,k+1)/2, respectively (figure 1b). 
Summarizing, three adaptations are necessary to make MOC3D suitable for density dependent 
groundwater flow: 
a. subtract for each time the groundwater flow equation is solved the two buoyancy terms of eq. (11) 

and (12) from the right hand side term RHSi,j,k in eq. (2) of the MODFLOW module for each 
element: 

  
RHSi j k

new RHSi j k
old CVi j k BUOYi j k THCKi j k TCHKi j k

CVi j k BUOYi j k THCKi j k THCKi j k

, , , , , , / , , ( , , , , ) /

, , / , , ( , , , , ) /

� − − − − +

+ + + +

1 2 1 1 2

1 2 1 2

          (13) 
b.       add the two buoyancy terms of eq. (11) and (12) to the volume flows Qi,j,k-1/2 and Qi,j,k+1/2 

respectively. These flows are used in the MOC module to model solute transport by means of 
particle tracking: 

Qi, j,k-1/2
new Qi, j,k-1/2

old CVi, j,k-1/2� + − − +BUOYi j k THCKi j k TCHKi j k, , ( , , , , ) /1 1 2  

Qi, j,k+1/2
new Qi, j,k+1/2

old CVi, j,k+1/2� − + +BUOYi j k THCKi j k TCHKi j k, , ( , , , , ) /1 2  (14) 

 
c.        transform piezometric heads h to freshwater heads hf: 

hi, j,k � hf i j k, , ,         (15) 

As a matter of fact, these adaptations have already been executed by Lebbe (1983) for the 2D solute 
transport model MOC (Konikow & Bredehoeft, 1978). Note again that hf has become a fictive freshwater 
head as density is taken into account. Therefore, streamlines (or velocity vectors) are not perpendicular to 
the freshwater head contour lines. However, in hydrogeologic systems with ordinary fresh groundwater 
nothing changes with respect to the original MODFLOW computations. 
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SIZE OF THE TIME STEP ∆t 
 
In case of groundwater with variable densities, the velocity field depends on the density distribution 
through the freshwater head distribution. When fresh, brackish and saline groundwater displace, the 
density distribution changes accordingly. After a while, the freshwater head distribution and velocity field 
should be computed once again, as otherwise the velocity field does not correspond with the current 
density distribution. Consequently, the size of the time step ∆t for the groundwater flow equation should 
be known, since it determines how often the velocity field is computed again. Therefore, it is important to 
determine the size of the time step ∆t. This size depends on the pace of the solute process involved as a 
large time step could cause an unrealistic solution. For instance, the time step ∆t in large-scale 
hydrogeologic systems in coastal dune areas can be in the order of (several) years (Lebbe, 1983; Oude 
Essink, 1996), whereas near severe groundwater extractions the density distribution can change so fast 
that a smaller time step is needed (in the order of months). In MOCDENS3D, the size of the time step is 
manually determined. The so-called CFL (Courant-Friedrichs-Lewy) condition, which is applied by the 
MOC module for solute transport as a stability criterion, could be utilized to estimate an acceptable size 
of the time step for the groundwater flow equation. The size of the time step is determined on the basis of 
experience and/or through trial-and-error (e.g. by means of several test computations: when the density 
distribution changes rapidly, smaller time steps are required). 
 
BENCHMARK PROBLEMS WITH MOCDENS3D 
 
In fact, a transient 3D density dependent groundwater flow benchmark problem is needed to validate the 
computer code MOCDENS3D correctly. Unfortunately, a 3D analytical solution, where transport of salt 
by means of advection and hydrodynamic dispersion is taken into account, is not (yet) available. It used to 
be common practice to apply Henry’s problem (2D) as a benchmark for groundwater codes which 
simulate sea water intrusion in coastal aquifers (Henry, 1964). However, it appeared that Henry’s 
analytical solution is not accurate10 (Segol, 1994). If, however, the benchmark is reduced to a sharp 
interface between fresh and saline groundwater, then quite a few solutions do exist, such as the upconing 
problem of Bear & Dagan (1964), sharp interface problems in unconfined, confined and semi-confined 
situations (e.g. Van Dam, 1983) as well as the stationary vertical sharp interface of Verruijt (1980). Note 
that MOCDENS3D has already been tested for the vertical sharp interface of Verruijt as well as for a 
fingering problem (Oude Essink, 1998). 
In conclusion, analytical benchmark problems for density dependent groundwater flow are scare. 
However, some interesting analytical solutions exist in the field of heat transport in porous media (e.g. 
Turcotte & Schubert, 1982). As the partial differential equations of solute transport and heat transport are 
analogous, analytical solutions available in heat transport could be transformed to solute transport 
problems. An interesting case is convection of heat in porous media (e.g. Nield, 1968; Scheidegger, 1974; 
Nield & Bejan, 1992). In this situation, the so-called onset of convection in a porous medium in a 
conductive environment can be determined analytically, making use of a so-called Rayleigh number11 Ra. 
For instance, for a case infinite in horizontal direction, isothermal in terms of heat transport (viz. no heat 

                                                           
10 This can be is deduced from the fact that no numerical method has succeeded in duplicating Henry's steady state solution: the 
analytical solution and the numeric computations always deviate from each other. 
11 The Rayleigh number Ra is equal to: Ra=ραfκgL∆T/µλ, where ρ=density of  groundwater (kg m-3); αf=coefficient of thermal 
expansion (oC-1); κ=permeability (m2); g=gravity (m s-2) L=thickness of the layer; ∆T=temperature difference between top and 
bottom layer (oC); µ=dynamic viscosity (kg m-1 s-1); λ=thermal diffusivity (m2 s-1)=κe/ρ’c’, where κe=effective thermal 
conductivity (J m-1 s-1 oC-1) and ρ’c’=effective heat capacity (J m-3 oC-1). 
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flux) as well as impermeable in terms of groundwater at the top and bottom of the system, the onset of 
convection will occur when Ra>4π2. Subsequently, convection cells will evolve. 
Not really analytical benchmarks, but often applied, are numerical solutions derived in the theory of heat 
transport in porous media. A famous example is Elders fingering problem (1967). He investigated natural 
(thermal) convection purely driven by fluid density differences, numerically as well as experimentally. 
His results were transformed to solute transport in porous media, e.g. by Voss & Souza (1987). 
 
EVOLUTION OF A SHARP INTERFACE IN A PHREATIC AQUIFER 
 
In this paper, a transient sharp interface between fresh and saline groundwater in a one-dimensional 
phreatic aquifer is used as a ‘benchmark’. An analytical solution is derived by Boekelman (1998). He 
considered an elongated island or strip of sand-dunes with a freshwater lens evolving due to natural 
groundwater recharge (see figure 2a). 
 
 

             
 
 
 
Figure 2: a. The sharp interface at an elongated island; b. Schematic representation of the problem. 
 
The governing equations for this situation are: 

Badon - Ghijben Herzberg:    hf = αH       (16) 

Darcy:                                     q
 hf

x
= − +k H hf( )

∂

∂
     (17) 

Continuity:                             q
x

H
t

hf
t

∂
∂

∂
∂

∂

∂
= − −f n n     (18) 

Note that in eq.(18) two transient terms are considered. Combination of these three equations gives: 

                                              n  H
 t

 f 2

 x2
2 2

1

2

k kα
∂
∂ α α

∂

∂
=

+
+

( )
H     (19) 

This is not a linear differential equation. Hence, the equation cannot be solved analytically. However, an 
approximate solution is possible if is assumed that at each moment the shape of the lens is conformable to 
the shape of the lens in the steady-state situation (t64). If so, the only difference is a time dependent factor 
F(t). This results in eq. (20): 

                                              H(x, t) =  F(t) f(0.25 B2 - x2 )
k α α( )1 +

    (20) 
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                                              for  t = :   F(t) = 1∞      (21) 
                                              for  t = 0:    F(t) = 0      (22) 

Eq. (20) is combined with eq. (19) to find the best solution, after which the differential equation is 
integrated from x=0 to x=0.5B. As a consequence, a solution for F(t) can be found which satisfies the 
differential equation on an average. This leads to the following formula for F(t) (Boekelman, 1998): 

(                                              F(t) = tanh t / τ)      (23) 

                              where:      = n B  
k f

τ π
α8

1( + α)

τ

     (24) 

The factor τ is a time constant (unit T) which contains the characteristics of the geometry. For instance, 
for t=3τ, tanh(t/τ)=0.995.1. This implies that at t=3τ, the shape of the freshwater lens has nearly reached 
the steady-state situation. Boekelman also derived formulas for the specific discharge q and the growth of 
the freshwater lens. In addition, a similar derivation is given for the axial-symmetric situation 
(Boekelman, 1998).  
Based on the thickness of the freshwater lens H, the volume of the lens can be determined: 

                                              V(t) = f B  tanh (t /τ )      (25) 
The steady-state volume of the freshwater lens (at t64) is equal to: 

                                              V = f B n B  
2

∞ = +τ π
α8

1f
k

( α)     (26) 

This formula obviously corresponds with the straight formula based on the form of the lens which is an 
ellipse: V4=π/4 n (1+α) Hmax B, where Hmax=maximum depth of the freshwater lens (m). The following 
parameter set is assumed in this case (figure 2b): α=0.025, B=4000 m, f=0.36 m/yr, k=20 m/day, n=0.35 
and Dmol=0 m2/s, αL=αΤΗ=αΤV=0 m (no hydrodynamic dispersion). With these values, Hmax=87.7 m, the 
time constant τ equals 25073 days or 68.6 years and V4=98.85≅ 103 m3. For the numerical computations 
the following parameters are applied: 16 particles per element and the convergence criterion for the 
groundwater flow equation (freshwater head) is equal to 10-8 metre. The total simulation time is 400 
years. Two sets of discretisation is considered: a) 100 by 15 elements: ∆x=100 m by ∆z=10 m, ∆t=0.25 
yr; and b) 200 by 30 elements: ∆x=50 m by ∆z=5 m, ∆t=0.125 yr (decreased to obey the Courant 
condition). At the initial situation, the aquifer contains only saline groundwater. Figure 3 gives the 
evolution of the freshwater lens at six moments in time. As can be seen, the numerical result corresponds 
with the analytical solution. In addition, numerical dispersion causes brackish elements. In figure 4, the 
increase in volume of the freshwater lens can be seen. Note that in this comparison, the volume of the 
freshwater lens derived by the phreatic part hf is also taken into account as in the numerical situation the 
total flux f (=natural groundwater recharge) is inserted in the aquifer.  
As can be seen, the numerical results approach the analytical solution, though they don’t really exactly 
match each other. This is caused by various reasons. First of all, the analytical solution suggests a one-
dimensional aquifer where vertical groundwater flow is neglected, whereas MOCDENS3D simulates a 
two-dimensional situation with vertical groundwater velocities. This implies that in the numerical 
computations the outflow of fresh groundwater, equal to 0.5Bf at each side, has to exit the aquifer at 
x=0.5B with very high vertical velocities. This problem of the outflow of fresh groundwater is not 
considered in the analytical situation (Glover (1959) suggested to apply a so-called outflow width equal 
to 0.25Bf/αk). Secondly, elements with brackish groundwater are created due to numerical dispersion of 
the computer code. As such, the number of elements with strictly fresh groundwater decreases, whereas 
the number of elements with brackish groundwater increases. As a consequence, groundwater near the 
interface is flowing different than it does in the analytical situation. Finally, it should be noted that 
smaller elements increase the match, especially near the steady-state situation (compare 200*30 with 
100*15 elements).  
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Figure 3: Evolution of the freshwater lens: transient sharp interface between fresh and saline 
groundwater for the case with 100*15 elements. 
 
CONCLUSIONS 
 
MOCDENS3D can be used to model transient three-dimensional density dependent groundwater flow. 
The adaptation of the groundwater flow equation of the MODFLOW module is relatively simple. 
 
FUTURE DEVELOPMENTS 
 
Recent developments in the groundwater flow module MODFLOW are impressive. For instance, already 
quite a few pre- and postprocessors are available (e.g. Visual MODFLOW, PMWIN, Argus ONE, GMS 
and Groundwater Vistas). In addition, a large number of packages and modules, besides MOC3D and 
MT3D96, circulate which are compatible with MODFLOW and which can simulate processes related to 
groundwater, such as MODFLOWT (solute transport), RT3D and BIOMOD 3D (multi-component 
transport), COMPACTION (compaction of sediments) and MODUFLOW (coupling MODFLOW and 
DUFLOW). Combination of MODFLOW and these packages and modules will create possibilities to 
model complex problems in the (near) future. 
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Figure 4: Evolution of the volume of the freshwater lens. The volume is determined by the decrease in 
solute mass in the total aquifer system: fresh groundwater has a (suggested) concentration equal to 0 TDS 
mg/l whereas for saline groundwater c=35000 TDS mg/l. 
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COMPUTER ANIMATION OF THE EVOLUTION OF THE FRESHWATERLENS 
 
It is possible to download animations of the evolution of the freshwater lens from the following ftp-site: 
‘ftp://ftp.geo.uu.nl/pub/people/goe’. In addition, the web-site ‘http://www.geo.uu.nl/~goe/’ can be visited 
for more information on other research activities of Gualbert Oude Essink. 
 
LIST OF SYMBOLS 
B              = width of the sand-dune area [L] 
Ci,j,k               = solute concentration in groundwater in element i,j,k in mg TDS/l [M L-3] 
Cs             = reference solute concentration in saline groundwater: e.g. 35000 mg TDS/l [M L-3] 
CVi,j,k-1/2   = MODFLOW term: vertical conductance between the elements i,j,k-1 and i,j,k [L2 T-1] 
Dmol          = molecular diffusion [L2 T-1] 
f              = natural groundwater recharge [L T-1] 
g               = gravity [L T-2] 
H              = thickness of the freshwater lens [L] 
Hmax = maximum depth of the freshwater lens at x=0 metre [L] 
hf              = freshwater head [L] 
KVi,j,k-1/2  = MODFLOW term: vertical hydraulic conductivity between the elements i,j,k-1 and i,j,k [L T-1] 
k             = hydraulic conductivity in sand-dune area [L T-1] 
kz             = hydraulic conductivity in vertical direction [L T-1] 
n              = porosity [-] 
p              = pressure [M L-1 T-2] 
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RHSi,j,k    = term in the basic equation of MODFLOW for element i,j,k, consisting of terms independent to  
                  the freshwater head hf, such as sources and sinks. In case of density dependent computations 
               the buoyancy terms are added to this term [L3 T-1] 
Rf = retardation factor [-] 
qz = vertical Darcian velocity (or vertical specific discharge) [L T-1] 
v = effective velocity [L T-1] 
TDS = total dissolved solutes: concentration of dissolved solutes in groundwater in mg/l [M L-3] 
BUOYi,j,k = buoyancy term, the relative density difference between the elements i,j,k and i,j,k+1 [-] 
z = elevation head (z-axis is pointing vertically downward) [L] 
α = relative density difference=(ρs −ρf)/ρf [-] 
αL = longitudinal dispersivity [L] 
αΤΗ,αΤV = transversal dispersivity, resp. horizontal and vertical [L] 
β = coefficient of compositional expansion: e.g. 7.14≅ 10-7 l/mg TDS [L3 M-1] 
∆ci = length of element i,j,k in column direction [L] 
∆rj = width of element i,j,k in row direction [L] 
∆t = length of the time step to compute again the groundwater flow equation [T] 
∆vk-1/2       = thickness of element i,j,k in layer direction [L] 
κz             = intrinsic permeability in vertical direction [L2] 
µ              = dynamic viscosity [M L-1 T-1] 
ρi,j,k           = density of groundwater in element i,j,k [M L-3] 
ρf              = density of fresh groundwater: 1000 kg/m3  
ρs              = density of saline groundwater: 1025 kg/m3 
τ               = time constant [T] 
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