

Assimilation of Sea Surface Temperature in the MARS 3D regional modelling system using Ensemble Kalman Filtering

C. Heyraud, S. Raynaud

P. Craneguy

F. Dumas, G. Charria

- Actimar

- Acri-ST

- Ifremer

Jonsmod -- 21/05/2012 Brest

ACTIMAR - 36, quai de la Douane - F 29200 Brest - +33 (0)298 44 24 51

www.actimar.fr

CONTEXT: PREVIMER

PREVIMER <u>www.previmer.org</u>

French Coastal Operational forecasting System

- MARS-3D (4km res./30 levels)
- Model Performance
 - Satellite Surface temperature (SST) / buoys (stratification)

Mean Innovation[°C] – July 2006

PREVIMER <u>www.previmer.org</u>

French Coastal Operational forecasting System

- MARS-3D
- Model Performance
 - Satellite Surface temperature (SST) / buoys (stratification)
 - » Too weak stratification

Summer 2003: all profiles in sub-region

PREVIMER <u>www.previmer.org</u>

French Coastal Operational forecasting System

- MARS-3D
- Model Performance
 - Satellite Surface temperature (SST) / buoys (stratification)

Data assimilation (R&D)

 Improve model SST and stratification predictions over the Channel/Biscay shelf using satellite derived surface temperature

Summer 2003: all profiles in sub-region

CONTEXT: Sequential Data Assimilation

- Ensemble Kalman Filter
 - Sequential data assimilation, multivariate approach
 - Adapted to non stationary/non linear environment

- Ensemble forecast errors
 - Sources
 - Characterization
- Data assimilation experiments
 - Framework
 - Results
 - SST
 - Stratification
- Conclusions

- Ensemble forecast assessment: error sources
 - Model Forcing
 - Initial Conditions

Forecast Error Characterization

- Ensemble forecast assessment: error sources
 - Model Forcing
 - Initial Conditions
 - Meteorological forcing (Wind Stress, thermal fluxes)
 50 members from ECMWF (12h, 0.5°x0.5°)

Forecast Error Characterization

• Ensemble forecast assessment: error sources

- Model Forcing
 - Initial Conditions
 - Meteorological forcing (Wind Stress, thermal fluxes)
 50 members from ECMWF (12h, 0.5°x0.5°)
- Internal parameters
 - General sensitivity study (Friedrich, 2001)
 - Seasonal scale
 - Hydrological interesting areas
 - Ψ +/- 10% Ψ

Forecast Error Characterization

Ensemble forecast assessment: error sources

- Model Forcing
 - Initial Conditions
 - Meteorological forcing (Wind Stress, thermal fluxes)
 50 members from ECMWF (12h, 0.5°x0.5°)
- Internal parameters
 - General sensitivity study (Friedrich, 2001)

SST Difference de SST due to turbulence parameter increase (ck+10%) (Gaspar)

SST Difference de SST due to bottom friction coefficient increase (z0+10%)

Forecast Error Characterization

Ensemble forecast assessment: error sources

- Model Forcing
 - Initial Conditions
 - Meteorological forcing (Wind Stress, thermal fluxes)
 50 members from ECMWF (12h, 0.5°x0.5°)
- Internal parameters
 - General sensitivity study (Friedrich, 2001)
 - *Turbulence parameter* (Gaspar et al., 1990)
 - Light extinction coefficient (2D, rx=ry=50km)
 - Bottom friction coefficient (uniform)
 - Lateral viscosity coefficient
 - Non correlated error sources: $\Psi = \Psi \mathbf{0} + \mathbf{d}\Psi$, $\mathbf{d}\Psi \sim \mathbf{N}$ (0, σ^2)

Forecast Error Characterization

• Ensemble forecast characterization (summer)

- Statistic consistency
 - Ensemble SST variance generation in max-error areas (Basque, West Manche Channel, shelf break ...) → Ensemble adequate to represent forecast model error
 - Lack of pertinent error sources remain in some areas (North Brittany coastline)

Ensemble forecast characterization

Recovering

• Ensemble forecast characterization

- Correlations
 - Non stationary
 - Scales
 - Localization

Ensemble forecast characterization

- Correlations
 - Non stationary
 - Scales
 - Localization

SST Data Assimilation

- Data assimilation framework
 - Model errors : 50 members
 - Observation errors : SEVIRI SST
 - Instrumental error: 0.5 °C
 - Observation age error (SST 0h, SST night)

SST Seviri data availability[%] - Year 2008 - MANGA Area

SST Data Assimilation

- Data assimilation framework
 - Model errors : 50 members
 - Observation errors : SEVIRI SST
 - Instrumental error: 0.5 °C
 - Observation age error (SST 0h, SST night)
 - Localization: 2D
 - Cycles: Analysis every 4 days
 - Summer 2006: July Aug 06

Data assimilation Experiment: Results over 6 cycles

SST Data Assimilation

- Data assimilation Experiment:
 Results Vendee area
 - SST ensemble behavior
 - Ensemble mean / variance

- With respect to SST Seviri
 - RMSe

Data assimilation Experiment: Results → Innovation [degC]

• Data assimilation Experiment: Impact on the stratification

Data assimilation Experiment: Impact on the stratification

CONCLUSIONS

Forecast Ensemble

- Able to represent model forecast error (statistic consistency) in summer
- Still missing some error sources (north Brittany)
- Ens. characterization leads to EnKF filter tuning
 - Correlation → 2D-localization,...

Observation

Maximizing of their availability using the nocturnal data and associated observation age error

Assimilation

- Improvement of SST
- Better ocean stratification
- Benefit of assimilation remains after 4 days but significantly decreased

Perspectives

- Algorithms: asynchronous EnKF, IAU
- Other datasets: in-situ profiles, SST+currents from HF radars (Iroise Sea)

Ensemble forecast characterization

- Representers

Intensification of the thermal stratification

covariance's localization

Ensemble forecast characterization

- Representers

Intensification of the thermal stratification

covariance's localization

