~—

LTS N NOrCoOWe e

\

mese=r  Norwegian Centre for Offshore Wind Energy T—

Statoil

University of Bergen

Geophysical Institute

Numetical Modelling of Wind-Driven Circulation Behind a Large Wind Farm I the
presence of Surface Gravity Waves

Presented by
Mostafa Bakhoday Paskyabi,
Norway



Outline

 boundary layer

e Surface gravity waves
e Upper ocean response
e Numerical model
 |Instrumentation

e References




Wind Turbine Farm Interaction
with Boundary Layer

Taken from [1]



Wind Turbine Farm Interaction
with Boundary Layer




Wind Turbine Farm Interaction with Boundary Layer
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‘ Wind Turbine Farm Interaction with Boundary Layer
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Wind Turbine Farm Interaction with Wind Field
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Wind Turbine Farm Interaction
with Boundary Layer
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Wind Turbine Monopile Interaction
with Wave Field
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Fig. 2. Computed SWAN stationary significant wave height with reflection effect for narrow spreading angle 2° and broad directional
spreading of 28°.
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‘Wind Turbine Farm Interaction with Wind and Wave Field
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‘Wave parameters

Ue(z) = 47 / [ FRE(F.0)e=2k12l df do,
Jo Jf

Eys — AT [ 5,.(F.0)kke 2K do df,
JrJo o

5.
-10+ _
(Wind : U;,=10 m/s)
A5} Young wind sea
Fully Developed wind sea
201 Short swell
U surf | Long swell -—
) Ve— = T , B} g e m e e e
Pult ez = 7 mod — g T
I | i | ---. Lerig 5wﬂ!| _
where =0y 0.02 0.04 0.06 0.08 0.1 0.12

Stokes drift U_ (ms"")

2 =27, / / Kfs,,(F,0) do df
Jr Jo



OWS Papa. Ocean Weather Station (OWS) Papa long term observations of meteorological parameters and
temperature profiles (at 50°N, 145°W) are applied as a (inal validation test case for the whole of year 1966.
Figure 2 (Top) shows the results of the simulated temperature for (a) observations, (b) simulation results

n U pper Ocea n based on Bal2, (¢c) WTIl-modified GOTM results, and (c) no-wave eftfect. Similar to the PROVESS test
case, the heat content of the upper 50 m, MLD evolution, and temperature evolution at OWS Papa show that
the WTI-based modification captures the observations better than the Bal2-modified GOTM results.
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OWS Papa. Ocean Weather Station (OWS) Papa long term observations of meteorological parameters and
temperature profiles (at 50°N, 145°W) are applied as a final validation test case for the whole of year 1966.
Figure 2 (Top) shows the results of the simulated temperature for (a) observations, (b) simulation results

n U pper Ocea n based on Bal2, (¢) WTl-modified GOTM results, and (¢) no-wave effect. Similar to the PROVESS test

case, the heat content of the upper 50 m, MLD evolution, and temperature evolution at OWS Papa show that
the WTI-based modification captures the observations better than the Bal2-modified GOTM results.
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Fig. 2. Top: Temperature evolution at OWS Papa in the northern Pacific Ocean for year 1966, (a) observations, (b) GOTM run with
wave forcing effects based on [13], (c) GOTM with the wave—turbulence interaction modification, (d) GOTM without wave—forcing.

Bottom: Temporal variability of (a) MLD and (b) heat content in the upper 50 m.



Upper Ocean Response to Large Wind Farm: 2D
study
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Part I: Simplified 2D Shallow water wave as theoretical
benchmark

Pycnocline depth differential equation
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Part I: Ideal wind and wave parameterizations

Wind stress, wave-induced stress, and Stokes drift

Large obstacle in the ocean will disturb wind field (wake), wave
field and oceanic currents
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ving 2D modified linear shallow water wave
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Thichness of active upper active layer for > = 1. a) No-wave forcing, b) with wave forcing effect.



Part I: Solving 2D modified linear shallow water wave
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Fig. 3. The maximum amplitude of pycnoclene height as a function of y%. Solid line shows with wave forcing effect and dashed line
shows no-wave forcing.



Part Il: Full nonlinear-Numerical modelling
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‘ Part Il: Full nonlinear-Numerical modelling
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Fig. 5. Results of the Lax-Friedrichs technique for non-linear shallow water wave by including bottom friction, horizontal diffusion
term for different periods: : a) 0.1 day, b) 2.5 days. 3) 3.5 days and d) 5 days. After about 3 days. upper ocean response to the constant
forcing becomes weaker and we see a very slow linearly growth in pycnocline height



Part Il: Full nonlinear-Numerical modelling
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Fig. 6. Spatial disturbances in the pycnocline height by using two-dimensional results of ROMS for different periods: a) 0.1 day, b)
2.5 days, 3) 3.5 days and d) 5 days.



Instrumentation
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Field Work
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‘ Particle velocity spectrum beneath wind waves
(Analytical study) I
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‘ Particle velocity spectrum beneath wind waves
(Analytical study)
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Results: FLIP platform

The method is applied to a
high-resolution dataset,
including four levels of
turbulence within 20 m of the
ocean surface, measured over
deep ocean waves using the
stable research platform R/P
FLIP[3].
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Results: FLIP platform
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