

Realistic high resolution modeling of the Mediterranean Northern Current (NC) using the NEMO code : impact of model parameterization at lateral and open boundaries and validation with observations.

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard

ELE DOG

21-23 May 2012

Introduction	

The PHYOCE experiment

Outline

1 Introduction

The North-Western Mediterranean Sea Introducing GLazur64

Validation and impact of lateral forcings Hydrological validation Dynamical validation

3 The PHYOCE experiment Introducing the cruise Observation of a NC meander Impact of lateral parameterization

4 Conclusion

Introduction	

Validation and impact of lateral forcings 00000

The PHYOCE experiment

Outline

1 Introduction

The North-Western Mediterranean Sea Introducing GLazur64

Validation and impact of lateral forcings Hydrological validation Dynamical validation

3 The PHYOCE experiment Introducing the cruise Observation of a NC meander Impact of lateral parameterization

4 Conclusion

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 3/23,

Validation and impact of lateral forcings

The PHYOCE experiment

Conclusion

The North-Western Mediterranean Sea

Geographic Situation and topography

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 4/23

Northern Current

- Part of the general cyclonic circulation of the NW Mediterranean Sea
- Topographically guided
- 300m Depth, speeds up to $1\ \mathrm{m/s}$

Validation and impact of lateral forcings

The PHYOCE experiment

Conclusion

Introducing GLazur64

GLazur64: NEMO downscaling at $1/64^{\circ}$

Gulf of Lions and Côte d'AZUR at $1/64^{\circ}$.

- NEMO code 3.2.1
- Horizontal resolution (377*170 pts) $\rightarrow 1/64^{\circ}$ ($\approx 1.5 \text{ km} * 1.7 \text{ km}$).
- Vertical resolution \rightarrow 130 levels (from 1~m at the surface to 30~m at the bottom).
- Standard parametrisation: Free surface, Partial steps, Bulk formulae.
- Specific parametrisation: OBC (Downscaling of $1/12^{\circ}$) and runoff.
- Atmospheric forcings: ALADIN (Météo-France) 3h, ≈ 10 km.

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 6/23

Introduction ○○○●	Validation and impact of lateral forcings	The PHYOCE experiment	Conclusion
Introducing GLazur64			
Simulation	2		

Long-term simulation

Simulation	Period	Lateral Forcing	Lateral Condition
T20	2006 - 2008	MED12	Freeslip
T21	2008	PSY2V3	Freeslip

PHYOCE simulation

Simulation	Period	Lateral forcing	Lateral Condition
T24_freeslip	12/2010 - 05/2011	PSY2V4R1	Freeslip
T24₋noslip	12/2010 - 05/2011	PSY2V4R1	Noslip

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 7/23

Introduction	

Validation and impact of lateral forcings

The PHYOCE experiment

Outline

Introduction

The North-Western Mediterranean Sea Introducing GLazur64

2 Validation and impact of lateral forcings

Hydrological validation Dynamical validation

3 The PHYOCE experiment Introducing the cruise Observation of a NC meander Impact of lateral parameterization

4 Conclusion

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 8/23,

0000	•••••	00000	Seriment Conclusion
Hydrological validation			
SST			
28.0		28.0	28.0

4 Buoys in GLazur64 region from 2006 to 2009: Validation of T20 simulation

- Coastal area: good agreement between model and measurements (Nice and Marseille Moorings)
- Offshore : the model does not cool down fast enough in winter (Azur and Golfe Moorings)
- \Rightarrow Good parametrisation of surface flux.

Corio

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 10/23

Validation and impact of lateral forcings $\circ \circ \circ \circ \circ \circ$

The PHYOCE experiment

Conclusion

Dynamical validation

Mean circulation over 1 year and 150m

T20, forced by MED12: the NC is wider, 300m deep, too far from the coast.

T21, forced by PSY2V3: the NC is narrower, 350m deep, closer to the coast.

GLozur64 T21 - Eastern Boudary

- On the shelf \rightarrow the dynamics is peculiar to GLazur64.
- Offshore \rightarrow GLazur64 simulations inherit from the Open Boundaries datasets geostrophic dynamics.

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 11/23

Validation and impact of lateral forcings

The PHYOCE experiment

Conclusion

Dynamical validation

Snapshot of circulation over 150m (2008/12/01)

T20, forced by MED12 : Strong NC and many mesoscale processes.

T21, forced by PSY2V3: the NC is slower but also many mesoscale processes.

B b d B b

GLazur64 recreates its own NC dynamics. Generation of many mesoscale processes (offshore and on the shelf)

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 12/23

Introduction 0000	Validation and impact of lateral forcings ○○○○●	The PHYOCE experiment	Conclusion
Dynamical validation			
			A Alen

^{2008/04/26}

(left): NC too far from the coast and too weak.

T21, forced by PSY2V3 (right): NC closer to the coast and stronger

⇒ T21 is in good agreement with ADCP data, despite an underestimated intensity

2008/04/26

Introduction	

Validation and impact of lateral forcings 00000

The PHYOCE experiment

Conclusion

Outline

Introduction

The North-Western Mediterranean Sea Introducing GLazur64

Validation and impact of lateral forcings Hydrological validation Dynamical validation

3 The PHYOCE experiment Introducing the cruise Observation of a NC meander Impact of lateral parameterization

4 Conclusion

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 14/23

Validation and impact of lateral forcings

The PHYOCE experiment

Conclusion

Introducing the cruise

PHYOCE

Scholar cruise off Toulon

Conjointly use of in-situ data (CTD, Drifters, ADCP, HF Radar), satellite and modeling \implies Observation of a NC meander

A B > A B >

= 900

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 15/23

Validation and impact of lateral forcings 00000 The PHYOCE experiment

Conclusion

Observation of a NC meander

Comparison between HF radar and modeling

- 1 2011/03/28: The meander arrives in the radar area.
- 2011/03/31: Strong meander, almost northwards.
- 3 2011/04/05: The eddy can be observed in the radar field.
- ④ 2011/04/07: Radar: the eddy flows south and the Nc flows back along the coast. Model: The NC still meanders around the eddy.

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 16/23

Validation and impact of lateral forcings 00000

The PHYOCE experiment

Conclusion

1 - nac

Observation of a NC meander

Dynamical observation: ADCP

- NC Core well positionned.
- correct NC depth.
- But NC magnitude too weak.

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 17/23

Validation and impact of lateral forcings

The PHYOCE experiment

Conclusion

Impact of lateral parameterization

Origin and history of the Meander: Freeslip vs Noslip

Freeslip run:

- Before the PHYOCE experiment: both simulations agree.
- During the PHYOCE experiment: the meander exists in both simulations, but the NC have a different behaviour eastward.
- After the PHYOCE experiment: the simulations are very different.

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 18/23

Validation and impact of lateral forcings

The PHYOCE experiment

Conclusion

Impact of lateral parameterization

Freeslip VS Noslip : ADCP validation

43.20% 43.00% 0.36 0.24 42.80% 42.60% 6.6°E 7.0°E 0.500 2011/04/02 0.4 Depth (m) Depth 80 N2.849N2.88*N2.929N2.98*N3.009N3.04*N3.08% 42.80*M2.84*M2.88*M2.92*M2.96*M3.00*M3.04*M

Freeslip case: Good position and width of the NC core, despite an underestimation of the intensity.

Noslip case: NC too far from the coast and too weak. Less realistic.

A 3 b

EL OQO

 \implies The freeslip simulation is more realistic

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 19/23

Introduction	

Validation and impact of lateral forcings 00000

The PHYOCE experiment

Outline

Introduction

The North-Western Mediterranean Sea Introducing GLazur64

Validation and impact of lateral forcings Hydrological validation Dynamical validation

The PHYOCE experiment Introducing the cruise Observation of a NC meander Impact of lateral parameterization

4 Conclusion

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 20/23

Introduction 0000	Validation and impact of lateral forcings	The PHYOCE experiment	Conclusion

Conclusion

Contribution of the High-resolution model

- Good assimilation of surface fluxes
- Water masses and geostrophic dynamics of the model generally in line with observations.
- The high-resolution model recreates its own mesoscale dynamics.

Problems encountered

- **1** NC magnitude generally underestimated
- **2** Some incertainties in the mesoscale dynamics:
 - ... inherited from the basin-scale model...
 - ... or intrinsic to GLazur64 ?

Introduction	

The PHYOCE experiment

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日日 つくべ

Perspectives

How to improve the model ?

● NC magnitude generally underestimated
⇒ Increase of the vertical resolution on the intermediate layer (100-400m), to better reproduce the NC vertical structure.

2 Some incertainties in the mesoscale dynamics:

• ... inherited from the basin-scale model...

 \Longrightarrow Work on the OBC, in order to better control their impact (\rightarrow tangential velocity)

• ... or intrinsic to GLazur64 ?

 \implies Ongoing work on lateral friction (ightarrow viscosity, partial slip?)

Introduction	

Validation and impact of lateral forcings

The PHYOCE experiment

B 1 4 B 1

Thank you for your attention

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 23/23

Hydrological observation: CTD profiles

PHYOCE Period (30 March - 03 April)

- In the gyre \rightarrow desagreement between CTD and model salinity profiles
- In the NC \rightarrow Halocline too deep in the model, but NC well positionned

< A >

EL OQO

Potential tenmperature

29.10

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 24/23

Hydrological observation: CTD profiles

4 Days later (03 -07 April)

- In the gyre \rightarrow Model salinity profil closer to CTD profils
- In the NC \rightarrow Halocline less deep, closer to CTD profils

 \implies The model represents with 4 days of delay the meander.

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 24/23

Boundary condition at the coast: Freeslip/Noslip case

Freeslip case (rn_shlat=0)

Normal velocity = 0 Tangential velocity = V Vorticity = 0

Noslip case (m_shlat=2)

Normal velocity = 0 Tangential velocity = 0 Vorticity = $2(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y})$

From Madec2008

K. Guihou, B.Zakardjian, Y.Ourmières, P.Forget, J.Marmain, A.Molcard Modeling of the NC: lateral parameterization and OBC 25/23