SST modelling in the Sea of Iroise. Assessment of boundary conditions.

Nicolas Guillou^(a)

Georges Chapalain^(a)
Eric Duvieilbourg^(b)

nicolas.guillou@developpement-durable.gouv.fr

- (a) Laboratoire de Génie Côtier et Environnement (CETMEF)
- (b) Laboratoire des Sciences de l'Environnement Marin (IUEM)

May, the 21th 2012

Purpose

Objective

Analyse the sensitivity of Sea Surface Temperature (SST) predictions in the Sea of Iroise to open boundary conditions of temperature.

Purpose

Two types of boundary conditions tested

MyOcean products available on the website http://www.myocean.eu/.

Purpose

Forecasting Systems Description

MGO

- Mercator PSY2V4 HAM North Atlantic Ocean
- 7 days of forecast
- Based on NEMO model (Nucleus for European Models of the Ocean) (Madec, 2008)
- 1/12 deg. of horizontal resolution
- 43 vertical levels

IBI

- Daily run by Puertos del Estado and Mercator Ocean
- 5-day of forecast
- Based on NEMO model
- 1/36 deg. of horizontal resolution
- 50 vertical levels
- High frequency processes (tidal forcing, surges, fresh water discharges)

MyOcean product

PSY2V4R2 HAM

MyOcean product

IBI ANALYSIS FORECAST PHYS 005 001 b

Model Description

COHERENS

- COupled Hydrodynamical Ecological model for RegioNal and Shelf seas
- Management Unit of the North Sea Mathematical Model (MUMM, Bruxelles, Belgium) (Luyten et al., 1999)

- MAST projects PROFILE, NOMADS and COHERENS (EU) (1990-1999)
- http://www.mumm.ac.be/coherens

Physical processes integrated

- 3D hydrodynamic mode
- Temperature and salinity transport
- Effects of the waves on sea surface roughness (Pan et al., 2008) and apparent bottom roughness (Grant and Madsen, 1979) parameters

Model Description

Model Setup

Computational domain

- $\Delta \lambda = 0.015^{\text{ o}}, \\ \Delta \phi = 0.009^{\text{ o}} \text{ (1 km)}$
- $N_x = 124$, $N_y = 129$, $N_{\sigma} = 10$
- z₀ = f(d_{sed})
 (Hinschberger et al., 1968; SHOM, 1996)

Forcings

- \bullet ξ and \overline{U} from IBI at one-hour interval
- Meteorological data of ALADIN model (Météo-France)
- 3 SWAN driven by global NOAA predictions
- River outflows from measurements (Elorn and Aulne rivers)

S!RANO project (Duvieilbourg et al., 2012)

"Surveillance des eaux de surface en mer d'Iroise et RAde de Brest par des Navires d'Opportunités"

http://memphys-lgce.fr.ht

- Nearshore along the routes of "Enez Eussa III" vessel until end of 2011 → "Fromveur II" vessel later in 2012
- SST time series extracted in a series of 6 points along the route of the vessel
- Data gathered at a distance less than 500 m of each point

- Predicted SST with MGO BC over predicted SST with IBI BC in summer(the reverse happens in spring and autumn)
- SST predictions modulated by spring-neap tidal cycles

- Predicted SST with MGO BC over predicted SST with IBI BC in summer (the reverse happens in spring and autumn)
- SST predictions modulated by spring-neap tidal cycles

- Predicted SST with MGO BC over predicted SST with IBI BC in summer (the reverse happens in winter)
- SST predictions modulated by spring-neap tidal cycles

- Lack of data at the end of the period of interest
- Spring-neap tide variability of SST reproduced

- Lack of data at the end of the period of interest
- Spring-neap tide variability of SST reproduced
- Night-day variability of SST reproduced

Selection of 3 images for different periods of the year

Selection of 3 images for different periods of the year

- Moderate differences between both simulations
- Major differences close to boundary conditions till water depths > 50 m

- Moderate differences between both simulations
- Major differences close to boundary conditions till water depths > 50 m
- Horizontal thermal gradient from offshore boundaries till nearshore areas between the isles of Ushant and Sein slightly better reproduced with IBI BC
- Northern thermal front more clearly with IBI BC

Analysis of Boundary Conditions

- Intrusion of cold water at the north-eastern boundary with IBI BC
- Warm water along the western and northern boundaries with IBI BC

May increase horizontal thermal gradients in the vicinity of Ushant front.

Analysis of SST Predictions

- Major difference at the north-eastern boundary → related with the intrusion of cold water with IBI BC
- 2 Warm water offshore and cold water nearshore with IBI BC (in average)
- Slight difference in nearshore areas, mainly close to the external thermal front

Conclusions and Perspectives

Summary

- Implementation of a hydrological model compared to SST measurements in the nearshore areas of the Sea of Iroise
- Importance of temperature boundary conditions to reproduce the horizontal thermal gradients and associated features (Ushant thermal front)

Conclusions

- Slight differences between IBI and MGO BC in nearshore areas
- Major differences related to the intrusion of cold water at the north-eastern boundary and offshore in water depths > 90 - 100 m

Perspectives

Extending comparison with measurements in these areas

Thank you very much for your attention.