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Are adaptive- and unstructured-mesh GEF&nodels

: ?
COInlng Of age ) GEFD = Geophysical and

Environmental Fluid Dynamics

* Classical structured-mesh GEFD models with (almost) constant
resolution or grid nesting systems may be getting obsolete.

* Time may be ripe for developing models in which resolution
may be enhanced where and when needed.

* For an eddy propagating in the Gulf of Mexico as an idealised
internal Rossby wave packet, Bernard et al. (Ocean Dynamics,
2007) showed that a finite-element simulation with an adaptive
grid (made up of triangles) was one order of magnitude cheaper
(in terms of CPU time) than a constant-resolution one of the same
accuracy, hence the motivation to develop SLIM.



The Second-generation Louvain-la-Neuve Ice-ocean Model
(SLIM, www.climate.be/slim)

* SLIM's development started about 12 years ago, aiming at the
multi-scale/physics modelling of (some of the components) of the
hydrosphere.

e Key steps:
- Collaboration of mechanical engineers and GEFD specialists;
- Programming in C++;
- Adopting the finite element (FE) method, then switching to
Discontinuous Galerkin FE (DG FE = hybrid of FE and FV);

- Inserting SLIM in the FE software built around the source
code of Gmsh (www.geuz.org/gmsh) = durability of SLIM.



What SLIM can and cannot do (I)

* SLIM solves partial differential equations in 1, 2 or 3 space
dimensions for unknowns of the form y(z,x). The generic form of
(most of) these equations 1s:

advect +d1ff ﬂux "reactions"
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What SLIM can and cannot do (II)

e SLIM 1is capable of being interfaced with well-established
models/modules often based on (radically) different numerical

methods (e.g. finite differences) and programming languages
(e.g. FORTRAN):

-in SLIM's hydrodynamic module, the turbulence closure is
GOTM (General Ocean Turbulence Model, www.gotm.net);

- the sea 1ce thermodynamics 1s now that of LIM3 (Louvain-la-
Neuve Sea Ice Model, version #3, www .climate.be/lim);

* SLIM solves CART's equations (www.climate.be/cart), to obtain
diagnostic timescales (age, residence time, exposure time, etc.).

* Most in- and out-put files are to be dealt with by means of
specific routines, owing to the unstructured nature of the mesh.



Groundwater and surface water

Outline:
@ 3D subsurface flows
® 2D runoff

© coupling between
surface/subsurface




The Mahakam river-sea continuum (Indonesia)
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The Great Barrier Reef, Australia (GBR) (I)

See Wolanski et al. (2003, in: Advances in Coastal
Modeling, V .C. Lakhan (Ed.))
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The Great Barrier Reef, Australia (GBR) (II)
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The Great Barrier Reef, Australia (GBR) (III)

Map of reefs in the central GBR with reefs
grouped into clusters (colours).

Solid line shows approximate position of
coastline.
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The Scheldt river-sea continuum (I)

The main advantage of unstructured meshes probably 1s that multi-
scale modelling 1s rendered easier. Example: the Scheldt
tributaries, River, Estuary and the adjacent coastal zone.
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The Scheldt river-sea continuum (II)

* Hydrodynamics 1s forced by tides (prescribed and the shelf
break) and wind stress.

* Tidal components (amplitude and phase) are well represented, as
well as salinity (treated as a passive tracer).
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The Scheldt river-sea continuum (III)

13

* CART's water renewal timescales (age, residence time, exposure
time) and return coefficient for the estuary have been simulated at
any time and position.
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* Surprising result: the large time variability of the residence time.
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The Scheldt river-sea continuum (IV)

* We are developing a simple sediment module, which 1s a
prerequisite for simulating the fate of several classes of
contaminants (fecal bacteria, trace metals).

thick lines: SLIM (1D+2D)

0.5 thin lines: LTVmud (van Kessel
Water column S 0.45¢ etal. CSR, 2011)
. ®e E. coli and metal 0.4| October-December 2006
‘4 ® ?\t adsorbed on
/ equilibrium equilibrium ‘\‘ suspended particles 0.35F g
vl' iffusi \ 0.3 =
o 2 M () () advection + diffusion g g
oo ——~———2> ® 025
Free E. coli o [ N s 02
Free metal S < :
S S
; S,«% S . 0.15¢ 5
oca/ o 3 Q © O
e © N gggbunon ¢/ s 5 0.1} 8
K}i. & Sy . g
Freshly deposited layer /] fam i) S 0 ‘g
100 120 140 E

Parent layer

distance to Ghent (km)




15

SLLIM's three-dimensional baroclinic component (1)

* Several attempts have been made to obtain a 3D, baroclinic
module.

* The present version seems very promising (prismatic elements,
DG FEM with flux limiters, split explicit, GOTM turbulence
closure). It has been applied successfully to several test cases

- wind-driven deepening of surface mixed (Kato and Phillips,
Journal of Fluid Mechanics, 1969)

- idealised estuarine circulation (Warner et al., Computers &
Geosciences, 2010)

- adjustment of a density front (Wang, Journal of Physical

Oceanography, 1984) Kiimni et al. (Ocean Modelling, 2012)
Kérna et al. (Ocean Modelling, submitted)
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SLLIM's three-dimensional baroclinic component (II)

* SLIM's results compare very well to other 3D models (Delft3D,
GETM) on the classical ROFI test case of de Boer et al. (Ocean
Dynamics, 20060).
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SLLIM's three-dimensional baroclinic component (I1I)
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Tidally-averaged salinity distribution: depth average (a), and
vertical transects at river mouth (b), 15 km downstream of it (c¢)
and 30 km downstream (d).
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Conclusion

* SLIM already has some of the building blocks of a multi-
scale/physics hydrospheric model, which are progressively
coupled with eachother.

* The computational efficiency must be increased significantly

(e.g. by resorting to multi-rate schemes). Seny et al. (Int. J. Num. Meth.
Fluids., in press)

* Which existing models/modules should be interfaced with SLIM
(rather than developed by ourselves within SLIM's framework)?

* The (relative lack of) availability of multi-scale data is a key
problem.
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Thank you for your attention



