

3D coupled physical-biogeochemical modelling in a coastal area: Study of Rhone River diluted water intrusion in Marseille's Bay

Fraysse M., Pairaud I.L., Faure V. and Pinazo C.

Projects : Massilia - MERMEX - GIRAC - PERSEUS

• Rhone River is the largest input of nutrients in Mediterranean Sea (Sempere et al, 2000)

 Marseilles Bay is mainly oligotrophic

IntroductionModelsIntrusion characterizationGeneration processesConclusionStudy area : Rhône - Marseille

Intrusion in literature :

Gatti et al, 2008 Para et al, 2010 Pairaud et al, 2011

Introduction Models Intrusion characterization **Generation processes** Conclusion Study area : Rhône - Marseille 30' 3°E 30' 4°E 30' 5°E 30' 6°E FRANCE Intrusion in literature : Hérau 30' Gatti et al, 2008 Sète SPAIN Para et al, 2010 Marseille Plume Dilution Pairaud et al, 2011 20 ntrusion 02 zone 43°N Bathymetry zone 21' (m) 600 1500 Têt 7 500 Perpignan 15' SOMLIT St. 30' 400 13°N 300 2.00' 2000 200 100 42°N 5[°]E 24' 28' 20.00

Intrusion if waters from Rhone River with a salinity < 37,8 are located eastward of the 5°E 17'30 ".

Main issue:

What are the impacts of Rhone River diluted water on the Marseilles Bay coastal zone ?

Outline:

- Model
 - MARS3D-ECO3M coupled model presentation
 - Model skills assessment
- Characterization of intrusion events
- Generation processes
- Conclusion

RHOMA configuration

Finite differences, hydrostatic and Boussinesq approximation, free surface elevation

Resolution

Dx~400m; dz=30 sigma levels **Inputs :**

Lateral forcing : MENOR (dx~1200m) Rivers : Rhone daily outflow Atmospheric forcing : MM5

 \rightarrow Validated in JMS by Pairaud et al (2011)

Coupled model

Hydrodynamical model (MARS3D, IFREMER)

RHOMA configuration

Finite differences, hydrostatic and Boussinesq approximation, free surface elevation

Resolution Dx~400m; dz=30 sigma levels **Inputs :** Lateral forcing : MENOR (dx~1200m) Rivers : Rhone daily outflow Atmospheric forcing : MM5 (resolution)

 \rightarrow Validated in IMS by Pairaud et al (2011)

Hydrodynamical model (MARS3D , IFREMER)

Biogeochimical model (ECO3M-MASSILIA, MIO)

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z} = \frac{\partial}{\partial x} \left(K_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial C}{\partial z} \right) + Tend$$

C : Tracer concentration

Tend = sources - sinks : tendency term calculated by the biogeochemical model

Introduction Models Intrusion characterization Generation processes Conclusion

Model skills assessments at the Somlit station

Qualitative comparisons :

38. Salinity 14/06/2007 25' 38 20' 37.5 43°N 15.00' 10' 5' 15' 45' 5°E at 14-Jun-2007 12:00:00 -10 -20 Depth (m) -30 -40 Data -50 Model -60 37 38.5 37.5 38 salinity

Quantitative comparisons :

Model skills assessments at the Somlit station

Qualitative comparisons :

Quantitative comparisons :

Allen et al (2007), Radach and Moll (2006) 12 Marechal (2004)

Self Organizing Maps (SOM):

- \rightarrow neural network
- \rightarrow effective tool of nonlinear clustering, pattern recognition and feature extraction.
- → SOM Toolbox 2.0 Copyright (C) 1999 by Esa Alhoniemi, Johan Himberg, Jukka Parviainen and Juha Vesanto

Characteristics of Rhone River intrusion

General physics characteristics

Studied period	2007 - 2010
Frequency	~ 8 /year
Seasonality	yes
Vertical extension	5-30 m

Intrusion seasonality :

	Introduction Mo	dels Intrusion charac	terization	Generation p	rocesses	Conclusion			
(Characteristics of Rhone River intrusion								
	General physic		Chloroph MODIS Ocean	ıyll (µg.L⁻¹) color data-	OC5				
	Studied period	2007 - 2010	25	011	18/0	06/2008			
	Frequency	~ 8 /year	15		- (* <u>}</u>				
	Seasonality	yes	10			And and a second s			
	Vertical extension	5-30 m	5 5			42			
	Biogeochemica	al characteristics	43 N	45' 5°E	15' 3	0' 45'			
	Studied period	2007-2008	0	0.5	1	1.5			
	Chl a	7	Chlorophyll (µg.L ⁻¹)						
	NO3	7	(mode		Jetween sur				
	NH4	7	25' -		18/0	6/2008			
	PO4	7	20' -			1			
	Organic matter	オ	43 N _ 15.00' 10'		MARS	EILLE - 0.5			
			5' -						
				^{45'} 5 ⁰ E	15' 30'	45'			

5°E

16

	Introduction Mo	dels Intrusion charac	cterization	Generation pro	ocesses	Conclusion			
(Characteristics of Rhone River intrusion								
	General physic	s characteristics		Chlorophy MODIS Ocean c	/ll (µg.L ⁻¹) olor data-	0C5			
	Studied period	2007 - 2010	25	0 715	18/0	6/2008			
	Frequency	~ 8 /year	15		6 -3				
	Seasonality	yes	10		a a a a a a a a a a a a a a a a a a a	Jan Strange			
	Vertical extension	5-30 m	5' <mark></mark>			42			
	Biogeochemica	al characteristics	43 N	45' 5°E	15' 30	r 45'			
	Studied period	2007-2008	0	0.5	1	1.5			
	Chl a	7	(meda	Chloroph	yll (µg.L⁻¹)) face and 10m)			
	NO3	7	(mode	results mean be	tween sur				
	NH4	7	25' -		18/06	b/2008 1.5			
	PO4	7	20' -			1			
	Organic matter	7	43°N _ 15.00'		MARSE				
			5'						

 \rightarrow What are the generation processes ?

17

45'

30'

15'

5[°]E

45'

Hypothesis of intrusion generation processes

→ Rhone river outflow (75 % intrusion when outflow< 1700 m3)

Hypothesis of intrusion generation processes

- → Rhone river outflow (75 % intrusion when outflow< 1700 m3) → Summer vertical stratification
- → Wind conditions

Hypothesis of intrusion generation processes

- → Rhone river outflow (75 % intrusion when outflow< 1700 m3)
- → Summer vertical stratification
- \rightarrow Wind conditions
- → Anticyclonic Marseille Eddy (ME) Schaeffer et al (2011)

Conclusion :

- Intrusion induced an increase of the biological production in the surface layer.
- Intrusion of Rhone River is a non negligible process at the Bay of Marseille scale.
- Our coupled model is a good tool to investigate the impact of the physical forcings over biogeochemistry

Perspectives :

- Perform a sensitivity analysis to explore generation processes of intrusion event
- Quantify the associated input of matter in the Bay of Marseille

Thank you for your attention!

Juin 2008

Chlorophylle MODIS OC5 17/6/2008

Juin 2008

Octobre 2008

Chlorophylle MERIS OC5 5/10/2008 2525 20 20 15 15 10 10 5 5 3°N 43⁰N 45 15' 15' 45' 30' 45 5⁰E 5°E 0.2 0.4 0.6 0.8 0

Chlorophylle MODIS OC5 6/10/2008

