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On the use of a depth-dependent barotropic mode for free surface ocean models

Little review of free-surface ocean model development

A selected background of numerical schemes for free-surface ocean models

Bryan 69 : First splitting & Rigid-lid approximation

Bryan 69 : Rigid-lid approximation & splitting:

First numerical 3D ocean model.

Primitive equations, hydrostatic,
Boussinesq.

Rigid-lid approximation = no fast
waves.

Already one splitting method
enforced by the elliptic surface
pressure problem.

Mathematically true since there is no
free-surface : orthogonality.

Pb-development : very ill
conditionned, assimilation, middle
scale, internal waves representation,
parallelization

CIRCULATION OF THE WORLD OCEAN 157

(m��/H)�t � (��/Hm)�t � (FV)� � (FU/m)�

� ��(2�n/H)� � ��(2�n/H)�.

(2.28)

Let the vertical average over the whole water column
be indicated by an overbar,

( ) �
1
H

�0

�H

( ) dz (2.29)

and the deviation from a vertical average by ( ˆ). Thus the FIG. 1. A closed ocean basin with two islands.
velocity components may be expressed as

(u, v) � (ū, v̄) � (û, v̂). (2.30) where r is the index of the islands. In general � is a function
of time. The method for computing �r is based on that

The ū, v̄ components may be predicted from (2.23) and used by Kamenkovitch [9] in a study of the Antarctic cir-
(2.28). To predict û, v̂ we make use of (2.3) and (2.4) with cumpolar current.
the right-hand side of (2.24) substituted for the pressure Let v be the horizontal velocity vector and
term. The surface pressure, ps, is temporarily set to zero:

(v)t � ��(p/�0) � G. (3.3)

u�t � L u � 2�nv � mnuv/a �
�mg

�0 a
��0

z

� dz�
�
� F

� (2.31) � is the horizontal grad operator and G is another hori-
zontal vector representing the remaining terms in the equa-
tions of motion. The integrated form of (3.3), correspond-v�t � L v � 2�nu � mnuu/a �

�g

�0 a
��0

z

� dz�
�
� F

�. (2.32) ing to (2.25) and (2.26), is

u� and v� differ from u and v due to the neglect of that k � ��t � ��0

�H

(�p/�0 � G) dz. (3.4)
part of the pressure gradient force which depends on the
surface pressure. To determine û and v̂ we set

k is a unit vector normal to the horizontal plane. Dividing
(3.4) by H and taking the curl of (3.4), we obtain

(û, v̂) � (u� � ū�, v� � v̄�). (2.33)

� � (k/H � ��t) � �� �
1
H

�0

�H

(�p/�0 � G) dz. (3.5)In the determination of û and v̂ the error due to the neglect
of surface pressure in u� and v� is of no consequence, since
that error is independent of z and is therefore eliminated Consider the closed basin with islands shown in Fig. 1. Let
by subtracting out ū� and v̄�. the transport stream function be represented by

III. BOUNDARY CONDITIONS ON THE TRANSPORT
� � �0 � �R

r�1
�r �r . (3.6)STREAM FUNCTION

In the simple case of a closed basin with no islands the
In (3.6) only �0 and �r are functions of time. The �r fieldsboundary condition on (2.28) is simply that;
satisfy the quation

� � 0 (side boundaries). (3.1)
� � (k/H � ��r) � 0 (3.7)

The World Ocean with its many islands is a multiply con-
with the boundary condition thatnected region. At the shores of each island the boundary

condition is
�r � 1 (perimeter of island r)

(3.8)
�r � 0 (all other islands).� � �r , r � 1, 2, 3, ..., R, (3.2)

K.Bryan : A Numerical Method for the Study of the
Circulation of the World Ocean, JCP, 1969
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Little review of free-surface ocean model development

A selected background of numerical schemes for free-surface ocean models

Free surface model and splitting

1 Bryan 69 : Rigid-lid approximation & splitting

2 R.Madala 77, P.D.Killworth et al. 91: Free surface model and splitting

Free surface equation : ∂tη +∇UH = 0

Pb n◦1 : No more Poisson like solver but one more equation (U needed).

Pb n◦2 : Introduction of surface gravity waves (very fast).

Solution : In linear study the vertical average of velocity seems to be
orthogonal to the rest of the flow (barotropic aka external mode) =⇒
Compute apart the barotropic (external) system (splitting method).

Pb n◦3: Mathematically not true, since there is a free-surface : false
orthogonality.

Pb n◦4: Not possible to exprime the exact barotropic (averaged) part of
the non linear term : u∇u .... and friction terms ??

Pb-development : stability, physics of internal waves, filter, explicit
(subcycling) or implicit ?
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A selected background of numerical schemes for free-surface ocean models

Numerical stability study and filter

1 Bryan 69 : Rigid-lid approximation & splitting

2 R.Madala 77, P.D.Killworth et al. 91: Free surface model and splitting

3 R.Higdon et al. 96, V.M. Kamenkovich et al. 08, and Shchepetkin et al. 05 :

Numerical stability study and filter

Numerical stability analysis on simplified cases of the barotropic splitting
using the rigid-lid approximation (external mode).=⇒ Need of a filter in
the non-linear case. (R.Higdon et al. 96, V.M. Kamenkovich et al. 98)

Conservation of constant trough the splitting method scheme =⇒
modification of the tracer advection velocity. (Shchepetkin 03)

Pb : Large damping
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Little review of free-surface ocean model development

A selected background of numerical schemes for free-surface ocean models

Splitting : Barotropic mode vs External mode,
improvment ?

1 Bryan 69 : First splitting & Rigid-lid approximation

2 R.Madala 77, P.D.Killworth et al. 91: Free surface model and splitting

3 R.Higdon et al. 96, V.M. Kamenkovich et al. 98, and Shchepetkin et al. 05 :

Numerical stability study and filter

4 And now :

Keeping the orghogonality in the linear case =⇒ reduce the
need and effects of the filter in the non-linear case ??
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A selected background of numerical schemes for free-surface ocean models

A few notions you have to keep in mind

Rigid-Lid / Free-Surface

Internal gravity waves

Orthogonality

Linear theory
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Linearized system

Linearized system

Linearized primitive equations :



∂t u +
1

ρ0
∂x p = 0

∂x u + ∂z w = 0

ρ = −
1

g
∂z p

∂tρ+ w∂z ρ̄ = 0

=⇒



∂t u +
1

ρ0
∂x p = 0

∂x u − Λ(
1

ρ0
∂t p) = 0

ρ = −
1

g
∂z p

w = −N−2∂zt p

Boundary conditions{
w(x ,−H, t) = 0 Flat bottom
w(x , 0, t) = ∂tη

Notations:

Λ = ∂z (N−2∂z )

The Brunt-Vaisala
frequency :

N−2 = −
ρ0

g
(∂zρ)−1

Kundu and Cohen, 1990
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Normal Modes and Internal waves

Definition normal modes

Definition of normal modes

Variables projection:

2D projected variables :

∀n :

{
un(x, t) = 〈u,Mn〉
pn(x, t) = 〈p,Mn〉

u =
∞∑

n=1

unMn

p =
∞∑

n=1

pnMn

ρ = −g
∞∑

n=1

pn∂z Mn

Definition of vertical modes Mn :

Scalar product : 〈f , g〉 =
1

H

∫ 0

−H
f (z)g(z)dz

{
ΛMn = −c−2

n Mn
〈Mn,Mm〉 = δmn

Boundary conditions :
dMn

dz
(−H) = 0

Mn(0) = −gN−2 dMn

dz
(0)

Equations projection: decoupled hyperbolic system

We get an hyperbolic system on each independent characteristic variable :

∀n :

{
∂t y+ + cn∂x y+ = 0

∂t y− − cn∂x y− = 0
with : y± =

1

2
(un ±

1

cnρ0

pn)

The primitive system can be entirely decomposed in a sum of independent internal waves (y±n ), evolving with their
own constant speed (±cn)

Kundu and Cohen, 1990
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Magnitudes and splitting motivations

Magnitudes and splitting motivations

Under the approximation of a constant stratification : ∂z N = 0

Depth dependent mode definition

Top boundary condition on modes : Mn(0) = −gN−2 dMn

dz
(0)

Barotropic mode : ∂z M0 6= 0, c0 '
√

gH

Baroclinic modes : ∀k ≥ 1, ck '
NH

kπ

Rigid-lid approximation : ∂tη = 0

Top boundary condition on modes :
dMn

dz
(0) = 0

External mode : ∂z M0 = 0, c0 =∞

Baroclinic modes : ∀k ≥ 1, ck =
NH

kπ

Problem : CFL0 =
c0∆T

dx
� 1 =⇒ Very strong constraint

A solution : Computing apart the 2D barotropic mode containing fastest terms
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Principle

The splitting method principle

3D SYSTEM :

computed as usual
with 

large time step

2D BAROTROPIC 
SYSTEM :

computed
with

small time step

Orthogonal 
decomposition

=
 Exact solution

Correction of the 3D 

system by substituting 

the barotropic term

Continue the 
integration of 

diagnostic variables

Expensive 
as usual

More time steps 
but only 2D 

system to solve 
= cheaper

(ū, p̄)(u, p)



On the use of a depth-dependent barotropic mode for free surface ocean models

The splitting method : Rigid-lid / free-surface

Depth (in)dependent splitting

Depth dependent / independent splitting

Depth dependent barotropic splitting

ū = u0 =
1

H

∫ 0

−H
uM0

p̄ = p0 =
1

H

∫ 0

−H
pM0

System :
∂t u0 +

1

ρ0
∂x p0 = 0

∂t p0 + c2
0ρ0∂x u0 = 0

c0 '
√

gH

Correction :

u = u3d + [u0 − 〈u3d ,M0〉]M0(z)
p = p3d + [p0 − 〈p3d ,M0〉]M0(z)

and as diagnosis : ρ = −g
∑

n pn∂z Mn

External mode (depth independent)splitting

ū = ua =
1

H

∫ 0

−H
u

p̄ = ρ0gη

System :
∂t ua + g∂xη = −

∫ 0

−H
(p − ρ0gη)

∂tη + ∂x Hua = 0

c∗0 =
√

gH

Correction :

u = u3d + [U − 〈u3d , 1〉]
p3d (0) = ρ0gη

no correction of the density !
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The splitting method : Rigid-lid / free-surface

Stability analysis

Stability analysis and correction of the external
mode splitting probable instability

The depth dependent barotropic mode splitting is stable by construction.

And the external mode splitting ? Why it could be unstable ?

In the external mode splitting some components of the true barotropic flow (u0, p0)
are still integrated with the baroclinic time step. (Killworth et al., 1991)

⇒ Sources of instability

Analytical stability analysis

Instability already proved on simplified cases (two layers) : (Higdon and Bennett, 1996

; Kamenkovic and Nechaev, 2008 )

Detailed stability analysis still in progress.

Correction of this potential instability

A filter on the 2D system or an additional diffusivity term is required (Shchepetkin,

2005), even in the linear case.

Implement a depth-dependent barotropic splitting !



On the use of a depth-dependent barotropic mode for free surface ocean models

The splitting method : Rigid-lid / free-surface

Implementation of a depth dependent splitting

Implementation of a depth dependent splitting

To easily implement the splitting on a code with an explicit density equation and a
diagnosis pressure variable we have to rewrite the 2d system as a density/velocity
terms ! 

∂t u0 +
g

λρ0
∂x

[
+
ρ0

gH
Mb(0)η − ρ̄

]
= 0

∂t ρ̄+
ρ0

g
∂x [M0(0)ua − u0] = 0

∂tη + ∂x Hua = 0

With : ρ̄(x , t) =

∫ 0

−H
ρ(x , z, t)N−2∂z M0(z)dz

The correction, then, is directly put on the velocity (as usual) and density before the
diagnostic step of pressure :

un+1,c (z) = un+1(z) + [un+1
0 − un+1]M0(z)

ρn+1,c (z) = ρn+1(z) + [
ρ̄n+1 − ρn+1

λ− M0(0)
gH

]∂z M0(z)
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Test case and compare

Test Case

Test Case

Barotropic analytic test case to compare the two methods :

Initialization with the barotropic solution (potentially unstable):

ρ = −g ∗ 0.10 sin
2πx

Lx
∂z M0

u = ρ0c2
0 ∗ 0.10 sin

2πx

Lx
M0(z)

Analytic solution : computed with the characteristic method.

Configuration : cyclic domain, flat bottom, H = 4km, L = 15km, dx = 75m,
dz = 200m.

Parameters : N=10−3 s., CFL0 = 0.5, CFL1 = 0.2

Code : 2D-xz

Coordinates : Geopotential vertical coordinates on Arakawa C-grid.

Numerical schemes : Forward-Backward + Upwind schemes + Barotropic
Splitting.
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Test case and compare

Results

Instability and filter effects

First results :

the depth independent (a.k.a. external mode) splitting is unstable. We add a
power-function shaped filter (Shchepetkin, 2005)⇒ Large damping of the
free-surface elevation.

the depth dependent splitting method is stable without filter and very close to
the analytic solution.
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Test case and compare

Results

Density vertical shape

Influence of the depth dependent density correction on the vertical shape of the
density :

Max error = 1.7 ∗ 10−6 Max error = 10−7

depth independent splitting (external mode) depth dependent splitting

Instantaneous plot of |ρdiag − ρ| after 2000 time step
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Conclusion, perspectives

CONCLUSIONS:

The traditional external mode splitting doesn’t allow density correction and is
unstable even in a linear case: it needs a filter correction.

The implementation of a depth dependent splitting in a density formulation is
possible and works well in a linear case without filter.

The work has been extended to the non-linear conservative case with similar
conclusions.

PERSPECTIVES:

Derivation of the barotropic system with a non-flat topography.

Implementation in a realistic model and test if this study could, at the end,
reduce the need and effects of filter.

Try to re-introduce sound waves in a same way ...
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