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Abstract –Physical modelling of the dynamics of a  catchment area 
produces simulation models with a limited forecasting accuracy 
for the discharge of rivers. The discrepancies between the 
simulation model and the actually observed past discharges can be 
used as additional information for error correction. With a time 
series model of the recent past error signal, an improved discharge 
forecast can be made for the next few days. The best type and 
order of the time series model can be selected automatically. 
Adaptive modelling in data assimilation calculates updates of the 
time series model estimated from the error data of only the last few 
weeks. The use of variable updated models has advantages in 
periods with the largest discharges, which are most important in 
flood forecasting. 
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I.   INTRODUCTION 

The importance of an accurate early warning system for 
river flooding is obvious. Improving the forecast of the river 
discharge enhances the safety of riverside residents and can 
prevent material damage. Moreover, an improved forecast of 
the river discharge or the water level has economic 
advantages because the maximum loading of commercial 
vessels in inland navigation depends on the actual water level 
in rivers and ports. Therefore, much attention has been given 
to obtain better forecasts of river discharges. 
 In principle, it is possible to follow the history of a single 
drop of rainfall somewhere in the catchment area until it 
evaporates or disappears in the river. This would lead to very 
complex models. The development of mathematical models 
relating the precipitation incident upon a catchment to the 
emanating stream flow has been a major subject for surface 
water hydrology for decades [1]. One unexpected conclusion 
was that the inclusion of spatial data did not lead to improved 
forecasts. Very often, one quick flow component and one 
slow flow component are all that can be identified and 
calibrated for a given catchment [1]. Many other 
investigations support the conclusion that physical modeling 
does not produce the desired accuracy in flood forecasting. It 
is argued that deterministic models are inappropriate because 
of the inherent uncertainty that characterizes river catchment 
dynamics [2]. The parameters of over-parameterized complex 
models cannot be identified with sufficient accuracy from the 
available data. Only relatively simple simulation models can 

be identified from past data [2]. Automatic calibration 
strategies to determine the parameters for the rainfall-runoff 
simulation model have been compared for a number of 
specific catchments [3]. 
 The discharge data of the simulation model can be 
improved by data assimilation. Observations of the actually 
measured discharge are used to find better forecasts, which 
will fit closer to future measurements. Different error 
correction procedures have been considered, including global 
autoregressive (AR) models, local AR models, neural 
networks and genetic programming [4]. Test data consisted of 
hourly data of the average catchment rainfall, discharge at the 
catchment outlet and daily temperature data to estimate 
evapotranspiration. After the calibration of a simulation 
model, the different updating procedures have been tested. 
The global AR(3) model was the best for small lead times. 
Artificial neural networks gave the least efficient forecasts 
[4]. A further study of the transfer function in neural 
networks gives a preference for the logistic function [5]. A 
comparison of neural networks and autoregressive moving 
average (ARMA) models for the error correction concluded 
that similar results could be obtained with both methods [6]. 
The amount of user interaction and the specifically required 
skills of the user are decisive which method to prefer [6].  
 Recently, a completely automatic algorithm for time 
series analysis with ARMA models has been developed and 
made available [7,8]. Many AR, MA and ARMA candidate 
models are computed for a given random data set. Order 
selection criteria select a single model. Akaike’s AIC 
criterion [9] is prone to select overfit models whereas 
consistent order selection criteria [10] have problems with 
underfit. The best order selection criterion is a compromise 
between overfit and underfit, and it is also adapted to finite 
sample properties [11]. The increased computer power 
enables the routine computation of many candidate models 
and the improved order selection criteria give a single good 
time series model, for small or large data sets alike. That 
model is used to determine spectrum, autocorrelation and 
prediction. 

This paper studies the possibilities of the automatic time 
series program ARMASA [8] for error correction in rainfall-
runoff models. Without user interaction, forecasts are made. 
The length of the past error signal is chosen to give the best 
predictions in times of sudden strong discharge increases, 
which are most important for timely flood warnings. 
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II.   TIME SERIE MODELS   

Three different linear types of time series models can be 
distinguished: autoregressive or AR, moving average or MA 
and combined ARMA models. An ARMA(p,q) model can be 
written as [12] 
 

 
1 1 1 1 ,n n p n p n n q n qx a x a x b bε ε ε− − − −+ + + = + + +      (1) 

 

where εn is a purely random process of independent 
identically distributed stochastic variables with zero mean 
and variance σε

2. It is purely AR for q = 0 and purely MA for 
p = 0. The power spectrum h (ω ) of the ARMA(p,q) process 
is completely determined by the parameters in (1) together 
with the variance σε

2 and is given by: 
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The inverse integral Fourier transformation of (2) gives the 
autocorrelation function, which may have an infinite length. 
Also direct transformations from the time series parameters 
into the autocorrelation function exist [12]. The transform of 
the true or the estimated parameters of an AR(p) model into 
the first p lags of a positive semi-definite autocorrelation 
function is made with the Yule-Walker equations [12] 
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An ARMA(p,q) process is equivalent with an AR(p) process 
with white noise as input, followed by a MA(q) process. The 
parameters of the estimated and selected time series model 
give the best estimators for spectrum and autocorrelation. The 
parameters of that time series model are also particularly 
suited for prediction. The optimal prediction with an AR(p) 
model requires only the last p observations, also for multi-
step ahead prediction [12]. The linear prediction with MA or 
ARMA models uses a recursive method that is also used for 
the computation the exact likelihood for an arbitrary normally 
distributed signal with mean zero [13]. The state space 
representation of Jones is particularly useful [14]. All 
programs for the computation of the spectral density, the 
autocorrelation function and the prediction of future 
observations are part of the ARMASA toolbox [8]. That 
requires only the data and the desired prediction horizon to 
compute the predictions.  

Generally, the mean value of the data is treated separately 
in predictions. The mean is subtracted before the time series 
model is estimated with ARMASA. Also predictions are 
computed for this signal with subtracted mean. Afterwards, 
the previously subtracted mean is added to the predicted 
value to complete the prediction procedure. 

III.     CASE STUDY FEWS-RHINE 

 The Flood Early Warning System FEWS-Rhine is a 
prototype flood forecasting system developed in close 
cooperation by the Federal Institute of Hydrology in 
Germany (BfG), the Institute for Inland Water Management 
and Waste Water Treatment in the Netherlands (RIZA) and 
Delft Hydraulics. This prototype is now being replaced by a 
newly developed open architecture flood forecasting system 
that has been developed by Delft Hydraulics [15] and is used 
by the Environment Agency (UK) for England and Wales. 
This new system will probably be operational in 2006. 
 The Rhine basin is extremely well instrumented. Table 1 
shows a list of stations and tributaries currently incorporated 
in the FEWS-Rhine system. Two types of stations are 
available. The runoffs observed at stations on major 
tributaries and at Maxau are used as boundary conditions to 
the SOBEK routing model [16]. For forecasting, the runoff 
for these stations is determined using the hydrological rainfall 
runoff HBV-96 model [17]. The most suitable option for data 
assimilation is automatic error correction.  
 

Table 1  List of stations on the Rhine and its major tributaries 

Station Tributary Chainage Trib-area Area 
  (km) (km2) (km2) 
Maxau  362.30  50,343 
Speyer  400.60  53,235 
Mannheim  424.90  54,136 
Rockenau Neckar 428.20 14,000 68,486 
Worms  443.40  68,936 
Oppenheim-  480.60  70,462 
Nierstein     
Frankfurt Main 496.60 27,200 98,488 
Mainz  498.30  98,488 
Bingen  528.40  99,277 
Grolsheim Nahe 530.00 4,100 103,407
Kaub  546.20  103,729
Boppard  570.45  103,981
Kalkofen Lahn 588.00 5,900 109,994
Koblenz  591.50  110,131
Cochem Mosel 592.00 28,100 138,231
Nettegut Nette&Wied 610.00 1,100 139,586
Andernach  613.80  139,795
Altenahr Ahr 629.00 850 140,837
Bonn  654.70  141,162
Menden Sieg 660.00 2,900 144,217
Koln  688.00  144,612
Opladen Wupper 702.00 800 145,618
Neubrück Erft 738.00 1,800 147,948
Dusseldorf  744.20  148,040
Hattingen Ruhr 779.00 4,500 153,143
Ruhrort  780.80  153,176
Wesel  814.00  154,528
Schermbeck Lippe 815.00 4,900 159,428
Rees  837.40  159,683
Emmerich  851.90  159,784
Lobith  862.22  160,800
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IV. HYDROLOGICAL MODEL OF RHINE BASIN 

 A hydrological model of the German part of the Rhine 
basin and the Mosel river, shown in Fig. 1, has been 
developed by the Federal Institute of Hydrology in Germany 
[18] for the Institute for Inland Water Management and 
Waste Water Treatment in the Netherlands (RIZA). The 
HBV-96 model has been used of the Swedish Meteorological 
and Hydrological Institute. For modelling purposes, twelve 
basins of major tributaries have been defined (Neckar, Main, 
Nahe, Lahn, Upper Mosel, Saar, Sauer, Lower Mosel, Sieg, 
Erft, Ruhr, Lippe) alongside with four basins of Rhine-
stretches (high, upper, middle and lower Rhine).  
 

Fig 1. The Rhine basin.  

Subsequently, the basins have been further divided into a 
number of areas in order to model spatial heterogeneity. 
These areas can be considered the basic units of the 
hydrological model of the Rhine. The number of units into 
which a sub-basin is divided depends on the number of 
available discharge gauging stations, since discharge data is 
used to calibrate and validate the model for each unit.  

A. HBV-96 hourly model 

 The HBV-96 hourly model [17] is a conceptual 
precipitation-runoff model, which simulates snow 
accumulation, snow melt, actual evapo-transpiration, soil 
moisture storage, groundwater depth and runoff. The model 
input consists of precipitation, temperature and potential 
evaporation. The model consists of three major components: 
a snow routine, a soil routine and a runoff response routine 
consisting of a quick and slow reservoir. 

B. Nahe river, HBV-96 model application 

 The Nahe river basin is made up of three HBV sub-basins 
each having an gauging station at the outlets of Martinstein, 
Boos and Grolsheim, respectively. The measured or modelled 
discharge at Grolsheim is used as input into the hydraulic 
model in the flood forecasting system FEWS-Rhine. Each 
sub basin is divided into several height zones and each height 
zone has two forms of vegetation resulting in a quite a 
number of states. 

C. Mosel river, HBV-96 model application 

 The Mosel river basin is made up of 26 sub-basins. Again, 
each sub-basin is divided into several height zones and each 
height zone has two forms of vegetation. The measured or the 
modelled discharge at Cochem is used in the flood 
forecasting system as input to the hydraulic model used in the 
flood forecasting system FEWS-Rhine. 

V.   APPLICATION OF ERROR CORRECTION 

Some results from the hydraulic HBV-96 model, together 
with the actual measured data are given in Fig.2 for the Mosel 
river. The high peak around day 70 represents an extremely 
high discharge, in November 1998. The rainfall-runoff model 
result is obtained with the HBV-96 hourly hydrological 
model [17]. The purpose in this paper is to use both this 
runoff model and the observations measured until a certain 
time t to make the best prediction for the discharge at future 
times t+1 until t+L. The accuracy of the HBV-96 model is no 
subject in this paper, but only the improvement that can be 
obtained by using the error between the actual measurements 
and the model in the recent past, up to the present moment, 
for a prediction of the future error of the HBV-96 model. 
 

 

Fig. 2.  Measured discharges of the Mosel and a rainfall-runoff results 
of the HBV-96 hydrological model in the period 1998 – 1999. 
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Fig. 3.  Average forecast accuracy for a period of 3 days for the Mosel 
catchment; 150 updates have been made with one day intervals, with 
a model estimated from the error signal in the last three weeks. The  
error correction is made with the automatically selected ARMAsel 

model, with the estimated AR(1) model and with only the mean value 
over the last three weeks.  

 
 As prediction of the discharge, it is possible to use the 
HBV-96 model output at time t plus an error correction that is 
based on the observed difference between model and 
measurement until time t. Also the model output itself could 
be extrapolated to the future and rainfall forecasts can be 
incorporated to improve those model extrapolations [3]. 
However, this paper is only concerned with the best error 
correction and does not discuss the simulation rainfall-runoff 
model. The future output of the given simulation model is 
used to compute the root mean square error in the error 
correction figures, which give the average differences 
between the hourly predictions for the next 3 days and the 
observed differences between model and measurement for the 
same lead times.  

Fig. 3 shows that the dynamic error correction gives an 
important improvement of the accuracy during the first day. 
For prediction further ahead, only a slight difference is found 
with the correction that uses only the mean value. As a 
reference number, the root mean square error RMSE between 
the model discharge and the measurements without any error 
correction would be 199.6 for the data used in Fig. 3. It is 
notable that the error correction with the AR(1) model and 
with the selected ARMAsel model are rather close in this 
example. Results similar to AR(1) are found with all fixed 
order AR models from AR(1) until AR(10). The selected AR 
orders varied between 2 and 8 in the 150 individual updates 
of Fig. 3. It turns out that the AR(1) parameter or reflection 
coefficient is very dominant in the response. The AR(2) 
parameter is also statistically significant and the higher order 
parameters are on the boundary of statistical significance for 
the number of past observations used in the estimation of the 
update model, which was 504. 

 
Fig. 4. Estimated one step ahead squared prediction error as the 

model accuracy of a number of candidate time series models 
estimated from 4292 observations of the difference between the 

measured and the HBV-96 model discharges of the Mosel. The AR(7) 
model was selected for those data. The estimated normalized 

accuracy of the AR(0) model was 21424 and of the AR(1) model was 
191. It is obvious that many AR and ARMA models are suitable 

candidates as model for the error signal, with almost the same  
accuracy of about 136. However, low order MA models are poor. 

 
The ARMAsel program can give additional information 

about the estimated accuracy of the squared one step ahead 
prediction of all candidate time series models that have been 
estimated with ARMAsel [8]. The estimated accuracies of the 
time series models in Fig. 4 shows that many global AR and 
ARMA models give a reasonable accuracy. It should be 
realized that the characteristics of the data, like in Fig. 2, are 
not really stationary. This will have a strong impact on the 
predictions further ahead. Probably as a result hereof, also 
predictions with an AR(1) model give good results in Fig. 3, 
comparable with the ARMAsel result. Only 504 observations 
are used for each predicting model in Fig. 3, whereas Fig. 4 is 
based on many more observations. More parameters become 
statistically significant then. It has also been verified that 
predictions with a global AR(30) model give almost the same 
accuracy as predictions with local AR(1) or AR(2) models. If 
more than about 100 parameters are estimated, the quality of 
AR and MA models is approximately the same in Fig.4. 
 Fig. 5 gives the results of error correction for the Nahe 
catchment. It is obvious that the behavior is quite different 
from the Mosel. The horizon for accurate predictions is only 
about 15 hours here. Furthermore, the performance of the 
AR(1) correction is much worse than that of ARMAsel. Also 
Fig. 6 with the model accuracies looks quite different from 
Fig. 4 with the Mosel results. This shows that ARMAsel with 
selection of the best model gives satisfactory error corrections 
for the various circumstances that have been studied. Also 
results for the Main and the Neckar catchment have been 
tested, with the same conclusion. Using fixed order AR(1) or 
AR(2) will be good in some examples, poor in others. 
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Fig. 5. Average forecast accuracy for a period of 3 days for the Nahe 
catchment; 150 updates have been made with one day intervals, with 
a varying model based on the last 504 hours. The error correction is  

made with the automatically selected ARMAsel model, with the 
estimated AR(1) model and with only the mean value over the last 

504 hours. 
 

 
Fig. 6. Estimated one step ahead model accuracy of candidate time 
series models estimated from 4292 observations of the difference 

between measured and simulated discharges of the Nahe. The 
MA(62)  model was selected for those data. The estimated accuracy 
of the AR(0) model was 846, of the AR(1) model was 7.3 and of the 

AR(3) model was 1.8. AR(1) is not a good choice for those data. 
 
 Especially the behavior of the AR models is quite 
different for the Mosel and Nahe data in Fig. 4 and Fig. 6, 
respectively. The best global model for the Nahe is the 
MA(62) model. That means that the autocorrelation function 
is completely damped out after 62 hours. The fact that 
prediction in the Mosel model is possible for a longer lead 
time than in the Nahe follows also from the fact that the 
autocorrelation function of the Nahe discharge data dies out 
much quicker in Fig. 7. 

 
Fig. 7. Estimated autocorrelation functions of the difference between 
the HBV-96 model and the measured discharges of the Mosel and 

Nahe catchments. 
 

 It is good if the average error over a long period is small, 
but it would still be better for early flood forecasting if the 
extreme values are predicted well. Therefore, the error 
correction has been tested on the interval from week 67 and 
76 in Fig. 2. Results are given in Fig. 8. With those strong 
varying discharges, the lead time giving still accurate 
predictions is smaller than in Fig.2 and the remaining error is 
more than 50 % greater. Using the selected model from 
ARMAsel is significantly better here than using the fixed 
AR(1) model. The RMS error without correction is 362 m3/s 
in those 10 days. Hence, the error is reduced with more than 
50 % for a lead time of almost a day, which may lead to a 
much a better quality for the overall flood warning system. 
 

 
Fig. 8. Average forecast accuracy for a period of 3 days for  the Mosel 

catchment; 10 updates have been made with one day intervals, 
starting at day 67 in Fig. 2 with a varying model based on the last 
three weeks. The evaluated section is has the highest discharge. 
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Table 2.  Influence of the history length in hours, used for estimation 
with ARMAsel on the RMSE accuracy of the Mosel discharge error 

correction, averaged over the first 12 hours of the prediction. 
Predictions have been made over the 150 day period and over a short 

period of 10 days with the peak discharge . 
 

History length 
in hours 

150 day 
period 

10 days, peak 
period 

   

10  83.5 216.4 
20 79.4 203.5 
50 62.8 129.5 

100 57.8 108.0 
200 53.1 80.4 
300 51.5 71.9 
400 50.4 67.1 
500 49.6 66.3 
750 49.3 72.6 

1000 50.8 85.8 
2000 50.7 85.6 
3500 50.5 80.8 

 
 An AR(1) model gives often a reasonable error correction 
and it can be estimated if 10 or more observations are 
available. Therefore, error correction can use a very short 
history and still be successful. Which length of the history 
used for computing the error correction model, however, will 
give the best error correction? The history length has been 
varied to study the influence on the error correction accuracy. 
Table 2 gives the average RMSE of the first 12 hours of the 
predictions, like in Fig. 3 for the whole 150 day period and in 
Fig. 8 for the 10 day peak period, both as a function of the 
history length used for parameter estimation in each daily 
update. The error correction has always been made with the 
automatically selected ARMAsel model.  

Table 2 shows that a using very short period as history for 
estimation of the error correction model is not advisable. The 
difference is greater for the peak period than for the longer 
period. The RMSE is much greater than can be obtained with 
a longer history. A history length of around 500 hours is the 
best. The average RMSE in the discharge over a long period 
is steadily becoming almost a constant if more data are used 
for the computation of the ARMAsel model that is used for 
error correction. However, the modeling of the peak 
discharges has a different performance. The accuracy is 
becoming less if a longer history is used to estimate the 
model for error correction. Here, a history length of 500 
hours or three weeks gives the best predictions.  
 

VI.  CONCLUDING REMARKS 
 

The ARMAsel algorithm has a good performance for 
small samples as well as for a very large number of 
observations. History lengths from 10 hours to several 
months can be used for estimation without any problem. 

In stationary conditions, the prediction accuracy becomes 
somewhat better if a longer history of past errors is used to 
compute the time series model. A length between 300 and 
750 hours gives a good response in quickly changing 
circumstances as well as in more stationary conditions. 

The autocorrelation function and the prediction horizon 
are rather different for catchments modelled with the same 
hydrological model. The use of ARMAsel automatically 
adapts the error correction to the dynamics of the catchment 
that is involved.  
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