
DELFT-FEWS

Published Interface

Version 2.5

21 March 2005

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

CLIENT:

TITLE: Published Interface

REFERENCES:

VER. ORIGINATOR DATE REMARKS REVIEW APPROVED BY
0.9 Schellekens December 9, draft Werner Heynert
1.0 Schellekens January 23, 2003 final draft Werner Heynert
2.0 Werner February 20, 2003 final Heynert Bons
2.1 Schellekens/vdAkker July 10, 2003 final Werner Segeren
2.2 Heynert September 10, 2003 update Werner Ruijgh
2.3 Heynert September 24, 2003 update Heynert Akker
2.4 Schellekens/vanKappel November 25 2004 update Werner Ruijgh
2.5 Schellekens March 21, 2005 update Werner Ruigh
PROJECT IDENTIFICATION: Q3049

KEYWORDS: DELFT FEWS, NFFS, Flow Forecasting System, Published Interface,
General Adapter

NUMBER OF PAGES

CONFIDENTIAL: YES, until (date) NO

STATUS: PRELIMINARY DRAFT FINAL

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella P r e f a c e

Guide to the reader

This document describes the interface (data types and formats) that modules need to adhere
to when they are to work within the DELFT-FEWS system, together these form the
DELFT-FEWS published interface. The document describes the recognised file formats.
This includes an extensive description of the formats as defined in XML-Schema files.
These are included in the Appendices.

New in version 2.1 (compared to 2.0)

The original General Adapter Specifications document has now been split in two parts. One
part describing the General Adapter configuration and one part (this part) describing the
files and formats that constitute the published interface. This information is essential to third
parties undertaking development of module adapters to interface with NFFS. To avoid
confusion the documentation required for configuring the general adapter, itself a part of
NFFS, has been moved to the other part. The information in this part should be sufficient for
the construction of module adapters for the system. In the new version of the published
interface all the separate schema’s have been incorporated into a single schema file:
fileformats.xsd. Most of the root elements are the same as those in the previous version (see
below for a summary of the changes). Apart from the changes to the root elements described
below, xml files that conform to the previous implementation can be left unaltered apart
from the schema location which is now fileformats.xsd for all types. The following changes
have been made since the previous version of the file formats specifications:

All: A new TimeStep type has been introduced. This affects the following root
elements/file formats : TimeSeries, MapStacks, Longitudional profiles, Polygons.
All: all root elements now have a required version attribute that must be set to 1.1 (was
1.0)
All: all root elements (file formats) that have a date/time child now have an (optional)
timeZone element.
All: A new name conventions is used for elements

All root elements and complex types start with a upper case letter
If an element (or an attribute) name is composed of more than one word each word
(except the first) is capitalized.

Time series: the ascii file format is no longer supported in the published interface.
Time series: the schema definition now allows for multiple series in a single file
Time series: the timeseriesId element is removed. Instead the locationId element is now
required and a parameter element is introduced. The content element is removed.
Time series: the startDate and endDate elements are now required.
Locations: The model of the children of the location element has been changed from all
to sequence (for most practical purposes the entails no change since the previous
version)
Map stacks: the schema definition now allows for multiple series in a single file.
Map stacks: attributes of the mapStack element (TimeStep, startDate, endDate) have
been converted to (required) child elements. The version attribute has been moved to the
new root element (MapStacks)
Map stacks: The gridid element has been removed, a (required) locationId element has
been added, the parameterId element has been renamed to parameter

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella P r e f a c e

Map stacks: the event element has been added. This is used for specifying the date and
time with non-equidistant map stacks.
Grid cell centre points: the name of the root elements has been changed from locations
to Cells.
Module state data: a stateId element (required, defined by the module) has been added.
The (optional) stateName, and dateTime elements have been added.
Longitudinal profile: the schema definition now allows for multiple series in a single
file.
Longitudinal profile: locationId ,parameter, startDate, endDate, TimeStep and (optional)
branchId elements have been added.
Longitudinal profile: the profile element holds a new event element. The xData element
used to be a child of the profile element, it is now a child of the event element.
Module parameters: the optional moduleId element has been removed.
Lookup tables: the root element has been renamed to table. The structure of the root
element has changed considerably and now allows for an unlimited number of columns.
Module diagnostics output: the level order has been reversed (see text). No changes to
elements or attributes.
Branch data: the attributes of the branch element (-branchID, branchName,
startChainage, endChainage, upNode, downNode) have been converted to child
elements.
Cross-sections: all the attributes of the crossSection element have been converted to
child elements. XsectID has been renamed to xSectionId.
Lateral inputs: the link to timeseries date for the lateral input is now performed using
the locationId/parameter combination. The timeseriesid and the timeseriesfile elements
are removed.
Polygons: the schema definition now allows for multiple series in a single file.
Polygons: the points element is changed and is now unbounded to allow for time series.
Polygons: the polygonid elements is removed, the locationId and parameter elements
have been added.

Grid cell centre points were grouped among the dynamic data types, they are now classified
as static data. Conversely, polygons are now listed as dynamic data.

A graphical overviews of the root elements has been added to the description of each format.
The complete schema documentation remains in appendix D.

New in version 2.2

Chapter 3 has been updated.

In Chapter 4 the application of module adapters has been added which was also included
version 2.0 of this document but has fallen out in version 2.1.

Appendix F is added describing in more detail the interaction between the NFFS and
external modules.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella P r e f a c e

New in version 2.3

The updated version 2.3 was made after discussion with HR Wallingford and CEH
Wallingford regarding their module adapters.

The version number of the root elements has been changed to 1.2
Although the schema does allow otherwise, it has been decided that all datapoints in the
timeseries files should be in chronological order.
A typing error (devider -> divider) has been corrected in the TimStep type
The single schema (fileformats.xsd) has been split into several files, each containing a
single file-format (root element).

New in version 2.4

Document has been updated to reflect that the PI is a part of DELFT-FEWS and not the
NFFS only.

New in version 2.5

Added memo in appendix F
Updated explanation in states and diagnostics sections
Added a questions and answers section

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella P r e f a c e

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella i

Contents

1 Introduction .. 1—1

2 Testing ... 2—1

3 Relation with other XML standards .. 3—1

4 Running modules from Delft-FEWS.. 4—1

4.1 Principles ... 4—1

4.2 Module runtime environment ... 4—2

4.3 Data exchange between General Adapter and Modules 4—3

5 General Remarks.. 5—1

6 Introduction to File Format Specifications .. 6—1

7 Dynamic data.. 7—1

7.1 Time Series .. 7—1

7.2 (Time series) Location..7—4

7.3 Map (stacks) data (grids) .. 7—5

7.4 Module state data ... 7—7

7.5 Longitudinal profile ... 7—9

7.6 Module parameters... 7—11

7.7 Lookup tables .. 7—12

7.8 Module diagnostics output ... 7—14

7.9 Polygons .. 7—15

8 Static data ... 8—1

8.1 Grid cell center points .. 8—1

8.2 Branch data.. 8—2

8.3 Cross-sections .. 8—4

9 Lateral inputs ... 9—1

10 List of files... 10—1

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella i i

List of Appendices

A XML Schema listings... A–1

B Grid data file formats .. B–1

B.1 PCRaster... B–1

B.2 USGS BIL / BSQ / BIP ... B–1

B.3 Image file.. B–2

B.4 ESRI ASCII .. B–2

C EA Schema to PI mapping... C–1

D Quality flags... D–1

E Schema Documentation ... E–1

F Module Adapter Application ..F–1

G Questions and aswers ..G–1

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 1 — 1

1 Introduction

This document describes the interface (data types and formats) that modules need to adhere
to when they are to work within the DELFT-FEWS system, together these form the DELFT-
FEWS published interface. This document describes the recognised file types.

All data exchange is done by means of Extended Markup Language (XML) files. XML is a
markup language used to describe the structure of data in a meaningful way. XML is widely
used and as it is an open standard many free (and commercial) tools exists to create XML
documents.

XML Schemas are used to describe the contents of XML documents. An XML schema (see
http://www.w3.org/XML/Schema for more information) is available for each file
type. The exception in the interface published here being gridded data that is stored in
separate (binary or ASCII) files and (optionally) ASCII based time series that can be used by
the general model adapter.

Although the description of the file formats can be extracted from the XML schema files,
Appendix E includes a tabular description of all the Schema (XSD) files. In addition, XML
sample documents are provided for all file formats. However, if the schema documentation
is not complete (or clear), the actual schema (XSD) files should be consulted. To keep the
document to a manageable size, these files have not been printed and included in the
documentation. The files are available in digital format.

http://www.w3.org/XML/Schema

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 1 — 2

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 2 — 1

2 Testing

WL | Delft Hydraulics maintains a number of XML schema files that describe the layout of
the files that together form the NFFS published interface. To validate if XML files adhere to
the interface, the schema files can be used in combination with one of available schema
validators. The w3 consortium maintains a list at:

 http://www.w3.org/XML/Schema

The example files in this document have been validated using the jedit XML mode
(available freely at www.jedit.org) and by using XMLSPY, but many other (free and
commercial) alternatives are available.

The ASCII and binary grid files should be prepared according to the specifications given in
Appendix B.

http://www.w3.org/XML/Schema
http://www.jedit.org)

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 2 — 2

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 3 — 1

3 Relation with other XML standards

Similar to the establishment of an XML based published interface between third party
modules and DELFT_FEWS through the General Adapter, the U.K. Environment Agency
has established XML schemas as a standard for exchange of data between the various sub-
systems of the Agency. This is particularly relevant to the Flow Forecasting Systems under
development as it will include the exchange of data between this system and external data
sources (RTS, DDS etc.).

The approach taken was compared to that used in the published interface described in this
document. Although the two definitions are strictly separate, where the published interface
described here is used to communicate between the DELFT-FEWS system and third party
modules, while the EA Schemes are used for exchange of data between the different systems
within the EA, it is seen as a potential advantage that the different schemes are comparable.
It is accepted that the schemes may differ.

In the comparison of the schemes attention has only been paid to the Schema established for
hydrometric data and the time series definition used here. The differences between the two
schemas have been reviewed and where appropriate amendments have been made to the
published interface time series format such that relevant information can be easily mapped
from one scheme to the other. In the appendices of this document a spreadsheet is supplied
indicating this mapping.

The main differences between the DELFT-FEWS Published Interface and the EA XML
schemes comprise:

The EA Schema contains more extended header information. Where appropriate
these fields have been included in the published interface time series formats.
Although the available fields are extensive, most are optional and need not be
supplied if not available.
The geographic datum included in the EA scheme considers only the British
National Grid. In the published interface different datums may be considered and
must be explicitly named.
Both the published interface and the EA hydrometric data schemes apply a
philosophy of a single data stream for each data type. This is in contrast with the
tidal scheme where multiple data types are contained in each data stream. This
approach is not advocated as this may endanger the openness of the system.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 3 — 2

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 4 — 1

4 Running modules from Delft-FEWS

In this section the interaction between the DELFT-FEWS and external modules is described.
Additional details are given in Appendix F.

4.1 Principles

To allow running modules within the DELFT-FEWS through the general adapter, these
modules must adhere to a number of conventions. The general adapter does provide a
flexible interface, which entails that there is not a singular strict definition on how modules
are run. However, the options provided do not allow complete freedom. This section
describes in detail how a module is run and what conventions exist.

In all cases, the central philosophy of the general adapter is that it is to as large an extent as
possible ignorant of module specific details. This intelligence is strictly separated from the
DELFT-FEWS side of the system, as this guarantees an open system. Module specific
intelligence required by the module for running this in real time is vested in the module
adapter itself. Figure 1 gives a schematic view on the interaction between DELFT-FEWS
(central database) on the one side and the Module on the other. Communication is
established through the published interface. The general adapter (this module is a part of
DELFT-FEWS) is configured to provide the required data (both dynamic and static) in the
published interface format. A module adapter (supplied by the same supplier as the module
itself) is used to translate the data from the published interface format to the native module
format.

Figure 1 Schematic interaction between the General Adapter and the Module adapter through the published
interface.

Module Adapter

Module
input data

Module
output data

Module

NFFS

General Adapter

Module Adapter

Module
input data

Module
output data

Module

NFFS

General Adapter

DELFT-
FEWS

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 4 — 2

4.2 Module runtime environment

Most conventions for running modules from DELFT-FEWS through the general adapter
concern the runtime environment.

 Module input and output

In configuring the general adapter to provide data for use in a specific module, an agreed
location (URI path) is given. All files are then written to this location for use by the module
adapter. This location, as with all locations configured in the general adapter is a static
location, i.e. once configured it does not change from run to run.

In a similar fashion, the module output is expected by the general adapter to be read from an
agreed location (URI path). This need not be the same location as that used to make data
available to the module.

 Running modules from DELFT-FEWS

Running the executable of a third-party module can be defined to follow two principles.

A single task may be defined, where the general adapter makes a call to a single
executable. This is for example a call to the module adapter which then imports data
to the module specific format, runs the actual module and subsequently exports data
from the module specific format.
Alternatively, the general adapter can be configured to run three separate tasks in
series. The first task is a call to the module adapter to import data to the module
native format, the second is a call to the module executable itself and the third and
final task is to the module adapter to export results from the native module format to
the published interface format.

Of these two options, use of the second option is advocated, as it is then only the general
adapter that is required to maintain control over an executable (thread) run by a processor,
while the module adapter is only required for reading and writing data. In the first option
both the general adapter and the module adapter need to control an executable (thread).

For each task (executable) that is initiated from the general adapter, a working location (URI
path) can be defined that is set as the work directory for that executable. This location is
again static and does not vary per module run.

Tasks initiated by the general adapter may be given a command line argument. This
argument is as with the locations static, and can therefore not contain any dynamic settings
(e.g. start of run time etc.).

 User interaction

Modules called from the DELFT-FEWS system should in principle be defined such that
these require no user interaction through menus and screens. This principle holds for all
modules that are run from the system as a requirement in making an automatic forecast.
These modules are then typically run on forecasting shell servers, i.e. dedicated servers for

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 4 — 3

module execution. An exception to this rule can be made for modules run on the operator
client that require manual interaction. The interface to these is from the point of view of the
general adapter exactly the same as any other module. However, the module itself may
require user interaction to complete the task required. An example is the interactive
correlation utility.

 Diagnostics

Should the module be run in a special diagnostic mode, then this can be achieved where
applicable though command line arguments.

4.3 Data exchange between General Adapter and Modules

The prime means of communication between external modules and DELFT-FEWS through
the general adapter is in the form of data exchange. For running modules in a dynamic
situation, this data comprises mainly exchange of dynamic data (see also next sections).

Module input data

Exchange of data is primarily through time series. These are formatted as XML files. The
data passed to the modules is in principle already validated by DELFT-FEWS and if
applicable gaps in data are filled using the interpolation module. The modules will not be
required to perform any data validation or interpolation to fill missing values. Depending on
their usage, data series can be passed with or without missing values replaced.

For data series used as boundary conditions to modules, these must typically be complete
and missing values are not allowed. The interpolation module (part of DELFT-FEWS) will
then be configured such that this is guaranteed.

Data series used for data assimilation, the raw data must be passed. This entails that missing
values are not replaced through interpolation. These series will, however, be validated using
DELFT-FEWS functionality to remove outliers.

Each data point in a data series is supplied with an additional flag. This flag can be used as a
quality flag, indicating for example if a gauge reading is in a range that makes its accuracy
questionable. This is referred to as a soft limit, as opposed to a hard limit. Data exceeding
hard limits is in principle removed by the validation module.

Module results

Results from external modules may be complete series, but may also contain missing values.
For equidistant data series (where a time interval is defined), a time value not included in
the file is considered as missing. A missing value constant may also be explicitly defined.

Dealing with module states

Module states can be configured to be exchanged between the central database and the
module. These module states are handled in proprietary module formats, and the DELFT-

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 4 — 4

FEWS system will not be able to make changes in module states. This would require
extensive intelligence on the part of the DELFT-FEWS system on the syntax and semantics
of module states. States are administered by the DELFT-FEWS system passively, with a
time stamp associated with each module state. This time stamp indicates the time for which
that state is valid. On running a module, the state associated with the start time of that run is
made available through the module adapter.

For each module a default state is also administered which can be used in for example cold
start conditions. This default state does not have a fixed time stamp. Besides this defaults
state, the system can also administer a number of scenario states in the same way, where
these do not have a definite time stamp. For some modules, there is a requirement that when
the state is used to initiate a run, then that state must have within it the exact time stamp for
which it is valid. If this is the case then the module adapter is responsible for setting that
time stamp.

On completion of or during a module run module states can be exchanged through the
general adapter. Each state carries in the XML file definition the time stamp with which it is
associated.

The DELFT-FEWS system itself does not allow for amending values in system states. If a
value from an external source (e.g. SMD values, reservoirs levels) is required to be
amendable in the module state, then this is passed to the module a (non-equidistant) time
series. The module adapter is responsible for incorporating these values into the module
state in a meaningful way.

Module diagnostics

Communication of module diagnostics is through the applicable published interface formats.
The general adapter starts a task, and on completion reads the output of that task. There is no
provision for intermediate communication.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 5 — 1

5 General Remarks

The following remarks apply to all parts of this document:

All date and time information is in GMT unless stated otherwise. Note that the ISO
8601 specification allows for specifying the timezone within the time type itself the
use thereof is depreciated. Please use the timeZone element instead
If no recognised geographical datum is given all location data is assumed to be in a
local (metric) grid
The consistency of links (i.e. between branches and lateral inputs) should be
checked before importing the data. DELFT-FEWS imports the data and links as is.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 5 — 2

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 6 — 1

6 Introduction to File Format Specifications

In this part the layout of all the different file types (used by the general adapter) is briefly
described. The full description is given in the Appendix which holds the schema
documentation. If the schema documentation is not complete (or clear), the actual schema
(XSD) files should be consulted. The supported ASCII grids and binary grids are not
described in the schema files. The format descriptions of these files are contained within this
document in the Appendices.

Please note that only a subset of the presented files formats may be needed for a particular
application. It’s prime communication with external forecasting modules is through dynamic
data such as time series, model states and diagnostics (see below). The published interface
formats have been defined to cover a wider range of data types, but these need not be used
in all cases – i.e. there is no requirement to allow communication of all data types. Indeed
there is currently no module that caters for the full range of formats.

In exchanging data between a module and NFFS, a prioritisation of data types can be
identified.

Priority Data Type Comment

1 Time Series
Module states
Diagnostics

sufficient to cover most
modules used in flood
forecasting systems, including
e.g. Mike-11 and NAM

1 (a) Time series of grid data additionaly required for
modules with 2D I/O formats
(e.g inundation codes)

2 Parameters Module parameters may be
passed where the module allows
calibration through the NFFS
calibration facilities

2 (a) Longitudinal profile data For hydrodynamic modules
longitudinal data types may be
passed – not a strict
requirement.

3 Static data (cross sections,
branches, etc)

This data is not required for
operational forecasting. In
exceptional cases data such as
on branches may be required
(for display purposes), but this
need not be passed through the
adapter and can be configured
as appropriate.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 6 — 2

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 1

7 Dynamic data

7.1 Time Series

Time series data represent data collected over a given period of time at a specific location.
DELFT-FEWS can read and write time series in XML format (see fileformats.xsd) described
below. Time series files can contain both equidistant times series and non-equidistant series.
Multiple time series can be stored in a single file. All time and date information is given in
GMT unless otherwise stated. The default (and preferred) missing value definition is NaN.
Quality flags are constructed on a philosophy of two qualifiers. The first described the origin
of the data and the second the quality.

Possible origins of data are:

1. Original: This entails the data value is the original value. It has not been amended by
DELFT-FEWS

2. Completed: This entails the original value was missing and was replaced by a non-
missing value.

3. Corrected: This entails the original value was replaced with another non-missing value.

Possible qualifiers are:

1. Reliable: Data is reliable and valid
2. Doubtful: The validity of the data value is uncertain
3. Unreliable: The data value is unreliable and cannot be used.

See Appendix 10D for a tabular presentation of the quality flags.

schema file, root element Example file
pi_timeseries.xsd, Timeseries Timeser.xml

The XML file holds a header containing metadata for the time series. Time series may either
be equidistant or non-equidistant. This is indicated in the timestep element.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<TimeSeries version="1.1" xmlns="http://www.wldelft.nl/fews" xmlns:target="http://www.wldelft.nl/fews"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.wldelft.nl/fews
pi_timeseries.xsd">

<series>
<header>

<type>accumulative</type>
<locationId>Rhine_99_1</locationId>
<parameter>Precipitation</parameter>
<timeStep>

<seconds>3600</seconds>
</timeStep>
<startDate date="1967-08-13" time="14:00:00"/>
<endDate date="1967-08-13" time="15:00:00"/>
<missVal>-999</missVal>
<longName>Rockenau</longName>

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 2

<stationName>Rockenau</stationName>
<units>mm</units>
<sourceOrganisation>BfG</sourceOrganisation>
<sourceSystem>DWD-system3</sourceSystem>
<fileDescription>Very short series for Rockenau</fileDescription>
<creationDate>2003-01-11</creationDate>
<creationTime>14:00:00</creationTime>

</header>
<event date="1967-08-13" time="14:00:00" value="3.1" flag="0"/>
<event date="1967-08-13" time="15:00:00" value="-999"/>

</series>
<series>

<header>
<type>instantaneous</type>
<locationId>Rhine_99_3</locationId>
<parameter>Discharges</parameter>
<timeStep>

<noneq/>
</timeStep>
<startDate date="1967-08-13" time="14:00:00"/>
<endDate date="1967-08-13" time="15:00:00"/>
<missVal/>
<longName>Rockenau</longName>
<stationName>Rockenau</stationName>
<units>m3/s</units>
<sourceOrganisation>BfG</sourceOrganisation>
<sourceSystem>DWD-system3</sourceSystem>
<fileDescription>Very short series </fileDescription>
<creationDate>2003-01-11</creationDate>
<creationTime>14:00:00</creationTime>

</header>
<event date="1967-08-13" time="14:00:00" value="3.1" flag="0"/>
<event date="1967-08-13" time="15:00:00" value="NaN"/>
<event date="1967-08-13" time="18:00:00" value="7.1"/>

</series>
</TimeSeries>

The structure of the XML schema is given in the figures below. Note that attributes are not
displayed in the figures. Consult the full schema (+documentation) for details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 3

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 4

7.2 (Time series) Location

Time series location data files identify points at which specific times series exist. A point is
represented by X, Y and Z co-ordinates. If no geographical datum is supplied LOCAL is
assumed.

schema file, root element example file
pi_locations.xsd, Locations location.xml

Example:
<?xml version="1.0" encoding="UTF-8"?>
<Locations xmlns="http://www.wldelft.nl/fews" xmlns:target="http://www.wldelft.nl/fews"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.wldelft.nl/fews
pi_locations.xsd" version="1.1">

<geoDatum>WGS-1984</geoDatum>
<location>

<stationName>Mozel 34</stationName>
<locationId>LocationA</locationId>
<x>3.2</x>
<y>3.1</y>
<z>100</z>

</location>
<location>

<stationName>Hupselse beek</stationName>
<locationId>LocationB</locationId>
<x>5.1</x>
<y>3.9</y>
<z>100</z>

</location>
<location>

<stationName>No</stationName>
<locationId>LocationC</locationId>
<x>4.1</x>
<y>3.1</y>
<z>100</z>

</location>
</Locations>

The structure of the XML schema is given in the figures below. Note that attributes are not
displayed in the figures. Consult the full schema (+documentation) for details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 5

7.3 Map (stacks) data (grids)

Maps stacks are time series of grid data. Map stacks that hold one time step are treated as
static data. The maps themselves are stored in either binary or ASCII file(s) but the
description and the information needed to import them into the DELFT-FEWS database is
stored in an XML file.

Each time step is stored in a separate ASCII/PCRaster based file or in a single USGS BIL
file. In the former the order of the maps is determined by the file extension and up to the last
four characters of the first part of the filename:

(eg. evap0000.001, evap0000.002 …. evap0000.999, evap0001.000). This limits the
size of a stack of maps to 9999999.

schema file, root element example file
pi_mapstacks.xsd, Mapstacks mapstack.xml

Example:
<?xml version="1.0" encoding="UTF-8"?>
<MapStacks xmlns="http://www.wldelft.nl/fews" xmlns:target="http://www.wldelft.nl/fews/interface-0.9"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.wldelft.nl/fews
pi_mapstacks.xsd" version="1.1">

<geoDatum/>
<mapStack>

<locationId>test1</locationId>
<parameter>vpd</parameter>
<timeStep>

<noneq/>
</timeStep>
<startDate date="2003-09-09" time="18:00"/>
<endDate date="2003-09-09" time="20:00"/>
<file>

<usgs file="file://allvpd.bil" header="file://allvpd.hdr"/>
</file>
<!--Three maps are defined, starting at 18:00, ending at 20:00-->
<event date="2003-09-09" time="18:00"/>
<event date="2003-09-09" time="19:00"/>
<event date="2003-09-09" time="20:00"/>

</mapStack>
</MapStacks>

The structure of the XML schema is given in the figures below. Note that attributes are not
displayed in the figures. Consult the full schema (+documentation) for details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 6

The following three formats are allowed for the actual grids:
1. ESRI .ASC ASCII file grids (see appendix B3)
2. USGS BIL, BIP, BSQ files (with a separate header, see appendix B2)
3. PCRaster maps (see appendix B1)

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 7

7.4 Module state data

Modules can have their state (i.e. all the data and parameters the module needs to restart)
saved by DELFT-FEWS. Many different solutions are in use by current models. As such,
DELFT-FEWS regards model state data as a black box, it is not parsed or interpreted by the
system. Programs must specify a list of files and/or directories that DELFT-FEWS can save
(and later restore).

The model data state file is an XML file in which a read and write location are specified for
each file/directory. If the read location is a directory, the write location needs to be a
directory also (and v.v).

Each state must include a timestamp indicating the date and time for which that state is
valid. A module ID is included to identify to which module the state pertains.

The readLocation is the location the module adapter reads from, the writeLocation is the
location the module adapter writes to. Consequently the general adapter will read the data
from the writeLocation and write the data to the readLocation.

Schema file, root element example file
pi_state.xsd, State state.xml

Example:
<?xml version="1.0" encoding="UTF-8"?>
<State xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews pi_state.xsd" version="1.1">

<stateId>sum23</stateId>
<stateName>Summer 1995</stateName>
<dateTime date="2003-06-06" time="10:00"/>
<stateLoc type="file">

<readLocation>file://d:/exp/sbek.mda</readLocation>
<writeLocation>file://d:/imp/sbek.mda</writeLocation>

</stateLoc>
<stateLoc type="directory">

<readLocation>file://d:/HBV</readLocation>
<writeLocation>file://d:/HBV</writeLocation>

</stateLoc>
</State>

The structure of the XML schema is given in the figures below. Note that attributes are not
displayed in the figures. Consult the full schema (+documentation) for details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 8

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 9

7.5 Longitudinal profile

A Longitudinal profile describes a profile of (part of) a branch. For each point in a profile a
chainage and a value are defined. Multiple profiles can be specified in a single file. Each
profile can hold several timesteps, i.e. several instances of the same profile at different
times.

schema file, root element Example file
pi_profiles.xsd,Profiles Prof.xml

Example:
<?xml version="1.0" encoding="UTF-8"?>
<Profiles xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews pi_profiles.xsd" version="1.1">

<geoDatum/>
<profile>

<locationId>some id</locationId>
<parameter>water level</parameter>
<timeStep>

<seconds>3600</seconds>
</timeStep>
<startDate date="2003-09-09" time="13:00"/>
<endDate date="2003-09-09" time="14:00"/>
<event date="2003-09-09" time="13:00">

<xdata x="12" y="13" z="0" chainage="356" value="24.9"/>
</event>
<event date="2003-09-09" time="14:00">

<xdata x="12" y="13" z="0" chainage="356" value="24.9"/>
</event>

</profile>
</Profiles>

The structure of the XML schema is given in the figures below. Note that attributes are not
displayed in the figures. Consult the full schema (+documentation) for details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 1 0

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 1 1

7.6 Module parameters

DELFT-FEWS can read and write module parameters in XML format. The format is
described in the schema. Each file can contain a number of parameters that are (optionally)
combined in parameter sets. A parameter can be a floating point value (with a specified
minimum and maximum value), an integer value (also with a specified minimum and
maximum value) or a Boolean value (either 0 or 1, false or true). Double long and Boolean
values can have an allow adjust parameter that indicates if DELFT-FEWS may adjust the
parameter in some sort of fitting exercise. String parameters can be used to store specific
module information.

schema file, root element example file
pi_parameters.xsd, parameters params.xml

Example:
<?xml version="1.0" encoding="UTF-8"?>
<Parameters xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews pi_prameters.xsd" version="1.1">

<param>
<name>Van genuchten Alpha</name>
<data>

<doubleData alowAdjust="1" maxVal="0.6" minVal="0.01">0.12</doubleData>
</data>

</param>
<param>

<name>Van genuchten n</name>
<data>

<doubleData alowAdjust="1" maxVal="1.9" minVal="0.6">1.2</doubleData>
</data>

</param>
<param>

<name>Nr itterations</name>
<data>

<intData alowAdjust="0" maxVal="500" minVal="3">300</intData>
</data>

</param>
</Parameters>

The structure of the XML schema is given in the figures below. Note that attributes are not
displayed in the figures. Consult the full schema (+documentation) for details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 1 2

7.7 Lookup tables

To relate parameters in lookup tables two or three parameter lookup tables can be used (e.g.
stage height to discharge tables). Each XML file can contain one or more relations. Optional
information such as extrapolation type and the validity (time) of the relation can be added.

schema file, root element example file
pi_table.xsd, table lookup.xml

Example:
<?xml version="1.0" encoding="UTF-8"?>
<Table xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews
pi_table.xsd" version="1.1">

<rel>
<info>

<startDate date="2003-09-09" time="13:00"/>
<extrapolation type="non"/>

</info>
<!-- The following defines a 2 rows by three columns matrix -->
<rows>2</rows>
<cols>3</cols>
<data>

<!--The items are processed per row-->
<item type="double">12</item>
<item type="double">30</item>
<item type="string">Waterlooo station</item>
<item type="double">13</item>
<item type="double">40</item>
<item type="string">Westeinder</item>

</data>
<!-- The end-result, in tabular form should look like this:

 col1 col2 col3
 ==========================
 12 30 Waterloo station
 13 40 Westeinder

-->
</rel>

</Table>

The structure of the XML schema is given in the figures below. Note that attributes
are not displayed in the figures. Consult the full schema (+documentation) for
details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 1 3

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 1 4

7.8 Module diagnostics output

DELFT-FEWS uses the module diagnostics output format to report the results from modules
to the user. The general adapter can also use these files. The diagnostics files can hold
several warning levels attached to a line (message):
3 = info (information, all is well, e.g. :"SOBEK: program ended") 2 = warn (warning
information. e.g. "SOBEK: high number of iterations") 1 = critical (critical problems. e.g.
"SOBEK: no convergence") 0 = crash (full module crash. e.g. "SOBEK: ooops, what
now?").

schema file, root element example file
pi_diag.xsd, Diag diag.xml

Example:
<?xml version="1.0" encoding="UTF-8"?>
<Diag xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews pi_diag.xsd" version="1.1">

<line level="3" description="HVB Starting at 12:00 10 Nov 2002"/>
<line level="1" description="No improvement in optimisation"/>
<line level="3" description="Run ended at 12:03 10 Nov 2002"/>
<!--Each line/mesasage contains the actual text and a warning level.

each message/line has a level attached to it
3 = info (information, all is well, e,g, :"SOBEK: program ended")
2 = warn (warning information.
e.g. "SOBEK: high number of iterations")
1 = critical (critical problems. e.g. "SOBEK: no convergence")
0 = crash (full module crash. e.g. "SOBEK: ooops, what now?")
All levels higher than 3 are regarded as non-essential (debug) information-->
</Diag>

The structure of the XML schema is given in the figures below. Note that attributes
are not displayed in the figures. Consult the full schema (+documentation) for
details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 1 5

7.9 Polygons

Polygon data identifies a specific area. For example, a catchment that contributes water to a
specific branch. This data type consists of several elements, including a list of X and Y point
locations that form the vertices of a polygon feature. The first and last points in this list are
joined to form a closed polygon. Optionally a polygon centroid can be given. Usually this is
the point to which precipitation input to (lumped) models must be interpolated.
Each polygon element can hold several events. As such, polygons can also be dynamic
elements.

schema file, root element example file
pi_polygons.xsd, Polygons polygons.xml

Example:
<?xml version="1.0" encoding="UTF-8"?>
<Polygons xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews
pi_polygons.xsd" version="1.1">

<geoDatum>LOCAL</geoDatum>
<timeZone>0.0</timeZone>
<polygon>

<locationId>String</locationId>
<parameter>String</parameter>
<timeStep>

<seconds>3600</seconds>
</timeStep>
<startDate date="1967-08-13" time="13:00:00"/>
<endDate date="1967-08-13" time="14:00:00"/>
<name>Flood Rhine</name>
<upstreamId>rh2</upstreamId>
<event date="1967-08-13" time="13:00:00">

<pt x="3.14159265358979" y="3.14159265358979" z="3.14159265358979" mark="1"/>
<pt x="3.14159265358979" y="3.14159265358979" z="3.14159265358979" mark="2"/>

</event>
<event date="1967-08-13" time="14:00:00">

<pt x="3.14159265358979" y="3.14159265358979" z="3.14159265358979" mark="0"/>
<pt x="3.14159265358979" y="3.14159265358979" z="3.14159265358979" mark="0"/>

</event>
</polygon>

</Polygons>

The structure of the XML schema is given in the figures below. Note that attributes
are not displayed in the figures. Consult the full schema (+documentation) for
details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 7 — 1 6

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 8 — 1

8 Static data

8.1 Grid cell center points

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 8 — 2

8.2 Branch data

Branch data is used to represent linear stretches of rivers, streams and canals. Each branch
has an unique identifier (choosen by the module) a name, a start and end-chainage field, a
link to an upper node and a link to a downstream node. A series of X, Y points defines the
actual branch, the first point being the upstream node, the last point the downstream node.
This date type is based on the EUROTAS ICM definition.

schema file, root element example file
pi_branches.xsd, Branches branches.xml

Example:
<?xml version="1.0" encoding="UTF-8"?>
<Branches xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews
pi_branches.xsd" version="1.1">

<geoDatum>LOCAL</geoDatum>
<branch>

<branchId>rhone3_24</branchId>
<branchName>A branch</branchName>
<startChainage>0</startChainage>
<endChainage>13</endChainage>
<pt x="12" y="31" chainage="0"/>
<pt x="18" y="36" chainage="9"/>
<pt x="22" y="38" chainage="12"/>
<pt x="24" y="33" chainage="18"/>
<pt x="37" y="0" chainage="13"/>

</branch>
<branch>

<branchId>rhone3_25</branchId>
<branchName>Another branch</branchName>
<startChainage>1</startChainage>
<endChainage>3</endChainage>
<pt x="37" y="0" chainage="0"/>
<pt x="40" y="40" chainage="1"/>
<pt x="45" y="55" chainage="2"/>

</branch>
</Branches>

The structure of the XML schema is given in the figures below. Note that attributes
are not displayed in the figures. Consult the full schema (+documentation) for
details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 8 — 3

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 8 — 4

8.3 Cross-sections

Cross sections are measured locations along a branch. As such they are linked to a specific
branch (the branchId). Cross sections are always considered as being so-called YZ cross
sections. This entails that the geometrical form of the cross section is described through a set
of cross section co-ordinates, where the first co-ordinate represents the distance across the
cross section, where this co-ordinate increases from left to right (i.e. lowest co-ordinate is on
the left bank) and the second co-ordinate represents the elevation with respect to a common
reference level.

schema file, root element example file
pi_crosssections.xsd,
CrossSections

xsection.xml

Example:

<?xml version="1.0" encoding="UTF-8"?>
<CrossSections xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.wldelft.nl/fews pi_crosssections.xsd" version="1.1">

<geoDatum>WGS-1984</geoDatum>
<crossSection>

<xSectionId>PR2</xSectionId>
<branchId>Mameyes2</branchId>
<xSectionName>Puento Rotto</xSectionName>
<chainage>10</chainage>
<x>18.3</x>
<y>1.0</y>
<xdata csy="21" z="18" roughness="0.4" mark="1"/>
<xdata csy="22" z="17" roughness="0.4" mark="2"/>
<xdata csy="245" z="18" roughness="0.4" mark="3"/>

</crossSection>
</CrossSections>

The structure of the XML schema is given in the figures below. Note that attributes
are not displayed in the figures. Consult the full schema (+documentation) for
details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 8 — 5

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 8 — 6

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 9 — 1

9 Lateral inputs

Lateral inputs can be added to the river network topology. These can be used to model
tributaries not explicitly modelled as a branch. The discharge allocated to the lateral input is
typically a time series, or a given constant value.

Definition of lateral input is done a single XML file, giving the location of the lateral on the
river network in the same way as was the case for the cross sections.

schema file, root element example file
pi_latinputs.xsd, LatInputs latinput.xml

Example:

<?xml version="1.0" encoding="UTF-8"?>
<LatInputs xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews
pi_latinputs.xsd" version="1.1">

<geoDatum>LOCAL</geoDatum>
<input latId="Dinkel1" x="3.14" y="9.19" branchId="Regge56" chainage="200">

<value>12</value>
</input>
<input latId="Dinkel2" x="3.14" y="9.19" branchId="Regge56" chainage="300">

<value>40</value>
</input>

</LatInputs>

The structure of the XML schema is given in the figures below. Note that attributes
are not displayed in the figures. Consult the full schema (+documentation) for
details.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 9 — 2

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 1 0 — 1

10 List of files

The fileformats.xsd is a container schema that includes the schemas below.

Basename Extension Root
element

Page Comment

pi_parameters xsd parameters Error!
Bookmark
not
defined.

Module parameters

pi_timeseries xsd timeseries Error!
Bookmark
not
defined.

Time series

pi_latinputs xsd latinputs Error!
Bookmark
not
defined.

Lateral inputs

pi_locations xsd locations Error!
Bookmark
not
defined.

Time series location

pi_mapstacks xsd mapstacks Error!
Bookmark
not
defined.

Map stacks

pi_state xsd state Error!
Bookmark
not
defined.

Module state

pi_table xsd table Error!
Bookmark
not
defined.

Lookup tables

pi_diag xsd diag Error!
Bookmark
not
defined.

Module diagnostics

pi_branches xsd branches Error!
Bookmark
not
defined.

Branches

pi_crosssection
s

xsd crosssectio
ns

Error!
Bookmark
not
defined.

Cross sections

pi_polygons xsd polygons Error!
Bookmark
not
defined.

polygon boundary

pi_profiles xsd profiles Error!
Bookmark
not
defined.

Longitudinal profile

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 1 0 — 2

Basename Extension Root
element

Page Comment

pi_cells xsd cells Error!
Bookmark
not
defined.

grid cell centre point data

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 1 0 — 1

Appendices

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella 1 0 — 2

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella A – 1

A XML Schema listings
The table below lists the various XML Schemas. Page number refers to the page in
Appendix E where the schema is defined.

Schema page in Appendix E

Contents 1
Schema fileformats.xsd 2
element Branches 3
element Cells 6
element CrossSections 7
element Diag 10
element geoDatum 11
element LatInputs 12
element locationId 13
element Locations 14
element MapStacks 16
element parameter 19
element Parameters 20
element Polygons 22
element Profiles 27
element State 29
element Table 31
element TimeSeries 34
element timeZone 39
complexType TimestepType 40

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella A – 2

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella B – 1

B Grid data file formats

B.1 PCRaster

PCRaster is a unique raster based GIS package ideally suited for dynamic modelling.
Information on the PCRaster native format (and a free version, including tools for
conversion) can be obtained from http://www.pcraster.nl.

B.2 USGS BIL / BSQ / BIP

These files consist of an ASCII header file (with content information) and a binary data file.
The ASCII description files support the following formats:

Band sequential (BSQ) multiband images
Band interleaved by line (BIL) multiband images
Band interleaved by pixel (BIP) multiband images

In order to support time steps an addition has been made to the .hdr file. A USGS BIL, BIP
and BSQ file always have a *.hdr header file that contains the settings for the dataset. So as
to add support for time data in these files the following changes must be made:

Add a line to the header file with the number of time blocks: for example nBlocks 3.

The nBands property in the header file represents the number of available
parameters.

Creating a dynamic bil file:

Create the binary file in BSQ, BIL or BIP format. If you use for example ArcView to create
*.BSQ binary files for each time step, then you can use the DOS copy command to add files
together as follows:

Copy /B timestep1.bsq /B + timestep2.bsq /B + timestep3.bsq /B + … timestepN.bsq /B
destination.bsq /B
For more information on the copy command, go to the Start Run menu and type copy /? and
press enter.

Example of a header file:

ByteOrder I
Layout BIL
nRows 2
nCols 2
nBands 1
nBlocks 1
nBits 32
BandRowBytes 8

http://www.pcraster.nl.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella B – 2

TotalRowBytes 8
BandGapBytes 0
NoData -999
ULXmap 163900
ULYmap 522900
Xdim 10000
Ydim 10000

B.3 Image file

The binary image file for the BIL/BIP/BSQ image format is merely a bit stream of the
image data. How the image data is arranged in that bit stream defines whether it is a BIL,
BIP, or BSQ image.

Band interleaved by line data stores pixel information band by band for each line, or row, of
the image. For example, given a three-band image, all three bands of data are written for
row one, all three bands of data are written for row two, and so on, until the total number of
rows in the image is reached.

Band interleaved by pixel data is similar to BIL data, except that the data for each pixel is
written band by band. For example, with the same three-band image, the data for bands one,
two, and three is written for the first pixel in column one; the data for bands one, two, and
three is written for the first pixel in column two; and so on. Band sequential format stores
information for the image one band at a time. In other words, data for all pixels for band one
is stored first, then data for all pixels for band two, and so on.

For further information see:
http://www.esri.com/library/whitepapers/pdfs/eximgav.pdf

B.4 ESRI ASCII

ASCII grids are stored in a format compatible with ESRI (and many other) software. The
ASCII raster file format is a simple format that can be used to transfer raster data between
various applications. The header data includes the following keywords and values:

ncols - number of columns in the data set.
nrows - number of rows in the data set.
xllcenter or xllcorner - x-coordinate of the centre or lower-left corner of the lower-
left cell.
yllcenter or yllcorner - y-coordinate of the centre or lower-left corner of the lower-
left cell.
cellsize - cell size for the data set.
nodata_value - value in the file assigned to cells whose value is unknown. This
keyword and value is optional. The nodata_value defaults to -9999.

The first row of data is at the top of the data set, moving from left to right. Cell values
should be delimited by spaces. No carriage returns/linefeeds are necessary at the end of each
row in the data set. The number of columns in the header is used to determine when a new

http://www.esri.com/library/whitepapers/pdfs/eximgav.pdf

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella B – 3

row begins. The number of cell values must be equal to the number of rows times the
number of columns.

Example:

ncols 4
nrows 3
xllcorner 175208.9306
yllcorner 320440.9027
cellsize 25
NODATA_value -9999
12 13 14 15
12 13 14 15
12 14 14 15

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella B – 4

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella C – 1

C EA Schema to PI mapping
The EA Time Series Schema established in draft from for hydrometric data can be mapped
to the time series XML schema established as a part of the published interface. This
mapping is illustrated in the table below (* indicate mandatory fields).

NFFS EA Hydrometric Comment
Published Interface Proposed Format

Header HydrometricData
sourceOrganisation sourceOrganisation
sourceSystem sourceSystem
fileDescriprion fileDescriprion
creationDate creationDate
creationTime creationTime

Station
region region Optional. May be useful if coding used is not

unique across regions
stationName stationName
longname Optional long descriptive name of station
locationid stationReference Compulsory
geodatum Identifies geographic datum
location ngr Uses "geodatum" field to allow different datums -

ngr is OS1936
SetofReadings

parameter parameter * compulsory
type* dataType * Enumeration supports only Accumulative of

Instantaneous - interval specified later

units* units * Optional string identifying units - ISO standards
should be adhered to

startdate startDate field for date
startdate startTime field for time
endate endDate field for date
endate endTime field for time
missval invalidNumber

dayOrigin not included in published interface
readingsPerDay not included in published interface. Information

contained in other fields
time step* Time step in seconds (used for equidistant series)

Event Reading
data* date * field for date
time* time * field for time
value* Reading* field for value of reading
flag quality Only single flag considered - could be used for

quality flag
quality2 not included in Published Interface
highLow not included in Published Interface, may be

combined with flag

Comment not included in Published Interface
startDate not included in Published Interface

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella C – 2

NFFS EA Hydrometric Comment
Published Interface Proposed Format

startTime not included in Published Interface
endDate not included in Published Interface
endTime not included in Published Interface

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella D – 1

D Quality flags
Following the discussion between Delft Hydraulics and CEH & Wallingford Software on
Friday 2 May 2003 in Wallingford on providing an enumeration of quality flags as a part of
the SIS, a proposed quality flag enumeration is given in the table below. As described in the
timeseries XML schemas provided we have made allowance for a single quality flag. This is
contrary to the EA XML interchange formats which provide for three separate quality flags.
A single flag seems more appropriate to the level of communication we are dealing with and
should avoid ambiguity. The flags are single byte values and are incorporated in the XML
Schema for time series. Quality flags are provided for each data point.

Quality flags are constructed on a philosophy of two qualifiers. The first described the origin
of the data and the second the quality.

Possible origins of data are:

1. Original: This entails the data value is the original value. It has not been amended
by NFFS

2. Completed: This entails the original value was missing and was replaced by a non-
missing value.

3. Corrected: This entails the original value was replaced with another non-missing
value.

Possible qualifiers are:

4. Reliable: Data is reliable and valid
5. Doubtful: The validity of the data value is uncertain
6. Unreliable: The data value is unreliable and cannot be used.

Following this specification, the table below gives an overview of quality flag enumerations

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella D – 2

Table D.1 Enumeration of quality flags

Enumeration Description

0 Original/Reliable
The data value is the original value retrieved from an external source and it
successfully passes all validation criteria set.

1 Corrected/Reliable
The original value was removed and corrected. Correction may be through
interpolation or manual editing.

2 Completed/Reliable
Original value was missing. Value has been filled in through interpolation,
transformation (e.g. stage discharge) or a model.

3 Original/Doubtful
Observed value retrieved from external data source. Value is valid, but marked as
suspect due to soft validation limits being exceeded.

4 Corrected/Doubtful
The original value was removed and corrected. However, the corrected value is
doubtful due to validation limits.

5 Completed/Doubtful
Original value was missing. Value has been filled in as above, but resulting value
is doubtful due to limits in transformation/interpolation or input value used for
transformation being doubtful.

6 Missing/Unreliable
Observed value retrieved from external data source. Value is invalid due to
validation limits set. Value is removed

7 Corrected/Unreliable
The original value was removed and corrected. However, corrected value is
unreliable and is removed.

8 Completed/Unreliable
Original value was missing. Value has been filled in as above, but resulting value
is unreliable and is removed.

9 Missing value in originally observed series. Note this is a special form of both
Original/Unreliable and Original/Reliable.

Notes:
No difference is made between historic and forecast data. This is not
considered a quality flag. The data model of NFFS is constructed such that
this difference is inherent to the data type definition.
External sources may either be an actual external source, a forecasting
module or a transformation. The convention in NFFS the definition of data
series parameter types identifies the data source.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella E – 1

E Schema Documentation

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella E – 2

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 1

F Module Adapter Application

This memo describes application of the module adapter to allow integration with the
National Flood Forecasting System (NFFS) through use of the published interface
format interchange specification.

The objective of the memo is twofold:

1. to provide a description of the preferred approach in developing module
adapters, and,

2. to illustrate the approach through an example taken from the Northeast
region.

The document SIS Module Adapter Specification, Version 2.4 describes the use of the
general adapter in allowing modules to be run from within NFFS. The general adapter (this
module is a part of NFFS) is configured to provide the required data (both dynamic and
static) in the published interface format. A module adapter (supplied by the same supplier as
the module itself) is used to translate the data from the published interface format to the
native module format.

Module Adapter

Module
input data

Module
output data

Module

DELFT-FEWS

General Adapter

Figure 2 Schematic interaction between the General Adapter and the Module adapter through the published
interface.

The general adapter is as stated an integral part of NFFS. This adapter is used to link all
third party modules required to make a forecast in a configured forecast system. To allow
this, each instance of the general adapter linking NFFS with a forecasting module is
configured as required to provide the data inputs to the module, run the module and retrieve
the data outputs from the module.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 2

The preferred approach in running a module within NFFS is in three steps:

1. Export of data required by the module through the published interface from
the NFFS database to the module native format. This data can cover dynamic
time series data, parameter value sets, module states etc. A full description of
the data types supported is given in SIS Module Adapter Specification,
Version 2.0. To determine what data is exported to a given module, a
configuration file (XML formatted) is passed to the General Adapter as an
argument. This file is a part of the NFFS and is configured during set-up of a
forecasting system. After the general adapter has run the input files required
by the module are available in the published interface format. This can entail
time series, module states etc. Figure 3 shows a schematic description of this
first step. The module adapter must provide on completion an XML
formatted diagnostic file giving the general adapter information on the status
of the translation process. For the format of this file and associated
enumeration see the published interface specification.

Figure 3 Detailed view of export of data from NFFS to module native format through the published
Interface (PI).

NFFS Database

General AdapterXML:Export
configuration

XML: Input
Files (PI)

Module AdapterModule import
configuration

Native format
module input

NFFS supplier

Module supplier

Module initial
state

Module
parameters

XML format
Diagnostic file

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 3

2. In the second step the module itself is run. This is achieved by the general
adapter executing a call to the module executable, with the possible addition
of command line arguments. This module executable must be able to run in
batch mode, without any user interaction required. The module executable
reads the required input data, parameters and states in its native format,
performs the required calculation and establishes a set of output files and
states, again in the native module format. This set of output files must
include a file giving diagnostic information on the module run. This file can
be in the native module format. Figure 4 gives a detailed schematic overview
of concept of running a module executable within NFFS.

 Figure 4 Detailed view of running a module executable from NFFS.

Command Line
Arguments

Native format
module input

Module supplier

Module initial
state

Module
parameters

Module
Executable

Native format
module output

Module output
state

Native format
diagnostic file

Other module
files
(native format)

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 4

3. The third step comprises the import of module output data into NFFS. Again
this is using the published interface format. The module adapter is called to
transform native module output formats to the published interface format.
Once completed the output data is retrieved through the published interface
format for insertion into the NFFS central database. As with the module
inputs an XML formatted configuration file is used to determine what data
are imported.

Figure 5 Detailed view of import of data to NFFS from module native format through the published Interface
(PI).

The three steps make it clear that there are three functional elements to be provided
by a module supplier to allow coupling of a module with NFFS. This functionality
may be encompassed in either two or three separate executable.

Element Function Configuration Comment

Module Adapter Import data from Published
Interface format to Native
module format

Configuration file
specifying data to import.
Preferred format of file:
XML

Module
executable

Run module using data in native
module input format. Write
output in native module output

Batch file
Runs in dedicated
work directory

General AdapterXML:Export
configuration

XML: Output
Files (PI)

Module AdapterModule export
configuration

Native format
module output

NFFS supplier

Module supplier

Native format
diagnostic file

Module output
state

XML format
Diagnostic file

NFFS Database

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 5

format
Module Adapter Exports data from native

module format to published
interface format

Configuration file
specifying data to export.
Preferred format of file:
XML

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 6

Example: Kinematic wave routing at HEBDEN bridge

As an example a comparison is made in this memo of the ICA model component file
for the forecast at Hebden Bridge on the Calder River in Northeast region. Although
some understanding of the structure of the ICA is helpful in this comparison, it
seems that developing an example from the ICA is most appropriate given the
complexity of the ICA. The full ICA module component file is included in the
Appendix for reference.

Description of current approach as implemented in ICA:

Two data series are forecast for the site at Hebden Bridge. These are the water level
and the discharge (described in the ICA in the forecast requirement files lu-
hebdbr1.rffs and qx-hebdbr1.rffs). The discharge at the site is first
calculated using the Kinematic Wave model (supplied by CEH) for the reach
upstream of Hebden Bridge.

There are two inputs to the kinematic wave model, being the discharges from the
Walsden sub-catchment and the Todmorden sub-catchment (ICA forecast
requirements QX-WALSDN1 and QX-TODMDN1).

These two inputs are routed using the KW model to form a temporary output
discharge series at Hebden Bridge (Series name in ICA Model Component File: 2Q-
HEBDBR1).

In the next step, the level series available in the database for the historic period (ICA
code LU-HEBDBR1) is transformed to a discharge series using the applicable stage
discharge curve (ICA: RATING algorithm). This supplies for the historic period an
“observed” discharge series.

Using this “observed” discharge series, an ARMA error modelling step is carried
out. This uses as input the temporary discharge calculated by the KW model and the
“observed” discharge series. Using the ARMA procedure the corrected output series
for Hebden Bridge is derived (ICA: QX-HEBDBR1) for the new forecast period.

In the final step levels for the forecast period are derived using this forecast
discharge series again through the applicable rating curve (ICA: RATING
algorithm).

Data series naming conventions in NFFS

In NFFS, the naming convention is a little different from that applied in the ICA.
The ID’s with which series are identified are constructed on the basis of the (unique)
station code. Data series available at that station are then identified by the station
code plus a data type suffix. Clear distinction is made through parameter types of
series available for the historic period and for the forecast period. The series ID is
used as a unique identifier in locating data series. Each series does have a “name”
that is used in all displays etc to enhance readability.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 7

Description ICA Series NFFS series
Historical

NFFS series
Forecast

Input discharge series QX-WALSDN1 H-27392-Q.hc H-27392-Q.fc
Input discharge series QX-TODMDN1 H-27931-Q.hc H-27931-Q.fc
Output discharge at Hebden Bridge
(simulated)

2Q-HEBDBR1 H-27932-Q.hr H-27932-Q.fr

Output discharge at Hebden Bridge
(updated)

QX-HEBDBR1 H-27932-Q.uhr H-27932-Q.ufr

Observed Level at Hebden Bridge LU-HEBDBR1 H-27932-h.m Not Applicable
Forecast Level at Hebden Bridge LU-HEBDBR1 H-27932-h.hr H-27932-h.fr
Note: in the ICA the observed and modelled series for the historical period seem to occupy the same database
location. These two are indeed the same value in case an ARMA error correction procedure is used with a
parameterisation including the auto-regressive component.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 8

NFFS Workflow for forecast at Hebden Bridge

In NFFS a series of tasks such as that required in creating the forecast at Hebden
Bridge are configured in a Task File. Each of the tasks required is performed
through either a standard NFFS utility (e.g. validation, interpolation, error
modelling) or an external module. The external module is called through the general
adapter.

The example below illustrates the workflow definition for the forecast at Hebden
Bridge (all file names are as an example, and the XML structure is illustrative but
not definite). The sequence of steps to deliver the forecast requirement at Hebden
Bridge is the same as specified in the ICA.

Workflow files such as this are configured as a part of NFFS, not by any third party
module suppliers. The first element uses the General Adapter to call the Kinematic
Wave module. The configuration file is used by the General Adapter to direct how
this module is used. An example of the configuration file for this element is given in
the Appendix. Again this configuration file is configured during NFFS
configuration, not by the third party module supplier.

<?xml version="1.0" encoding="UTF-8"?>

<workflow
xmlns="http://www.wldelft.nl/fews"
xmlns:target="http://www.wldelft.nl/fews"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews workflow.xsd" version="1.0">

<sequence>
<!-- Run KW for reach to Hebden Bridge (using General Adapter)-->
<element name="kw.hebdbr">

<caption>KW run to Hebden Bridge"</caption>
<class>nl.wldelft.fews.util.GeneralAdapter</class>
<configuration>kw_hebdbr_historical.xml</configuration>
<auto>"true"</auto>
<output>"rating.hebdbr.observed</output>

</element>
<!-- Transform observed levels to discharges at Hebden Bridge
(using ConversionServer)-->
<element name="rating.hebdbr.observed">

<caption>Apply rating curve at Hebden Bridge"</caption>
<class>nl.wldelft.fews.util.ConversionServer</class>
<configuration>rating_hebdbr_observed.xml</configuration>
<auto>"true"</auto>
<input>"kw.hebdbr</input>
<output>"rating.hebdbr.observed</output>

</element>
<!-- Run ARMA_FILL through General Adapter-->
<element name="arma.hebdbr.observed">

<caption>ARMA correction at Hebden Bridge"</caption>
<class>nl.wldelft.fews.util.GeneralAdapter</class>
<configuration>arma_hebdbr_historical.xml</configuration>
<auto>"true"</auto>
<input>"rating.hebdbr.observed</input>
<output>"arma.hebdbr.observed</output>

</element>
<!-- Transform predicted flows to levels at Hebden Bridge-->
<element name="rating.hebdbr.predicted">

<caption>Apply rating curve at Hebden Bridge"</caption>
<class>nl.wldelft.fews.util.ConversionServer</class>
<configuration>rating_hebdbr_predicted.xml</configuration>
<auto>"true"</auto>
<input>"arma.hebdbr.observed</input>

</element>
</sequence>

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 9

</workflow>

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 1 0

Appendix I:
ICA Model Component file for Hebden bridge (file: CALD3-HEBDBR.RFFS)

CALD3-HEBDBR :MOD_COMP_ID
! Version: 1.13 Date: 9-OCT-1997 11:41
! Revision: 2 Date: 9-OCT-1997 14:12
! Origin : IH RFFS Model Network Set-up (Hand)
! File-type : Model Component Description
 1 :MC_FILE_FORMAT
 1 :COMP_STORE_IND
 20961 :COMP_DATA_ID
HEBDEN BRIDGE :Channel flow- kinematic wave :COMP_NAME
 1 :COMP_CLASS_IND
 4 :COMP_POSITN_IND
 6 :COMP_TYPE_IND
 1 1 0 :COMP_PURPOSE
 0 :DATA_NUM_PROFI
 :PROFILE_REQ_ID_PROFI
 0 :PROFILE_SUB_ID
 0 :SCALE_TYPE_PROFI
 0.00000 :SCALE_VALUE_PROFI
 2 :DATA_NUM_INPUT
QX-WALSDN1 QX-TODMDN1 :FORECAST_REQ_ID_INPUT
 0 0 :SCALE_TYPE_INPUT
 0.00000 0.00000 :SCALE_VALUE_INPUT
 0 :DATA_NUM_CONTR
 :FORECAST_REQ_ID_CONTR
 0 :DATA_NUM_SPECI
 :FORECAST_REQ_ID_SPECI
 2 :DATA_NUM_OUTPU
QX-HEBDBR1 LU-HEBDBR1 :FORECAST_REQ_ID_OUTPU
 0 0 :SCALE_TYPE_OUTPUT
 0.00000 0.00000 :SCALE_VALUE_OUTPUT
 1 :DATA_NUM_DUMMY
2Q-HEBDBR1 :DUMMY_REQ_ID
 0 :TIME_DELAY_IND
 3 :COMP_DECOMP_TYPE
 4 :COMP_DECOMP_NUM
FA_KW :MODEL_ALGOR_ID (1)
 2 2 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_INPUT (1)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_CONTR (1)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_SPECI (1)
 1 1 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_OUTPU (1)
 3 0 4 0 3 0 0 0 0 0 0 0 :ALGOR_MSIZE_STATE (1)
 3 0 1 0 3 0 0 0 0 0 0 0 :ALGOR_MSIZE_TRANS (1)
 38 1 1 3 1 4 4 2 4 4 3 0 :ALGOR_MSIZE_PARAM (1)
 29 9 2 1 1 3 4 4 0 0 0 0 :ALGOR_MSIZE_IPARA (1)
 9.84000 2.90000 0.00000 1.35900 :ALGOR_VALS_PARAM (1)
 0.00000 0.00000 0.00000 1.35900 :ALGOR_VALS_PARAM (1)
 0.00000 0.00000 0.00000 0.73300 :ALGOR_VALS_PARAM (1)
 0.00000 0.00000 0.00000 0.73300 :ALGOR_VALS_PARAM (1)
 0.00000 0.00000 0.00000 1.00000 :ALGOR_VALS_PARAM (1)
 0.00000 1.00000 0.00000 1.00000 :ALGOR_VALS_PARAM (1)
 0.00000 1.00000 0.00000 1.00000 :ALGOR_VALS_PARAM (1)
 0.00000 0.00000 0.00000 1.00000 :ALGOR_VALS_PARAM (1)
 0.00000 0.00000 0.00000 1.00000 :ALGOR_VALS_PARAM (1)
 0.00000 0.00000 :ALGOR_VALS_PARAM (1)
 3 2 4 1 1 0 0 1 1 3 0 0 :ALGOR_VALS_IPARA (1)
 0 1 1 0 1 2 2 0 1 3 1 0 :ALGOR_VALS_IPARA (1)
 1 3 2 0 1 :ALGOR_VALS_IPARA (1)
QX-WALSDN1 QX-TODMDN1 :DATA_STREAM_INPUT (1)
 :DATA_STREAM_CONTR (1)
 :DATA_STREAM_SPECI (1)
2Q-HEBDBR1 :DATA_STREAM_OUTPU (1)
 0 :TEST_SNOWFLAG_IND (1)
 0 :SIMULAT_SKIP_IND (1)
 0 :EXECUT_SPECI_IND (1)
 6 :EMERG_WARM_UP (1)
RATING :MODEL_ALGOR_ID (2)
 1 1 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_INPUT (2)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_CONTR (2)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_SPECI (2)
 1 1 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_OUTPU (2)

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 1 1

 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_STATE (2)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_TRANS (2)
 5 0 0 1 5 1 0 0 0 0 0 0 :ALGOR_MSIZE_PARAM (2)
 2 2 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_IPARA (2)
 13.95000 0.06600 1.47800 9999.00000 :ALGOR_VALS_PARAM (2)
 9999.00000 :ALGOR_VALS_PARAM (2)
 1 1 :ALGOR_VALS_IPARA (2)
LU-HEBDBR1 :DATA_STREAM_INPUT (2)
 :DATA_STREAM_CONTR (2)
 :DATA_STREAM_SPECI (2)
QX-HEBDBR1 :DATA_STREAM_OUTPU (2)
 0 :TEST_SNOWFLAG_IND (2)
 0 :SIMULAT_SKIP_IND (2)
 0 :EXECUT_SPECI_IND (2)
 0 :EMERG_WARM_UP (2)
ARMA_FILL :MODEL_ALGOR_ID (3)
 1 1 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_INPUT (3)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_CONTR (3)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_SPECI (3)
 1 1 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_OUTPU (3)
 4 0 0 1 2 2 0 0 0 0 0 0 :ALGOR_MSIZE_STATE (3)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_TRANS (3)
 2 0 2 0 2 0 0 0 0 0 0 0 :ALGOR_MSIZE_PARAM (3)
 3 3 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_IPARA (3)
 -1.50830 0.61721 :ALGOR_VALS_PARAM (3)
 2 0 1 :ALGOR_VALS_IPARA (3)
2Q-HEBDBR1 :DATA_STREAM_INPUT (3)
 :DATA_STREAM_CONTR (3)
 :DATA_STREAM_SPECI (3)
QX-HEBDBR1 :DATA_STREAM_OUTPU (3)
 0 :TEST_SNOWFLAG_IND (3)
 0 :SIMULAT_SKIP_IND (3)
 0 :EXECUT_SPECI_IND (3)
 4 :EMERG_WARM_UP (3)
RATING :MODEL_ALGOR_ID (4)
 1 1 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_INPUT (4)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_CONTR (4)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_SPECI (4)
 1 1 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_OUTPU (4)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_STATE (4)
 0 0 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_TRANS (4)
 5 0 0 1 5 1 0 0 0 0 0 0 :ALGOR_MSIZE_PARAM (4)
 2 2 0 0 0 0 0 0 0 0 0 0 :ALGOR_MSIZE_IPARA (4)
 13.95000 0.06600 1.47800 9999.00000 :ALGOR_VALS_PARAM (4)
 9999.00000 :ALGOR_VALS_PARAM (4)
 2 1 :ALGOR_VALS_IPARA (4)
QX-HEBDBR1 :DATA_STREAM_INPUT (4)
 :DATA_STREAM_CONTR (4)
 :DATA_STREAM_SPECI (4)
LU-HEBDBR1 :DATA_STREAM_OUTPU (4)
 0 :TEST_SNOWFLAG_IND (4)
 0 :SIMULAT_SKIP_IND (4)
 0 :EXECUT_SPECI_IND (4)
 0 :EMERG_WARM_UP (4)
 1 :CALIBRATION_TYPE
 0 :CALIB_EVENT_NUM
 1 1 0 0 0 :CALIB_EVENT_BEG (1)
 1 19999 0 0 :CALIB_EVENT_END (1)
 0 :CALIB_EVENT_WARMUP (1)
 0 :CALIB_EVENT_CARRY (1)
 1 :CALIB_SCALE_TYPE
 1 :CALIB_ORDER_TYPE
 1 :CALIB_WEIGHTING_TYPE
 1 :UNCERTAINTY_TYPE
 0 :UNCERT_PARAM_NUM
 0.00000 :UNCERT_VAL_PARAM
UPPER CALDER RECALIBRATION OCT 1997 :CALIB_NOTES (1)
sd fitted in model :CALIB_NOTES (2)
 :CALIB_NOTES (3)
 :CALIB_NOTES (4)
 :CALIB_NOTES (5)
recalib R.AUSTIN IH :COMP_GEN_COMMENT (1)
 :COMP_GEN_COMMENT (2)
 :COMP_GEN_COMMENT (3)
 :COMP_GEN_COMMENT (4)

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 1 2

 :COMP_GEN_COMMENT (5)

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 1 3

Appendix II:
Configuration file for running KW module at Hebden Bridge using General
Adapter

<?xml version="1.0" encoding="UTF-8"?>

<dyntasks
xmlns="http://www.wldelft.nl/fews"
xmlns:target="http://www.wldelft.nl/fews"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews dyntasks.xsd" version="1.0">

<general exportpath="file: nffs/kw/input" importpath="file: nffs/kw/output"/>
<sequence>

<!-- export time series for discharge for Todmorden-->
<export seriesid="H-27931-Q.hc" file="file:todmdn.xml">

<xml format="fews"/>
</export>
<!-- export time series for discharge for Walsdn-->
<export seriesid="H-27392-Q.hc" file="file:walsdn.xml">

<xml format="fews"/>
</export>
<!-- export parameters for KW model to Hebden Bridge-->
<exportparams>

<moduleid>kw.hebdbr</moduleid>
<paramsetid>kw.hebdbr.par</paramsetid>
<filename>file:./kw_hebdbr_par.xml</filename>

</exportparams>
<!-- export module initial state -->
<writestate stateid="kw.hebdbr.state"/>
<!-- start kw adapter to transfrom XML data to KW format -->
 <!-- note:all settings are examples of filenames. it is assumed the kw
module adapter requires one argument. This is an XML file with the
relevant configuration! -->
<task diagfile="file:./kwadapter_diag.xml" moduleid="kw.hebdbr">

<deletefile>file:kw_adapter.rtn</deletefile>
<exe>file:nffs/bin/kw_adapter.exe</exe>
<workdir>nffs/kw/workdir</workdir>
<arg>nffs/kw/config/kw_hebdbr_input.xml</arg>
<taskreturn>file:kw_adapter.rtn</taskreturn>
<taskfail>NONEXISTS</taskfail>

</task>
<!-- start kw module -->
<task diagfile="file:kwmodule_diag.xml" moduleid="kw.hebdbr">

<deletefile>file:kw_exe.rtn</deletefile>
<exe>file:nffs/bin/kw.exe</exe>
<workdir>nffs/kw/workdir</workdir>
<arg>nffs/kw/config/kw_hebdbr.rffs</arg>
<taskreturn>file:kw_exe.rtn</taskreturn>
<taskfail>NONEXISTS</taskfail>

</task>
<!-- Start kw adapter to import data form native to XML -->
<task diagfile="file:kwadapter_diag.xml" moduleid="kw.hebdbr">

<deletefile>file:kw_adapter.rtn</deletefile>
<exe>file:nffs/bin/kw_adapter.exe</exe>
<workdir>nffs/kw/workdir</workdir>
<arg>nffs/kw/config/kw_hebdbr_output.xml</arg>
<taskreturn>file:kw_adapter.rtn</taskreturn>
<taskfail>NONEXISTS</taskfail>

</task>
<!-- importing of timeseries -->
<import seriesid="H-27932-Q.hr" file="file:kw_hebdbr_q.xml">

<xml format="fews"/>
</import>
<!-- import resulting module state -->
<readstate stateid="kw.hebdbr.state" statename="state kw to hebdbr">

<stateloc type="file">
<readlocation>nffs/kw/state</readlocation>
<writelocation>nffs/kw/state</writelocation>

</stateloc>
</readstate>

</sequence>
</dyntasks>

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 1 4

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics & Tessella F – 1 5

Appendix III:
Example of an output XML file (shown in part)

Filename: KW_HEBDBR_Q.XML

<?xml version="1.0" encoding="UTF-8"?>

<timeseries xmlns="http://www.wldelft.nl/fews"
xmlns:target="http://www.wldelft.nl/fews"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews
timeser.xsd" version="1.0">

<header>
<type>instantanious</type>
<timeseriesid>kw.output.1</timeseriesid>
<content>Discharge</content>
<timestep>3600</timestep>
<missval>-999</missval>
<longname>Simulated discharge at Hebden Bridge</longname>
<stationName>Hebden Bridge</stationName>
<units>m3/s</units>
<locationid>H-27932</locationid>
<sourceOrganisation>Northeast Region</sourceOrganisation>
<sourceSystem>KW module</sourceSystem>
<fileDescription>XML Data</fileDescription>
<creationDate>2003-05-05</creationDate>
<creationTime>14:42:14</creationTime>

</header>
<event date="2003-01-07" time="08:00:00 " value="2.480000" flag="0"/>
<event date="2003-01-07" time="09:00:00 " value="2.470000" flag="0"/>
<event date="2003-01-07" time="10:00:00 " value="2.460000" flag="0"/>
<event date="2003-01-07" time="11:00:00 " value="2.440000" flag="0"/>
<event date="2003-01-07" time="12:00:00 " value="2.420000" flag="0"/>
…
…
<event date="2003-01-17" time="02:00:00 " value="1.490000" flag="0"/>
<event date="2003-01-17" time="03:00:00 " value="1.480000" flag="0"/>
<event date="2003-01-17" time="04:00:00 " value="1.480000" flag="0"/>
<event date="2003-01-17" time="05:00:00 " value="1.480000" flag="0"/>
<event date="2003-01-17" time="06:00:00 " value="1.480000" flag="0"/>
<event date="2003-01-17" time="07:00:00 " value="1.490000" flag="0"/>

</timeseries>

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics G – 1

G Questions and aswers

G.1.1 The interface describes an on-line or operational system. However
the XML templates and data types described apply to off-line
modelling. Is it the intention for the DELFT-FEWS databases to hold
data such as cross-sections, river channels etc. which are used to
develop the model from scratch?

The interface is indeed intended to be operated an on-line operational system. It’s prime
communication with external forecasting modules is through dynamic data such as time
series, model states and diagnostics (see below). The published interface formats have been
defined to cover a wider range of data types, but these need not be used in all cases – i.e.
there is no requirement to allow communication of all data types. Indeed there is currently
no module that caters for the full range of formats. Although the EA is to decide to what
extent data should be passed, the practical approach followed with e.g. ISIS and the CEH
modules is to pass only time series, module states and diagnostics information.

In exchanging data between a module and NFFS, a prioritisation of data types can be
identified.

Priority Data Type Comment

1 Time Series
Module states
Diagnostics

sufficient to cover most
modules used in flood
forecasting systems, including
e.g. Mike-11 and NAM

1 (a) Time series of grid data additionaly required for
modules with 2D I/O formats
(e.g inundation codes)

2 Parameters Module parameters may be
passed where the module allows
calibration through the NFFS
calibration facilities

2 (a) Longitudinal profile data For hydrodynamic modules
longitudinal data types may be
passed – not a strict
requirement.

3 Static data (cross sections,
branches, etc)

This data is not required for
operational forecasting. In
exceptional cases data such as
on branches may be required
(for display purposes), but this
need not be passed through the
adapter and can be configured
as appropriate.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics G – 2

G.1.2 Will the HarmonIT developments be used in the module adapter? If
so, will appropriate tools be provided?

In its current form the General Adapter does not use the HarmonIT (OpenMI) module
interchange facilities. The DELFT-FEWS application will in the near future be extended
with an OpenMI compatible adapter, but this is as yet not considered an NFFS requirement.

G.1.3 A major part of the document consists of XML templates for a wide
range of data types. It is our understanding that relatively few of
these are used in practice and that these are simply made available
to ensure a general system.

This assumption is correct – see also G.1.1

G.1.4 On what platform is the system running (Windows, Linux or other)?

The DELFT-FEWS system has been developed in JAVA and is platform independent.
However, in the configuration of NFFS, all runs of forecasting modules are executed on
dedicated servers. Presently, these are Windows systems.

G.1.5 What is the module adapter (script, bat-file, win32dll, win exe, or
other)? There are no technology specifications for the adapter.

There is no specific requirement for the module adapter. The only requirement is that it can
communicate through the XML file formats. The use of standard methods for reading and
writing XML files, based on the schemas provided is highly recommended. This not only
reduces implementation efforts but also guarantees compatibility. The general adapter
currently allows the external module to be run either as an executable, or as a Java method.
A minor extension will allow running of DLL’s. Batch files are not recommended as the
General Adapters monitors return codes from the external module. These are not always
correctly passed in Batch files, and as such ungraceful failure of a module is not easily
identified.

G.1.6 How does the module adapter and the general adapter
communicate (win32 API, files, or other)?

The general adapter initiates the executable, Java method (or DLL) through the system/Java
calls. Arguments may be passed when required, though these must be static. The general
adapter may also be used to set environment variables for the module where required.

The module normally runs in a dedicated directory (tree). a working directory can be
configured to act as the root of the module run.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics G – 3

G.1.7 Figure 1 on page 4-1 indicates that all communication between the
NFFS system and the system that is delivered by a model supplier
goes through the Module adapter. I this a correct assumption and
can everything under the blue line be considered as a black box ?. If
so, is it possible to describe the specific requirements to such a
black box ?

This is correct. The most specific requirement is that the module must not have any manual
interaction. This would preclude running the module in a distributed system.

G.1.8 Are there any specific requirements for the data formats used in
communication between the module and the module adapter (e.e.
binary or ASCII?)

This is a sole choice of the module adapter. There is a slight preference to ASCII formats as
this eases debugging. However, if this has implications as to module performance
(additional pre-processing requirements) then the binary format is advocated.

G.1.9 Could we ask for further clarification to distinguish between module
states and module results and under what circumstances these are
stored in the NFFS databases?

The general adapter has full state management facilities. This means the module is provided
with an initial state for the start of run. The module should also provide a resulting state at
the end of run, or at an intermediate time. When required this resulting state is administered
and stored in the NFFS database for later use.

It is important to note that the actual module state file is handled blindly - ie it is not
interpreted. NFFS takes the state and time-stamps it for storage in the database. NFFS will
not change the content of the state, though renaming of files/directories on import/export is
possible.

For cold start runs a default state is provided to the module.

Module results are generally passed back through the Published Interface XML format and
stored in the database. Obviously only the required locations need be passed.

G.1.10 What tools are provided within the system for derived data such as
catchment mean rainfall, catchment evaporation, etc.?

DELFT-FEWS provides a full set of generic tools for these derived data, including all of the
above. Generally DELFT-FEWS is configured to pre-process all data and provide the
module directly with required inputs. The module need not do any additional processing.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics G – 4

G.1.11 What tools are provided for updating/data assimilation and how are
these integrated into the module structure shown in figure 1?

DELFT-FEWS provides an internal ARMA error modelling tool. This is module
independent and is run in sequence to the module when required.

G.1.12 What adapter mechanisms will be used for sequences of modules?

Sequences of modules and data handling functions are run in sequence by so-called
workflows. This means that a workflow may be configured to first run a rainfall-runoff
model (e.g. NAM, PDM) through the General adapter, then run an error correction routine
to the output and subsequently run a hydrodynamic module (e.g. ISIS, MIKE11, SOBEK)

G.1.13 What are the requirement for migrating from an stand-alone
system to an on-line system for the module adapter

There is no difference to the module if it is on or off line. This layer is managed by DELFT-
FEWS.

G.1.14 Diagnostics: must all diagnostics from a model run be reported in
one diagnostics-file or does the interface allow for multiple files (this
could be relevant if the model adapter executes a sequence of sub-
modules during a model-run)?

In its current form the diagnostics file to each external module run should be one file. The
general adapter does, however, allow for executing a sequence of modules, with a
diagnostics file for each.

G.1.15 Diagnostics: can any information be passed back – or is it limited to
the status type messages with one line of text per status code?

The diagnostics passed back should be relatively limited – there is no strict requirement on
the length of the message, but to the point messaging is advocated. The message should
provide the level of knowledge to the operational forecaster to monitor the system. Different
levels of messages should be used, with information useful in debugging being labelled
appropriately.

For more detailed messaging – native module formats can be used, but this is only for
specialist analysis. It should be noted that when a module fails, a zipped dump files is made
of all module files and I/O. This is set aside for later, detailed, analysis.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics G – 5

G.1.16 Execution: since all model runs of a particular setup seems to be
running in the same fixed location (URI) it is the responsibility of the
run-time adapter to clean up used files after a model run. Will
DELFT-FEWS overwrite existing files during subsequent runs (e.g.
the input TS XML files)? This would reduce the cleaning up to files,
which are not overwritten by the model tool itself.

It is good practice for a module to clean up redundant files after use. The general adapter
does allow configuration of a purge activity either before the module run or after the module
run (or both).

G.1.17 Dynamic files: who decides the location of the dynamic files which
are created by the general adapter? Both the model adapter and
the general adapter must know the location (one to write and the
other to read them), but who determines the structure in which
they are created?

In the general adapter configuration (XML) the location of the PI-XML files to pass to the
module is given, as well as the location where PI-XML files are expected. The location of
diagnostics files and work directories can also be configured. The structure is dictated by the
Published Interface. All files passed to the module will be in the same directory and all files
passed back are expected in the same directory (with the exception of the diagnostics file).

G.1.18 Dynamic files: Can/will DELFT-FEWS pass other dynamic module
parameters? Especially, how will DELFT-FEWS pass information of
simulation period – start date/time and end date/time and
optionally time-of-forecast date/time for the model module to use?

To ensure simplicity, the length of the module run is dictated by the length of the time series
passed. When a distinction is to be made between forecast and historic run, these will be
passed as separate time series. The module adapter should identify run times from these.

G.1.19 Model states: It is assumed that DELFT-FEWS decides which of the
available states (default, scenario) will be supplied to. How will the
model adapter know which type of model state to return?

Indeed. The module state returned will be administered by DELFT-FEWS. Depending on
the status of the run it will be administered as a state to be used in ensuing forecasts, or
disregarded.

DELFT-FEWS Q3049 March 21, 2005
Published Interface version 2.5

Delft Hydraulics G – 6

G.1.20 We presume that the adapter will run at the time of forecast, and
therefore the general adapter will provide data on request for
specified intervals. Correct?

Indeed. The General Adapter is configured to provide the module with the required data.
Data may be provided at equidistant or non-equidistant intervals.

G.1.21 Is it correct that one module run can supply one set of state
information as output, i.e. data for one timestamp (and time step)
only?

Yes. A state represents the state of a module at a single point in time.

G.1.22 Please advise on what quality checks are made for observations
used for updating that can be used to switch off updating if the
updating observations are missing or of poor quality.

The following quality checks can be made within DELFT-FEWS (when configured by the
user)

Detection of outliers (data flagged unreliable)
Check of exceedance of hard limits (data flagged unreliable)
Check of exceedance of soft limits (data flagged doubtful)
Rate of change check. When a rate of change exceeds a pre-set value, data is flagged
unreliable
Same readings check: When data remains within a pre-set range for a configured period,
data is flagged unreliable
Temporary shift check. When a ‘temporary shift’ is detected, data is flagged unreliable

G.1.23 Can paths for files and directories include several levels of
subdirectories - or only one relative to the general paths?

Several levels are possible.

