MSc thesis research

Understanding Holocene coastal development and the resulting evolution of groundwater chloride distribution in the North-West coastal region of the Netherlands.

A historical modelling approach

K.R.M. Hu-a-ng (3221563)
University of Utrecht
Department of Physical geography
Programme: Hydrology
Period: January 2012 – October 2012
Supervisors: Prof. Dr. Marc Bierkens (University of Utrecht)
Drs. Joost Delsman (Deltares)
Abstract

The origin and evolution of chloride distribution in the Dutch coastal area has been the subject of many studies. Most of these studies formulated their conclusions concerning the evolution of groundwater chloride distribution by reconstructing and interpolating present day data to earlier times. This research analyzed the evolution of the current groundwater chloride distribution using palaeogeographical hypotheses of groundwater salinization. The analysis was conducted using a 2D-profile from Zandvoort till Hilversum, modelled in a density dependent groundwater flow model, MODFLOW and SEAWAT. Results showed that the hypotheses represented the dune area correctly and that the extensive salinization of the subsurface in the west was indeed caused by Holocene transgression. Though amelioration of boundaries, such as surface levels and taking account for inflow from northern and eastern regions is needed to get a better understanding of differences between simulated results and measured or interpolated data. We concluded that the Holocene transgression, lithology and landscape changes had a significant influence on the evolution of the chloride distribution during Holocene coastal development. Holocene transgression proved to be the main source of salinization, lithology caused retardation of salinization in areas with low permeable sediments and landscape changes caused hydraulic gradients which caused repositioning of the fresh-brackish groundwater interface.
Table of contents

Abstract

Table of contents

1. Introduction 6
 1.1 Background 7
 1.2 Problem definition and research questions 11
 1.3 Research outline 12

2. Research area and its palaeogeographical and historical development 13
 2.1 Research area 13
 2.2 Geological history 15
 2.3 Sea level rise during the Holocene 21
 2.4 Stratigraphy and hydrogeology 21

3. Modelling methodology 26
 3.1 Method 26
 3.2 MODFLOW 29
 3.3 SEAWAT 30
 3.4 Model description 31
 3.5 Time frames 36
 3.5.1 5500 B.C. 38
 3.5.2 3850 B.C. 38
 3.5.3 2750 B.C. 39
 3.5.4 1500 B.C. 39
 3.5.5 100 A.D. 39
 3.5.6 1500 A.D. 39
 3.5.7 1885 A.D. 40
 3.5.8 1960 A.D. 40
 3.5.9 2000 A.D. 40

4. Results 42

5. Discussion 51

6. Conclusions 54
References

List of Figures

Figure 1.1: “Maps showing the spatial distribution of Cl concentrations at 20, 40, 80 and 120 below mean sea level. Dots indicate the location of observation wells within 5 m above or below the shown depth interval. No contours are shown in areas with too little observations. Based on data from the province of Noord-Holland, Netherlands Institute of Applied Geoscience TNO – National Geological Survey and Ouwerkerk (1993)” (Post, 2004, p.20).

Figure 2.1: The research profile from the coast of Zandvoort to Hilversum(A-B). Profile is 64 kilometers.

Figure 2.2: Top of Pleistocene surface with pleistocene formations eroded by marine tidal systems and less eroded sites (Bazelmans et al., 2011).

Figure 2.3: Paleogeographic maps of the Netherlands. a) 5500 B.C., b) 1.500 B.C., c) 1.500 A.D. and d) 2.000 A.D. (Bazelmans, 2011)

Figure 2.4: Relative sea level rise during the Holocene along different regions of the North Sea coast. From Mulders et al. 2003 cit. Jelgersma, 1979; Ludwig et al., 1981; Plassche, 1982; Denys en Baeteman, 1995; Kiden, 1995.

Figure 2.5: Chloride distribution from Zuid-Holland model by Minnema et al., 2004. Chloride concentrations are in mg/l.

Figure 2.6: Schematization of hydrogeology with aquitards and aquifers. Numbers behind the aquifer or aquitard refer to the first second ect. (TNO, Geohydrologisch model, provincie Noord-Holland).

Figure 2.7: Overview of the formations in the profile. (TNO, Landelijk model REGIS II)
Figure 3.1: Calculated surface elevations of the nine time frames.

Figure 3.2: Horizontal hydraulic conductivities for the profile.

Figure 3.3: Vertical hydraulic conductivities for the profile.

Figure 3.4: Graph of Cl concentration and long-normal resistivity (ρ_{Ln}, solid line) vs. depth in well 31E-0-176 location shown in right figure (point denoted by 31E-0-176). Column on righthand side indicates sand (white) and clay layers (shaded). The top of the Early-Pleistocene marine strate is found here at a depth of approximately 160 meters” (Post, 2004, p.20). Values of the measured points have been converted from mmol to mg/l and the age of mpC converted to 14BP years. This was only applied to the points for values in mmol/l one can read it from the graph.

Figure 4.1: Results for chloride distribution evolution throughout the time frames of hypothesis one. Arrows in the figures indicate seepage (arrow upward) or infiltration (arrow downward). Size of the arrows indicate a big or smale rate of seepage or infiltration compared to one another.

Figure 4.2: Results for chloride distribution evolution throughout the time frames of hypothesis two. Arrows in the figures indicate seepage (arrow upward) or infiltration (arrow downward). Size of the arrows indicate a big or smale rate of seepage or infiltration compared to one another. Arrows of time frame 2000 A.D. have the same orientation as time frame 2000 A.D. of hypothesis one. Circles in time frame 2000 A.D. give measured chloride data points from DINO database.

Figure 4.3: Results for chloride distribution evolution throughout the time frames of hypothesis three. Arrows in the figures indicate seepage (arrow upward) or infiltration (arrow downward). Size of the arrows indicate a big or smale rate of seepage or infiltration compared to one another. Arrows of time frame 2000 A.D. have the same orientation as time frame 2000 A.D. of hypothesis
Circles in time frame 2000 A.D. give measured chloride data points from DINO database.

List of Tables

Table 2.1: Holocene division based on vegetation (Mulder et al. 2003; Berendsen 2008).

Table 3.1: Classification of types of groundwater based on chloride concentration (Stuyfzand, 1993).

Table 3.2: Table with model properties and constant parameters

Table 3.3: Table with description of time frames
1. Introduction

Groundwater of the Dutch coastal region is a complex system of fresh, brackish and saline water. Knowledge of the spatial distribution and evolution of fresh, brackish and saline groundwater is vital for several reasons: First, many practical coastal hydrological problems (e.g. crop damage, surface water quality deterioration and well field salinization) are connected to contamination of freshwater resources by seawater (Post, 2004). Second, salinization of the coast is expected to increase due to climate change (Bonte and Zwolsman, 2010; Oude Essink, 2001 and Oude Essink et al., 2010). Third, fresh-saline groundwater modelling results are affected by chosen boundary conditions and initial chloride concentration distribution input (Oude Essink, 2001; Minnema et al., 2004).

The complexity of the Dutch groundwater chloride system is a result of transgressions, geology and the resulting hydrogeology that occurred over the past 10,000 years (Post, 2004). The origin of chloride distribution in the Dutch coastal area has been the topic of many studies (Post and Kooi, 2003; TNO rapport, 2004; Oude Essink, 2001; Gieske, 1991; Meinardi, 1991 and Stuyfzand, 1993). The current hypothesis is that during transgressions in the Holocene seawater infiltrated into the fresh groundwater causing brackish and saline groundwater at different depths of the Dutch coast (Post, 2004; Gieske, 1991; Meinardi, 1991 and Stuyfzand, 1993). This current understanding of the chloride evolution and distribution is based on previous studies which formulate their conclusions by reconstructing and interpolating present day data to earlier times. Up to now the combination of landscape development and solute transport models, to simulate chloride distribution evolution throughout the Holocene, has not been tested. Also the use of forward modelling to predict chloride distribution does not exist. This gap in our knowledge is remarkable because previous studies (Oude Essink, 2001; Minnema et al., 2004) have shown the importance of saline groundwater to be heavily dependent on upper boundary conditions.

However, recently gained insights in the palaeogeographical development of the Netherlands during the Holocene (Bazelmans et al., 2011) and the recent availability of new 3D-stratigraphic models of the upper geological formation (GeoTOP 30) present the opportunity to simulate landscape evolution and the resulting spatio-temporal chloride distribution in detail. This is the subject of this thesis.
1.1 Background

Several studies focussed on the spatial distribution (see Figure 1.1) and origin of saline water in the Dutch coastal region (Gieske, 1991; Meinardi, 1991; Appelo and Geirnaert, 1991; Stuyfzand, 1993; Oude Essink, 1996). There are conflicting hypotheses regarding the possible origin of this complex system of fresh, brackish and saline groundwater in the Dutch coast: (1) vertical intrusion during past transgressions (Post, 2004; Appelo and Geirnaert, 1991; Stuyfzand, 1993;) and (2) connate seawater from Pliocene to early Pleistocene (Meinardi, 1991). Connate seawater refers to salinization of a layer by saline marine sediments (Post, 2004).

Although still much is unclear about the origin of saline groundwater we have a robust estimate of current chloride distribution based on observations (Figure 1.1) and we do know the processes that enhance salinization. Salinization is the process where fresh groundwater is replaced by saline groundwater. Salinazation is enhanced by a rising sea level, land subsidence, groundwater extraction and men made water management systems. All these factors enhance the difference in potentiometric head causing more seepage to low potentiometric head areas. Since dissolved solutes move in the same flow direction as groundwater, salinization is bound to occur in areas with a low potentiometric head, though solutes can experience a time lag (Oude Essink, 1996). Clay layers or less permeable layers prohibit or retard salinization of underlying layers, although the discontinuity of the clay layer still cause vertical saline water intrusion to the underlying layers. The appearance of high salinity groundwater below clay layers is therefore thought to be caused by additional horizontal migration of intruding seawater. Salinazation is a threat for agriculture and nature, because most crops and vegetation cannot cope with saline groundwater. Also our drinking water resources decrease due to shrinkage of freshwater lenses by salinazation. Future problems with salinization was studied by Stuyfzand (1993). He proposed that because of the never ending chemical exchange at the fresh-brackish interface, there will be a further salinization of the deep polders, especially to the south of the North Sea Canal, where Holocene groundwater is currently less saline than to the North. Conclusions concerning further salinization of groundwater, was also drawn by Oude Essink et al. (2010). They used a three-dimensional numerical model for density dependent groundwater flow and solute transport, to describe future chloride distribution in the Dutch coastal region under climate change and
anthropogenic activities. Also in Oude Essink (2001) a three-dimensional model (MOCDEN3D) showed that sea level variations have a significant influence on the salinization process. His results showed that severe salt water intrusion is taking place in the groundwater system due to low phreatic water levels in the entire polder area in North Holland.

For the origin of saline groundwater Stuyfzand (1993) concluded that the growth of local salt and brackish water bodies occurred since 6000 B.C. Post and Kooi (2003) studied the interface of fresh-brackish water. They used numerical modelling to simulate and describe the salinization of a highly permeable aquifer by free convection from a salt source overlaying the aquifer. The relationship derived from this numerical modelling described the development of the horizontally averaged salinity with depth and time as a function of permeability and initial-density. The relationship suggested that the salinization of the Pleistocene aquifer of the Netherlands occurred in the order of decades to centuries (Post and Kooi 2003). Their derived relationship was based on a theory proven by Gieske (1991) in which he used a simple expression to demonstrate the occurrence of brackish and saline water at depths of 450 meters over a period of 60 years. Post (2004) studied the processes that caused salinization of groundwater in the coastal area of the Netherlands during Holocene epoch under natural conditions. His area of interest was the entire Dutch coastal region. Conclusions from his research were that former transgressions are the source of the extensive salinization of the subsurface. One of the main processes behind this salinization is free convection, a density driven process, that resulted from experiments of Post (2004). Other processes named by Post are modern seawater intrusion, aerosols, evaporates, anthropogenic pollution, ultrafiltration and freezing. However, Post (2004) concluded that these processes are minor inputs that can be neglected.

Post (2004) also made a general palaeohydrological reconstruction of the Dutch coast, based on the findings of four earth-scientific disciplines i.d. hydrochemistry, numerical transport modelling, quaternary geology isotope hydrology and pore water research. He showed that the Pleistocene aquifers had fresh groundwater after the Weichselian glacial stage, which also caused the freshening of marine strata to depths of hundreds of meters. Sea level rise in the Holocene caused marine incursion in the Pleistocene surface therefore causing salinization by free convection to the sub-layers. After the closure of tidal channels and coastal areas the influence of direct free
convention ceased. Salinization occurred then by diffusion in areas that were flooded. Since the Middle Ages the hydrology changed to the pattern we know mainly due to human intervention. Another historical landscape modelling study by Loon (2010), was exerted in the Gooi and Vechtstreek area to study hydrological mechanisms behind fen deterioration. Loon (2010) made a palaeo-groundwater model from 0 until 2000 AD incorporating natural and human impacts. Vandenbohede and Lebbe (2002) used a numerical model (MOCDENS3D) to simulate the effect of landscape change (mainly land reclamation) on the chloride distribution along the Belgian coast. Their findings showed that aquifer heterogeneity and human interference are the main factors that influence chloride distribution.
Figure 1.1: “Maps showing the spatial distribution of Cl concentrations at 20, 40, 80 and 120 below mean sea level. Dots indicate the location of observation wells within 5 m above or below the shown depth interval. No contours are shown in areas with too little observations. Based on data from the province of Noord-Holland, Netherlands Institute of Applied Geoscience TNO – National Geological Survey and Ouwerkerk (1993)” (Post, 2004, p.20).
1.2 Problem definition and research questions

Our current knowledge of the origin of saline groundwater is based on interpolation and interpretation of present day data to earlier times. Current hypotheses fail in incorporating landscape changes and human interference together with chloride distribution evolution. No study was done in the Netherlands on the evolution of chloride distribution together with landscape changes. Also no forward modelling study was done to test our current understanding of the saline groundwater origin hypothesis. This gap in understanding the chloride distribution is important since chloride evolution and distribution is highly dependent on landscape changes. The main objective of this research was therefore to get better insight into the processes, which occurred during the Holocene coastal development, that resulted in the present day chloride distribution in the Dutch coast. The processes are changes in landscape and anthropogenic changes. From the above mentioned the following main research question was formulated:

What are the main processes that affect the chloride distribution in the North-West coastal region of the Netherlands during the Holocene coastal development?

To answer the main research question the following sub-questions were formulated:

- **What processes affect and/or cause the chloride distribution?**

 Understanding the basic processes like diffusion, advection and free convection, that cause movement of solutes is the first step in understanding the whole problem.

- **How does the geological setting affect the chloride distribution?**

 Geological layering and resulting lithostratigraphy has an impact on how water and solutes move through the subsoil. So changes in soil profile or sedimentation can cause retardation on solute movements.

- **How did landscape changes/developments influence the salt/fresh water distribution?**

 Morphology has an impact on recharge and surface waterlevels. Changes in these boundary conditions influence groundwater flow and thus the chloride distribution.
• What are the causes of differences between the model output with the observed chloride distribution?

Explaining these differences will give a better insight to the whole development of the chloride distribution.

The research questions were answered by making a palaeo-reconstruction of the chloride distribution using models which incorporate landscape changes based on hypotheses of the landscape evolution. Subsequently, a two-dimensional groundwater model was used, to simulate density-dependent flow and solute transport following landscape evolution and sea level change. Nine important landscape changes were simulated in nine time frames and than incorporated in the model.

1.3 Research outline

In this thesis, ages are in calendar years, unless indicated differently (e.g. 14C yr for uncalibrated radiocarbon dates). Salinity of groundwater is given in Cl\(^-\) mg/l and categorized according to Table 1.

Chapter 2 gives an overview of the physical geographical setting as well as its historical development. Followed by a description of the stratigraphy and hydrogeology. The methodology together with explanation of the chosen time frames is explained in chapter 3. Chapter 4 will show the results followed by a discussion in chapter 5. Conclusions and recommendations will be formulated in chapter 6.
2. Research area and its palaeogeoographical and historical development

2.1 Research area

The research area is situated in the Netherlands in the province North-Holland. A profile was modelled running from west to east, which extends from 12 kilometres off the coast of Zandvoort to Hilversum situated on the Utrechtse Heuvelrug to the east (see Figure 2.1). The research profile had a length of approximately 64 kilometres. Along the profile, one finds from west to east the cities Zandvoort, Haarlemmermeer, Amstelveen, Abcoude, Horstermeer and Hilversum. Zandvoort is a city situated in the coastal dune area. Haarlemmermeer and Horstermeer are deep polders and formed lakes now used for agriculture whereas Amstelveen is a polder area that developed into a city (Schultz, 1992).

On the northeastern side the area is bordered by the IJsselmeer, a freshwater lake that resulted from the closing of an inland sea called Zuiderzee in 1932 (IJsselmeer, 2011). On the western side, the area is bordered by the North Sea and to the south-east the Utrechtse Heuvelrug forms a barrier of ice-pushed ridges. The profile laid perpendicular to the Dutch coast, this because of the assumption that the main groundwater flow occurs perpendicular to the coast. Based on this assumption also a 2D-profile, which simulated one main groundwater flow direction, was chosen as modelling method. We chose to extent the profile into the North Sea to be able to account for the shifting position of the Dutch coastline during the Holocene. The maximum expansion of the coast was chosen as the minimum length into the sea. To the south-east the profile runs until the highest point near Hilversum at the Utrechtse Heuvelrug. This area was chosen since the Pleistocene aquifers here are extensively researched and enough data is available due to a dense network of wells and geoelectrical surveys (Post, 2001). Also the character of being a representative area for the Dutch coast, with dunes and deep polder, was one of the reasons for choosing this area. Understanding the chloride distribution in this well-documented area can be of use for the explanation of chloride distribution in areas where there is less or no data.
Figure 2.1: The research profile from the coast of Zandvoort to Hilversum (A-B). Profile is 64 kilometers.
2.2 Geological history

After the Weichselien last ice age which lasted from 115,000 to 10,000 C¹⁴ years BP, a new interglacial period (Berendsen, 2008), called the Holocene, started. The boundary between Pleistocene and Holocene is based on the change of a glacial to an interglacial climate, concluded from the disappearance of open vegetation to a closed birch forest (Berendsen, 2008). Climate during most of the Holocene period in the Netherlands was comparable to current climate with an average year temperature of 10 °C and precipitation of 700-800 mm per year (Valk, 1994). No significant changes were observed except for a few exceptions, the recent one of which is the little ice age in the 1600 to 1800 AD (Lamb, 1969). The Dutch climate is classified as a moderate oceanic climate (Berendsen, 2008). The Holocene is divided into several stages according to vegetation analysis (Table 2.1). These periods are described in more detail in the following sections, with special attention to the landscape evolution in the Netherlands and around our profile. Main factors that caused the development of the coast were the Pleistocene subsurface, relative sea level changes and the position of river discharge from eastern uplands.

Table 2.1: Holocene division based on vegetation (Mulder et al., 2003; Berendsen, 2008).

<table>
<thead>
<tr>
<th>Chronostratigraphy</th>
<th>Age in C¹⁴ years BP</th>
<th>Age in Calendar years B.C.</th>
<th>Vegetation characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Subatlanticum</td>
<td>2900</td>
<td>1100 B.C.</td>
<td>Beech more than 5%, many crop</td>
</tr>
<tr>
<td>Subboreal</td>
<td>5000</td>
<td>3850 B.C.</td>
<td>Beech more than 1%, elm less than 5% and agriculture</td>
</tr>
<tr>
<td>Atlanticum</td>
<td>8000</td>
<td>7000 B.C.</td>
<td>Alder and oak are dominant trees</td>
</tr>
<tr>
<td>Boreal</td>
<td>9000</td>
<td>8000 B.C.</td>
<td>oak, elm and hazel dominant</td>
</tr>
<tr>
<td>Preboreal</td>
<td>10000</td>
<td>9000 B.C.</td>
<td>Birch and pine trees are dominant</td>
</tr>
</tbody>
</table>
Preboreal and boreal (9000- 7000 B.C.)

At the end of the Weichselien sea level was 50 meters below O.D. (O.D.: Ordnance Datum, approximately mean sea level of current time) and most of the North Sea was dry. The North Sea shoreline was located North West of the Netherlands near Doggersbank, a 300 kilometers long sandbank, (Mulder et al. 2003). The Netherlands were part of a vast plain in north-western Europe with a land climate and braided rivers as predecessors of the Rhine and Meuse. The Pleistocene relief (see Figure 2.2) formed the basis for the creation of the Dutch subsurface. It controlled the geometry and size of the tidal back-barrier basins (Cleveringa, 2000).

Between 9000 to 7000 B.C. sea level rose till approximately 20 meters below O.D. caused by melting of northern ice-sheets. During this period, Pleistocene rivers and aeolian cover sands formed the surface of the Netherlands. Rivers changed from a braiding to a meandering pattern causing deep incisions and river valleys along the Dutch coast. The groundwater system was influenced by surface morphology and rivers had a freshwater environment (Post, 2004). Dutch landscape morphology was smooth in our research area during this period so the main groundwater flow was from east to west, with the exception of small local groundwater flow systems caused by low lying areas (Post, 2004).

![Top Pleistocene surface with pleistocene formations eroded by marine tidal systems and less eroded sites (Bazelmans et al., 2011).](image-url)

Figure 2.2: Top of Pleistocene surface with pleistocene formations eroded by marine tidal systems and less eroded sites (Bazelmans et al., 2011).
Atlanticum (7000-3850 B.C.)

Sea level was 23 meters below O.D. at the beginning of the Atlanticum. During the Atlanticum the Dutch coast shifted eastward. Sea level rise and the eastward relocation of the Dutch coastline caused salinazation of the groundwater system along the coast. The Dutch coast was characterized as an open barrier beach system situated only a couple of meters west from the current Dutch coastline and 15 meters below O.D. (Dufour, 1998). Between the barriers, marine influence created tidal basins which were surrounded by tidal flats (see Figure 2.3). These tidal flats turned landward into marsh areas and further inland peat developed under the rising groundwater table. Barriers and peat growth caused elevation difference in the Dutch landscape causing the development of more local groundwater flow systems and freshwater lenses under elevated areas. The fast sea level rise caused a decrease in slope, which meant that rivers flooded easier over their banks creating a greater chance for avulsion and crevasse formation. Crevasse formation is a breach through the banks of a river (Berendsen, 2008). River patterns changed from meandering to straight anastomosing river patterns with many crevasses. In addition, the Rhine changed its course from the Benschoppensystem to the Oude Rhine, creating a delta near the city of Leiden. In the west the river area was now characterized as an accumulation area. Northern parts of the Netherlands and east area of the Wadden Sea were still dry (Berendsen, 2008).

Subboreal (3850-1100 B.C.)

The Subboreal was a period with less sea level rise (Figure 2.3) and an average sea level of 5 meters below O.D. at the beginning of the Subboreal. A closed barrier beach system developed along the Dutch coast causing freshening of the groundwater system, since the influence of sea water was haltered. The coast changed from a retrograding to a prograding coast extending to the west until 2500 year B.C. The sand deficiency that existed before the Subboreal ceased to exist because enough sand could be transported from the North Sea to the barrier beach system to keep up with the sea level rise. After the barrier beach closure five inlets were left: at Bergen, at Castricum and the outlet of Old Rhine, Meuse and Schelde. Only the coast at the Wadden Sea was still open and continued to develop during this period till 3500 year B.C. Rivers in the west changed from straight anastomosing to meandering pattern or
straight patron with many crevasse complexes. The river area was still a big accumulation area (Berendsen, 2008).
Since sea intrusion and marine incursions were almost none existent during this period lakes became fresh, which stimulated peat development. Hence, peat areas occurred on a large scale behind the barriers except behind the tidal inlets, were tidal flats existed as long as there was a sediment deficiency. An important change was that the Rhine had as main discharge location the Old Rhine. These changes in sedimentation and peat growth resulted in four remaining outlets the Oer-IJ, Old Rhine, Maas and Schelde. Also the groundwater system changed considerably with the growth of the coast, barriers and peat areas, which caused high groundwater levels, complex local groundwater systems and freshwater lenses at elevated sites.

Subatlanticum (1100 B.C.- present)
Rate of sea level rise decreased even more in the Subatlanticum. High storm frequencies promoted a degradation of the Dutch coast between 500 - 100 year B.C. Coast degradation in Zeeland and North-Holland resulted in marine incursions. These incursions caused soil compaction in peat areas because of dewatering. The coast changed again to a prograding system after silting up of the back-barrier basins (800 A.D.). Sediment previously designated to these back-barrier basins became available for coastal formation, creating the so-called Young dunes around 1000 A.D. which increased the volume of freshwater under the dunes. The coast profile became much steeper and natural freshwater lakes developed behind the dunes. Lakes developed because of erosion of peat and peat extraction. In the Wadden Sea, the beginnings of the Zuiderzee started to appear due to peat erosion caused by the expansion of the Vlie dewatering channel.
In the south-western river area there was a high frequency of river avulsions which resulted in important new river courses such as the Lek, Waal, Hollandse IJssel and Gelderse IJssel. Increased avulsion rates were due to a higher river discharge that was caused by the change in vegetation from forest land to crops. After the Roman times the Rhine shifted towards the Maas – estuary following the steeper slope. This caused the Old Rhine system to silt up.
Anthropogenic changes

Since the late–middle ages more anthropogenic influences were seen across the Netherlands in the form of land cultivation and dike building. The first polders appeared in the 15th century and were dewatered by sluices during low tide on low river stages (Bazelmans et al., 2011). In 1850, windmills that were used to dewater the polders were replaced by steam powered mills. The Haarlemmermeer polder was the first polder to be drained with steam powered mills in 1852. From the 15th century until now approximately 445 polders were constructed in the Netherlands (Schultz, 1992). Changes also occurred in the river area. Discharge and sediment load of rivers increased during this period probably caused by deforestation of upstream areas. Most of the sediment load never reached the sea since most of it was deposited on the floodplains creating a clay layer on top of the peat. High discharge rates caused high avulsion frequencies, which were devastating for the surrounding villages. Therefore, man embanked the whole river area between 1100 and 1300 A.D. as prevention measure for floods. Landscape changes such as soil pavements needed for urban development and infrastructure were now constructed by man. Even groundwater systems are managed so that target groundwater levels are maintained. Land reclamation and protection projects as the Deltaplan, Aflsuitdijk and IJsselmeer polders now define the appearance of the Netherlands (see Figure 2.3).
Figure 2.3: Palaeogeographic maps of the Netherlands. a) 5500 B.C., b) 1500 B.C., c) 1500 A.D. and d) 2000 A.D. (Bazelmans et al., 2011)
2.3 Sea level rise during the Holocene

The Holocene epoch is a period of substantial sea level rise (see Figure 2.4). Relative sea level rise differs for each part of the world since it consists of absolute sea level rise and land subsidence (Bazelmans et al., 2011). The curve for sea level rise in the Netherlands is based on 14C dating of basal peat. Basal peat is used as an indicator for the position of the sea level because of the following assumptions:

1. The groundwater level rises with the sea level
2. Peat formation took place under the influence of a rising groundwater table.
3. The relation between groundwater table and peat type is known.
4. Datable 14C of basal peat

It is assumed that the rising sea level pushed the groundwater table up to a point where it caused seepage, which stimulated peat growth (Berendsen, 2008).

Figure 2.4: Relative sea level rise during the Holocene along different regions of the North Sea coast. From Mulder et al. 2003 cit. Jelgersma, 1979; Ludwig et al., 1981; Plassche, 1982; Denys en Baeteman, 1995; Kiden, 1995.

Around 6000 B.C. the ice-sheets stopped melting meaning that there was no net loss of ice. The relative sea level rise was from then onwards mainly due to land subsidence.

2.4 Stratigraphy and hydrogeology

A description of the geology and associated formation is briefly explained here in chronological sequence (see Figure 2.6 and 2.7). The formations are named according to the classification of Weerts et al. (2000) and Mulder et al. (2003). The geology and lithology play an important part in defining aquifers and aquitards for the hydrogeology. A simple subdivision in aquifer and aquitard for the entire profile was
not possible here, since there are substantial differences in the lithology. All aquitards and aquifers are heterogeneous both in their hydraulic properties and spatial distribution. Based on data from REGIS II and GeoTOP in the DINO system we can identify approximately three aquifers in this region (see Figure 2.7) assuming that the bottom of Maassluis, a formation that consists of mainly thick impermeable clay layers (Berendsen, 2008), is the hydrogeological base. All geoscientific data on the shallow and deep Dutch subsurface are stored in the DINO (Data and Information of the Subsurface of The Netherlands) system. In DINO the hydrogeological information for the profile is found in REGIS II (Regional hydrogeological information system) and GeoTOP. GeoTOP visualizes the upper 50 meters of the Dutch subsurface in detail with grid cells of 100 by 100 meters horizontally and 50 centimeters vertically (TNO-NITG, 2012). Groundwater levels in the research area are artificially controlled with a dense network of ditches and canals. Excess rain in polder areas is pumped into canals and rivers, so desirable water levels can be maintained. Groundwater flow patterns are therefore mainly controlled by surface water level differences between polders, lakes, canals and rivers (Post, 2004). As for our knowledge of the chloride distribution, Figure 2.5 shows interpolated current chloride concentration distribution based on point measurements (Minnema et al., 2004).

Figure 2.5: Chloride distribution from Zuid-Holland model by Minnema et al., (2004). Chloride concentrations are in mg/l.
Above the Maassluis formation, sediments of the Eridanos river system are found, as part of the Peize and Appelscha formations. Eridanos river system consisted of rivers from Scandinavia together with rivers from North Germany which drained in the northern part of the North Sea basin of which a part was to become North-Netherlands. These formations were formed before the mid-pleistocene and consist of coarse white sands with gravel. The Rhine and Meuse were also active rivers from this period. Sediments of Rhine were given the following three names from old to young: Waalre, Sterksel and Urk formation. These formations contain coarse to fine sands with gravel, while the last two formations have substantial amounts of augiet, a volcanic mineral. The Beegden formation consist of Meuse deposits and was formed by river terraces with a fining upwards composition of coarse to fine sand mixed with gravel.

Moving up in the chronology of Figure 2.7 we see signs of Saalien Ice age, by the presence of the Drente formation, which consists of glacio-fluvial sediments and boulder clay. The Utrechtse Heuvelrug is also a morphological unit that was formed during Saalien but is defined as a complex unit on the geological map. The Saalien ended with the interglacial Eemien, which resulted in the growth of peat forming the Woudenberg formation and marine sedimentation along the Eem sea composed of fine sand and clay in the Eem formation. The cold Late-Pleistocene period is represented by sediments of the braided predecessors of the Rhine and Meuse rivers forming the Kreftenheye formation. Coarse sands and gravel mainly characterize this formation. The Boxtel formation was also formed in this period, consisting of aeolian and local creek deposits made up of fine sands. Sea level rise enhanced the influence of marine sedimentation in the Dutch coast, which resulted in the Naaldwijk formation. The Naaldwijk formation encompasses all clastic marine sediments of the Holocene including dunes. It consists of medium to fine sand and clay layers with shell fragments. This formation is mostly bordered by peat belonging to the Nieuwkoop formation. After the closure of the coast, peat growth was at a maximum in the back-barrier basins. This gave rise to a vast area of peat belonging to the Nieuwkoop formation, which also includes basal peat and all other peat development in the Holocene. Holocene river deposits belonging to the Echteld formation are made up of channel fills i.e. coarse sand and gravel, and overbank deposits i.e. fine sand, silty clay and clay (Berendsen, 2008).
Figure 2.6: Schematization of hydrogeology with aquitards and aquifers. Numbers behind the aquifer or aquitard refer to the first second ect. (TNO, Geohydrologisch model, provincie Noord-Holland).
Figure 2.7: Overview of the formations in the profile (TNO-NITG Landelijk model REGIS II, 2005)
3. Modelling methodology

3.1 Method

The objective of this thesis was to understand the processes behind the chloride concentration distribution that developed during the Holocene. Three hypotheses were tested to understand these processes. Incorporation of landscape development was the same for all three hypotheses. Variation between the hypotheses existed in the assumptions for the initial chloride concentration distribution and chloride boundary condition. For hypothesis one we assumed freshwater concentrations (Table 1) as initial chloride distribution for the entire subsoil and chloride boundary conditions ranged from 16000 mg/l for the sea area to 150 mg/l near the coast area. This boundary condition was set for time frames 5000 B.C. and 3850 B.C. Hypothesis two had also freshwater as initial chloride distribution for the entire subsoil but chloride boundary conditions for time frames 5000 B.C. and 3850 B.C. ranged from 16000 mg/l for the sea area to 5000 mg/l near the coast area. This chloride boundary condition was chosen because of its possiblility to be the source for high concentration levels of chloride measured near Abcoude. Hypothesis three was based on the theory that the Maassluis formation (depth of 190 to 260 meters below O.D.) in time frame 5000 B.C. had a brackish initial chloride concentration (Meinardi, 1991), the upper layers had freshwater concentrations. This theory was rejected by Post (2004) in which he used well measurements that showed an age of 24000 C14BP for brackish water in Maassluis (see Figure 3.4). Maassluis is much older than 24000 C14BP hence proving that connate seawater from Maassluis was not the cause of salinization for the upper layers. The chloride boundary conditions here were similar to the first hypothesis. It should also be mentioned that an extra fourth hypothesis was simulated with a longitudinal dispersivity of 0.001 and same conditions as hypothesis one. This however did not show substantial differences in the results compared to hypothesis one and was therefore disregarded here for further evaluation.

The tool chosen to answer our research question and test our hypotheses was numerical modelling. Here the use of a two-dimensional groundwater model (MODFLOW), incorporated with a density dependent module (SEAWAT) generated a simulation of the chloride distribution evolution. Because this was the first model to use forward modelling for simulation of landscape changes together with chloride distribution evolution and the assumption that there was one main groundwater flow
direction, which took place perpendicular to the coast. A two-dimensional model was appropriate to simulate the effects of the main landscape changes along the Dutch coast on the chloride distribution. Over-/under estimations of chloride concentrations can arise because of the choice for a two-dimensional profile, but we considered this during the analysis of the results. SEAWAT module had to be used since groundwater flows are affected by density differences. Overall coastal groundwater modelling studies take water density differences into account since water density differences, arising from differences in temperature and solute composition, affect groundwater flow. Temperature differences are not large along the Dutch coast and thus can be neglected. However, solute composition has a large effect as differences in dissolved sodium chloride, between seawater and fresh groundwater are large (Table 1).

Table 3.1: Classification of types of groundwater based on chloride concentration (Stuyfzand, 1993).

<table>
<thead>
<tr>
<th>Main type of groundwater</th>
<th>Chloride concentration(mg Cl/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fresh</td>
<td>< 150</td>
</tr>
<tr>
<td>fresh-brackish</td>
<td>150-300</td>
</tr>
<tr>
<td>brackish</td>
<td>300-1000</td>
</tr>
<tr>
<td>brackish-saline</td>
<td>1000-10,000</td>
</tr>
<tr>
<td>saline</td>
<td>10,000-20,000</td>
</tr>
</tbody>
</table>

To model the evolution of chloride distribution during the Holocene several subsequent models needed to be made to capture the different landscape changes over time, starting with the oldest landscape change going to the present situation. The base of the model was the Maassluis formation which is the base of the quaternary epoch. The method used here was to construct a two-dimensional model which we called a time frame and subsequently simulate the hydraulic heads and chloride distribution for that time frame. Nine time frames were modelled for each hypotheses. A time frame represents one period in time for which natural and/or anthropogenic changes contributed to a significant change in the groundwater system. The time frames were chosen such that they represented the approximated average time that, that landscape existed. The general reconstruction of a time frame was to reconstruct the surface level based on literature or calculated elevations. A rolling averaged mean was
conducted on the surface values to obtain a smooth surface line. Figure 3.1 shows the reconstructed nine surface elevations where we see an increase in surface level from 5500 B.C. with the appearance of the dunes in 3850 B.C. From 1500 A.D. there is no further increase of landscape in the vertical direction. After 1500 A.D. till 2000 A.D a total decrease of approximately 4 meters in the Haarlemmermeer is seen. For the remainder lands between Haarlemmermeer and Hilversum a decrease of the surface level is visible with a maximum of 2 meters near Abcoude and Horstermeer. Values for the model parameters were collected from literature or REGIS II and GeoTOP. Boundary conditions, e.g. sea levels, coast position and recharge, were defined based on assumptions or hypotheses from literature. After simulation, results for the chloride distribution from the first time frame (hence oldest period) were used as initial chloride distribution for the second time frame and results from the second time frame for the third time frame and so on. The model results for hydraulic heads was calibrated based on hydraulic head measurement from NHI. Below follows a detailed description of all the time frames explaining the model building procedure. All groundwater flow calculations used were steady-state while solute transport models were transient.

![Figure 3.1: Calculated surface elevations of the nine time frames.](image-url)
3.2 MODFLOW

MODFLOW is a three-dimensional finite-difference groundwater model, which solves the groundwater flow-equation (equation 1).

\[
\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) + W = S_s \frac{\partial h}{\partial t}
\]

(1)

\(K_{xx}, K_{yy}, \text{and } K_{zz}\): values of hydraulic conductivity along the x, y, and z coordinate axes, which areas summed parallel to the major axes of hydraulic conductivity (L/T);

\(h\): potentiometric head (L);

\(W\): volumetric flux per unit volume representing sources and/or sinks of water, with \(W < 0.0\) for flow out of the ground-water system, and \(W > 0.0\) for flow in (T\(^{-1}\));

\(S_s\): specific storage of the porous material (L\(^{-1}\));

\(t\): time (T).

MODFLOW was published by United States Geological Survey (USGS) by McDonald and Harbaugh (1988), and was designed to simulate saturated three-dimensional groundwater flow through a porous medium. Since 1988 many computer codes have been developed adding new capabilities to MODFLOW (Simcore software, 2011; Harbaugh et al., 2000). The version used here is MODFLOW-2005. Complete documentation of MODFLOW can be found in McDonalds and Harbaugh (1988) and Harbaugh et al. (2000). Here only the used packages are explained.

Packages used

Modflow packages used for these time frames were General Head Boundary (GHB), Recharge (RCH), River (RIV) and Drain (DRN) package. For a detailed description on the packages we refer to Harbaugh (2005).

a) General head boundary package

The general head boundary package was used to simulate flow into or out of a cell from an external source. This is done based on the difference between the calculated head in the cell and the external head defined by the user. The linear relation between the flow into the cell and head in the cell is given by equation 2 (Harbaugh, 2005):

\[
QB_n = CB_n \left(HB_n - h_{i,j,k} \right)
\]

(2)

\(n\) = boundary number,
\[QB_n = \text{flow into cell } i,j,k \text{ from the boundary} \quad \left(L^3 T^{-1} \right) \]
\[CB_n = \text{boundary conductance} \quad \left(L^2 T^{-1} \right) \]
\[HB_n = \text{head assigned to the external source} \quad (L) \]
\[h_{i,j,k} = \text{head in cell } i,j,k \quad (L) \]

\textit{b) Recharge package}

Recharge package was used to simulate groundwater recharge based on an user defined flux assigned to the upper cell (Harbaugh, 2005).

\textit{c) River package}

The river package was used to simulate interaction of surface water and groundwater by calculating the fluxes between these two systems. The flux between surface and groundwater are calculated based on the head difference of the user defined surface water level and calculated potentiometric head of the aquifer (Harbaugh, 2005). There can be flow into or out of the river dependent on the value of the two heads. (see equations 3 and 4)

\[QRIV^n_n = \left(CRIV^n_n (HRIV^n_n - h_{i,j,k}) \right) \quad h_{i,j,k} > RBOT^n_n \]
\[QRIV^n_n = CRIV^n_n (HRIV^n_n - RBOT^n_n) \quad h_{i,j,k} \leq RBOT^n_n \]

\[QRIV^n_n = \text{river discharge} \quad (m^3/d) \]
\[CRIV^n_n = \text{streambed conductance} \quad (m^2/d) \]
\[HRIV^n_n = \text{user defined potentiometric head of river stage} \quad (m) \]
\[h_{i,j,k} = \text{calculated potentiometric head} \quad (m) \]
\[RBOT^n_n = \text{elevation of river bottom} \quad (m) \]

\textit{d) Drain package}

The drainage package was used to simulate removal of a surplus of water out of the system. If the potentiometric head is higher than that the user defined elevation of water level in the drain, water is removed from the system, otherwise the drains will have no effect on the system (Harbaugh, 2005).

\textbf{3.3 SEAWAT}

For the simulation of density dependent flow the U.S.G.S. developed SEAWAT code was used. SEAWAT is the combination of MODFLOW and MT3DMS into one program that can solve the coupled flow and solute-transport equation. Calculations of
SEAWAT are based on the conservation of fluid mass rather than fluid volume. SEAWAT uses freshwater head as the dependent variable instead of the normal potentiometric head. Freshwater head is used as an alternative to potentiometric head, in areas where there is difference in water density. From Post, Kooi and Simmons (2007) it follows that in areas with the same pressure, different potentiometric heads will follow, depending on the water density. To cope with this problem a reference density is chosen, so that we can compare head levels with each other. Any density can be chosen as reference density but the most often used is freshwater density of 1000 kg/m3. The conversion from measured head is calculated according to equation 5 (Post, Kooi and Simmons, 2007):

$$\phi_{f,i} = \frac{\rho_i}{\rho_f} h_i - \frac{\rho_i - \rho_f}{\rho_f} z_i$$

(5)

$\phi_{f,i}$ = freshwater head at point i (L)

ρ_i = density of water in column at i (kg/m3)

ρ_f = density of freshwater (1000 kg/m3)

h_i = point water head (measured head in terms of native aquifer water) (L)

z_i = elevation of point i from a reference level (L)

So the flow from cell to cell is now calculated from freshwater head gradients. Output of SEAWAT are expressed in terms of the head of the native aquifer water, called point water head (Guo and Langevin, 2002). Complete documentation of SEAWAT can be found in Guo and Langevin (2002).

3.4 Model description

The model consists of 67053 cells with the size of 100 meters in the horizontal direction and different sizes in the vertical direction, resulting in a model domain of 103 layers and 651 columns. All model parameters are given in Table 3.2. Since interest is directed towards processes that influence the distribution of chloride concentration during landscape development of the Holocene, a detailed discretization was taken for the upper layers. We chose a vertical discretization as a trade–off between computational time and measured accuracy. The vertical discretization, going from the top layer to the bottom layer, was:
61 layers with a 1-meter thickness
20 layers with a 2-meter thickness
8 layers with a 5-meter thickness
13 layers with a 10-meter thickness
1 layer with a 28-meter thickness

Based on the calculated mean hydraulic conductivities of a layer, distinction was made between permeable and semi-permeable layers. The hydraulic conductivities were taken from REGIS II (TNO-NITG, 2005) of which the values for the Holocene confining layer were replaced by values from GeoTOP (TNO-NITG, 2012) (see Figure 3.2 and 3.3). Mean values for the horizontal and vertical hydraulic conductivities were calculated using equation 6 (arithmetic mean) for the horizontal hydraulic conductivity and 7 (harmonic mean) for the vertical hydraulic conductivity. Averaging of the hydraulic conductivities was needed since the grid size of the conductivity values are smaller than the grid used in this model, so an upscaling was in order.

\[
K_{hmean} = \frac{kh_1D_1 + kh_2D_2}{D_1 + D_2}
\] (6)

\[
K_{vmean} = \frac{D_1 + D_2}{\frac{D_1}{kv_1} + \frac{D_2}{kv_2}}
\] (7)

\(K_h\text{mean}/K_v\text{mean} = \text{mean hydraulic conductivity (m/d)}
\)

\(kh_1 = \text{horizontal hydraulic conductivity of layer 1}
\)

\(kh_2 = \text{horizontal hydraulic conductivity of layer 2}
\)

\(kv_1 = \text{vertical hydraulic conductivity of layer 1}
\)

\(kv_2 = \text{vertical hydraulic conductivity of layer 2}
\)

\(D_1 = \text{thickness of layer 1}
\)

\(D_2 = \text{thickness of layer 2}
\)
Figure 3.2: Horizontal hydraulic conductivities for the profile.

Figure 3.3: Vertical hydraulic conductivities for the profile.
Boundary conditions

For the east side of the model a no flow boundary was chosen based on the water divide in the Utrechtse Heuvelrug. Each time frame had the same boundary for the east side, assuming thus constant throughout the Holocene. Also the following parameters were kept constant for all the time frames: anisotropy, general head boundary conductance, river conductance, porosity, longitudinal and horizontal dispersivities (see Table 3.2). For the west side of the model the boundary varied for each time frame depending on the sea level. The GHB was used in the time frames to account for the sea level such that a constant hydraulic head is maintained at the sea boundary and to remove the surplus of water and solutes out of the system. The GHB values were set for the top cells, head value was chosen as the sea level for that time frame (see Table 3.3). The value used for the recharge was taken from Loon (2010). His value could be used because he made a palaeo-groundwater model from 0 till 2000 AD in the Gooi and Vechtstreek area, which lies on our study area. Loon (2010) used equation 8 to calculate recharge for his palaeo-hydrological modelling.

\[R = (1 - f_i)P - f_mE_m \]

(8)

\(R \) = precipitation surplus (m/d)
\(f_i \) = interception factor(-)
\(P \) = precipitation (m/d)
\(f_m \) = crop factor(-)
\(E_m \) = reference potential evapotranspiration (m/d) according to Makkink reference

This equation only changes the recharge based on a change in vegetation type, because the assumptions that precipitation has not changed during the Holocene (Pauling et al., 2006) and evapotranspiration stayed constant, because solar radiation which is the source of energy for evapotranspiration, varied less than 0.5% since 800 AD (Cubasch et al., 1997; Pongratz et al., 2009) was made. Since not only one vegetation type existed across the profile, different recharge values would have to be implemented across the transect according to the vegetation type. For simplification of many parameters that influence the chloride distribution it was decided to take only one value for recharge for the whole profile. Since Loon (2010) made a palaeo-hydrological model in the same area as our research area his values can be used for this research under the same assumption of constant precipitation and evapotranspiration. This will not affect the results too much because the recharge
values for the possible different vegetation types i.e. deciduous forest, heather land, grass and crops, that existed in the research area have an averaged value of 0.000745 m/d. (Loon, 2010). Thus in this study the recharge for all time frames was the same as our current recharge i.e. 0.00074 m/d.

Solute transport model boundaries
For the solute transport model SEAWAT, the same discretization and boundaries as for the groundwater flow model were used. The initial concentrations varied for each time frame. For solving the advection component of the equation the MOC method (Guo and Langevin, 2002) was chosen after comparison with the Finite difference method and TVD. The MOC resulted in a better solution for the problem especially at the sharp boundaries between fresh and saline water. For the dispersion package a longitudinal dispersivity of 0.05 was used after comparison of a trial with a dispersivities of 0.5 and 0.005, since dispersivity is scale dependent (Oude Essink, 1996) and horizontal transverse dispersivity of 0.1 was applied. For the variable density flow package the densities for fresh and saline water (saline water here has a concentration of 16000 mgCl/l) were set to 1000 kg/m³ and 1025 kg/m³.

Table 3.2: Table with model properties and constant parameters

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of profile</td>
<td>64 km</td>
</tr>
<tr>
<td>Height of profile</td>
<td>20 m above O.D.</td>
</tr>
<tr>
<td>Depth of profile</td>
<td>≈ 300 m, bottom of Maassluis formation</td>
</tr>
<tr>
<td>Horizontal cell size</td>
<td>100 m</td>
</tr>
<tr>
<td>Vertical cell size</td>
<td>Start with 1m and increases after 61 layers</td>
</tr>
<tr>
<td>Total layers</td>
<td>103</td>
</tr>
<tr>
<td>Total columns</td>
<td>651</td>
</tr>
<tr>
<td>Recharge</td>
<td>0.00074 (m/d)</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.35</td>
</tr>
<tr>
<td>Longitudinal dispersivity</td>
<td>0.05</td>
</tr>
<tr>
<td>Horizontal dispersivity</td>
<td>0.1</td>
</tr>
<tr>
<td>GHB conductance</td>
<td>100 d</td>
</tr>
<tr>
<td>River conductance</td>
<td>10 d</td>
</tr>
</tbody>
</table>
3.5 Time frames

The Pleistocene surface (9000 B.C.) was used as starting surface for the model. Surface level for Pleistocene was extracted from REGIS II (TNO-NITG, 2005) based on the stratigraphy. The border between the Holocene and the Pleistocene was taken as the surface for the Pleistocene after comparing with maps from reconstructed Pleistocene surface from Bazelmans et al.(2011). Elevation levels were more or less similar to the border based on REGIS II. Based on this surface level hydraulic conductivities were extracted from the merged hydraulic conductivity maps. REGIS II has no values for the sea, hence the horizontal hydraulic conductivity (Kh) was set to 30 m/d and the vertical hydraulic conductivity (Kv) to 3.0 m/d assuming a sandy sea subsurface. The above mentioned procedure for extracting hydraulic conductivity values was used for all the time frames unless mentioned otherwise. Peat area fills had values of uncompacted peat, namely Kh value of 2.2 m/d and Kv of 1.2 m/d (Kechavarz et al., 2010), unless mention otherwise. For peat area growth an accumulation rate of 0.06 cm/y was used to calculate the peat area elevation (Ovenden, 1988 and Asselen, 2010).

Cells above the surface level were set to inactive, parts where values were missing were filled with the corresponding value based on lithology (Bazelmans et al., 2011; Berendsen, 2008). According to literature description, the Pleistocene surface was characterized by bare soils that consisted of sands, varying from coarse sand in the river sites (western area of the profile) and fine aeolian cover sands in the eastern area of the profile bordered by the ice pushed ridges of the Utrechtse Heuvelrug. So hydraulic conductivity values of clays at the surface, deposited by rivers after the Pleistocene, were replace by values of fine sand given by GeoTOP. Each time frame had a different surface with the exception of the Utrechtse Heuvelrug which was constant for all the time frames.
<table>
<thead>
<tr>
<th>Time frame</th>
<th>Event</th>
<th>Sea level (m. O.D.)</th>
<th>Surface elevation of peat (m.)</th>
<th>Water level of the Vecht (m. O.D.)</th>
<th>Extraction rate per well</th>
<th>Run time (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500 B.C.</td>
<td>Maximum transgression</td>
<td>-8.0</td>
<td>Basal peat</td>
<td>-</td>
<td>-</td>
<td>3500</td>
</tr>
<tr>
<td>3850 B.C.</td>
<td>Open system with small barriers</td>
<td>-5.0</td>
<td>+0.9</td>
<td>-</td>
<td>-</td>
<td>1650</td>
</tr>
<tr>
<td>2750 B.C.</td>
<td>Closed system Freshwater environment behind dunes</td>
<td>-3.0</td>
<td>+0.7</td>
<td>-</td>
<td>-</td>
<td>1100</td>
</tr>
<tr>
<td>1500 B.C.</td>
<td>Coast protruded to maximum position</td>
<td>-2.0</td>
<td>+0.6</td>
<td>-</td>
<td>-</td>
<td>1250</td>
</tr>
<tr>
<td>100 A.D.</td>
<td>Young dunes Coast at its current position</td>
<td>-1.0</td>
<td>+0.72</td>
<td>-0.68</td>
<td>-</td>
<td>1600</td>
</tr>
<tr>
<td>1500 A.D.</td>
<td>Appearance of freshwater lakes Haarlemmermeer Horstermeer</td>
<td>-0.3</td>
<td>-0.2</td>
<td>0.05</td>
<td>-</td>
<td>500</td>
</tr>
<tr>
<td>1885 A.D.</td>
<td>Land reclamation Haarlemmermeerpolder Amstelveen Horstermeer</td>
<td>-0.1</td>
<td>Current surface level+0.3</td>
<td>Current situation NHI data</td>
<td>-</td>
<td>385</td>
</tr>
<tr>
<td>1960 A.D.</td>
<td>Groundwater extraction in dunes at Zandvoort</td>
<td>-0.1</td>
<td>Current surface level+0.1</td>
<td>Current situation NHI data</td>
<td>0.85 m³/d Total 4 wells</td>
<td>75</td>
</tr>
<tr>
<td>2000 A.D.</td>
<td>Current water management</td>
<td>0.0</td>
<td>Current surface level</td>
<td>Current situation NHI data</td>
<td>0.18 m³/d at Zandvoort 4.55 m³/d at Hilversum Total 3 wells</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 3.3: Table with description of time frames
3.5.1 5500 B.C.
In this time frame the marine transgression was at its maximum (Bazelmans et al., 2011). Reconstruction of the peat surface was based on the assumption that basal peat grew at sites where groundwater levels were higher than the surface level. A time frame with the Pleistocene surface was run as steady –state to simulate the heads that followed from a sea level of 8.0 meters below O.D. These heads were visually compared to the top of the basal peat maps from REGIS II and Bazelmans et al.(2011). The calculated heads were more or less in agreement with the maps so these were used as the top of the surface in peat areas. Apart from the peat areas the landscape did not change much and was the same as the Pleistocene surface. From this time frame onwards drains were placed at the surface unless mentioned otherwise, because all surface drainage was through overland flow (Bos, 2010; Loon et al., 2009). The initial chloride concentration of Pleistocene was all fresh (Post, 2004) so to create a chloride source the top cells representing the sea had a starting concentration of freshwater at the coast and increases to 16000 mg/l with a rate of 90 mg/l/100m towards the sea.

3.5.2 3850 B.C.
At the end of the Atlanticum the profile had developed into an open system with small barriers at the coast. The change from a totally open system to a half open system consisting of a tidal area with barriers was the reason to simulate this time frame. Reconstruction of surface level was based on the top of the formations of Naaldwijk, Wormer and Zandvoort. This followed from the assumption that the top of the formations coincided with the end of Atlanticum. Hence the top values were used as surface levels in areas of sand and clay with the assumption that compaction of sand and clay is negligible. Boundary between dunes and sea was estimated at the cross-section of the sea level and Zandvoort formation because the dunes continued to grow till Subboreal. Source for the chloride concentration was set at the top cells for the sea side with a concentration of 16000 mg/l. Behind the barriers concentrations declined with a rate of 90 mg/l /100m towards the coast. Surface cells here had a constant concentration to create a chloride source behind the barriers, if infiltration existed.
3.5.3 2750 B.C.
After closure of the barrier beach system, the profile changed into a freshwater environment behind the dunes. Areas behind the dunes were filled with peat up to the calculated peat surface growth or up to sea level, where the calculated surface of peat was below sea level. Dune heights were extracted from Zandvoort member, included in the formation of Naaldwijk. For the Kh and Kv values of the dunes fine sand and medium sand values were used, since these were not in the merged hydraulic conductivity maps. The chloride source from this time frame onwards was given by the top cells of the sea side with a value of 16000 mg/l. The area behind the dunes had no chloride sources.

3.5.4 1500 B.C.
By 1500 B.C. the coast protruded to its maximum position (Bazelmans et al., 2011). Values for dune heights and extension were gathered from REGIS II maps of the Naaldwijk formation and Schoorl member. Values of the base of the member were chosen as the top of the dune surface since the dunes were still growing in the Subboreal (Berendsen, 2008). For the growth of the rest of the profile see Table 3.3.

3.5.5 100 A.D.
No human influence was yet visible and the dune system had developed to its current position with the growth of the Young dunes. Therefore the top of the Young dunes was used as the surface level of the dunes. A sea level of 1.0 m below O.D. based on a sea level rise of 0.05 m/century (Beets et al.1992) was used. The Vecht system which drained most of the Vecht area (Bos, 2010) had a water level of 0.68 meters below O.D. The water level was calculated based on the hydraulic head gradient of 0.004 m/km towards former inland sea Zuiderzee. The floodplain area was 0.4 m higher than the river level (Loon et al.,2009).

3.5.6 1500 A.D.
In 1500 A.D. many lakes appeared throughout the Dutch landscape. Haarlemmermeer and Horstermeer changed into lakes because of erosion of peat bulks by wind and peat extraction by men. The depth of the Haarlemmermeer was based on the deepest point of the polder that exist now, because Haarlemmermeerpolder was drained until the
bottom of the Haarlemmermeer lake, and then corrected for compaction. Water levels of the Haarlemmermeer was taken as the sea level since no real record exist of its position. Since the influence of men peat areas compacted with a rate of 2 mm/y (Loon, 2010; Asselen, 2010), when there was overburden or dewatering of the area. Water level of 0.05 meters below O.D. for the Vecht, was calculated with the same approach as for 100 A.D., could be used for the Horstermeer since we assume that Horstermeer is at the same level as the Vecht and also drained the Vecht area. The floodplain area of the Vecht rose with a total of 0.25 meters after compensation for compaction of the peat under the clay and silt layers.

3.5.7 1885 A.D.
The main changes in the following time frames were caused by human intervention. Haarlemmermeer, Amstelveen and Horstermeer were all reclaimed. All these areas became polders with intensely controlled groundwater levels. The surface level for this time frame and the remaining frames was constructed based on the topography of our current landscape compensated for compaction. Here we did not use the rolling average method to smooth the surface level. Drainage and river levels here were taken from the current situation based on data from Netherlands Hydrological Model(NHI), version 2.1.

3.5.8 1960 A.D.
The time frame 1960 A.D. visualized difference from extraction wells in the dune area of Zandvoort. Herein the rivers and drains had the same settings as the current situation. Four wells were placed in the dunes each with an extraction rate of 0.85 m\(^3\)/d. This extraction rate was calculated based on the maximum total extracted water of 18 million m\(^3\)/y before 1960 A.D. in the dune area, covering an area of 36 million m\(^2\). Hence 0.5 m/y per square meter is extracted in the area. Giving a total of 1250 m\(^3\)/y of extracted deep groundwater at a depth of 23 meters.

3.5.9 2000 A.D.
Time frame 2000 A.D incorporates all current drainage, river, infiltration and extraction well systems. Data for rivers and drains were gathered from NHI. Wells in
the dunes have an extraction rate of 0.18 m3/d (Oude Essink, 1996) and three wells near Hilversum have each an extraction rate of 4.55 m3/d (Loon, 2010).

Figure 3.4: Graph of Cl concentration and long-normal resistivity (ρ_{Ln}, solid line) vs. depth in well 31E-0-176 location shown in right figure (point denoted by 31E-0-176). Column on righthand side indicates sand (white) and clay layers (shaded). The top of the Early-Pleistocene marine strata is found here at a depth of approximately 160 meters adapted from Post (2004, p.20). Values of the measured points have been converted from mmol to mg/l and the age of mpC converted to 14C BP years. From top to bottom converted measured values are:

- 219 mg/l age 2900 14C BP
- 276 mg/l age 3700 14C BP
- 5317 mg/l age 6600 14C BP
- 6416 mg/l age 8600 14C BP
- 2942 mg/l age 24000 14C BP
4. Results

Figure 4.1 gives an overview of the development of the chloride concentration distribution throughout the time frames for hypothesis one. The east side of the profile has a fresh-brackish groundwater composition and an increasing amount of seepage between Abcoude and Utrechtse Heuvelrug throughout the periods. Sites which we expected to be fresh fall in the 150-300 mg/l category because we gave the recharge an concentration of 150 mg/l. When this accumulates due to poor drainage and removal of solutes it can reach higher concentration than 150 mg/l therefore falling in the category of 150-300 mg/l. Examples are seen at the Utrechtse Heuvelrug and dunes for all time frames but we consider them to be more fresh than brackish.

Potentiometric heads of the profile for all the time frames are near surface level, except for the dunes with heads of 20 centimeter lower than the dune elevation, and the Heuvelrug, where heads are around 3 meters above O.D. where they should be 10 meters above O.D. (DINOLoket). Freshwater and saline water distribution changes take place mainly between Zandvoort and half way between Abcoude and Haarlemmermeer. There is infiltration of saline water at the west side of Haarlemmermeer for the first two time frames. This saline water infiltration coincides with the infiltration arrows and the occurrence of highly permeable sediments. Noticeable is that the larger part of the surface below North Sea for time frames 5500 B.C. and 3850 B.C. has no salt water infiltration and stays fresh. There is also little or no infiltration or seepage in the midsection of the profile which coincides with sediments of low permeability (see Figure 3.2 and 3.3). The absence of saline infiltration and its coincidence with low permeable sediment is also visible at the fresh-brackish water lens near Zandvoort for time frame 5500 B.C. At the top of some aquitards and Maassluis formation there is a horizontal spread of chloride across the boundaries towards the east which also shows a retardation of infiltrating saline water. Whereas in other areas with high permeable sediments, e.g. west side of the Maassluis formation, parts below the boundaries are already saline. In some areas, e.g. east side of Maassluis formation and at the aquitard at a depth of 75 meter below O.D. below Haarlemmermeer, where retardation of infiltration is visible we see the occurrence of fingered flow throughout the time frames. Fingered flow is a process that takes place at the instable interface of two fluids when one invades the other (Rezanezhad et al., 2006).
From 3850 B.C. onwards a fresh-brackish water lens develops underneath the barriers which become the dunes after 2750 B.C. This fresh-brackish water lens has a larger width than the width of the barriers in time frames 3850 B.C. and 2750 B.C. which is explained by merge of this lens with the already existing fresh-brackish water lens near Zandvoort. Another remarkable feature in time frame 3850 B.C. is the development of a small saline water lens at the east boundary of the barriers and the appearance of small freshwater blobs. These blobs are most likely to appear from our classification in which values of 150.000 are assigned to the freshwater class, and 150.001 to the next class of fresh-brackish, but they are still fresh. It can be seen that the fresh-brackish interface near the dunes coincides with upward flow at or near the dune boundaries. From 2750 B.C. on, so after the closure of the barriers, first a freshening of the midsection of the profile can be seen until 1500 A.D. During the freshening of the midsection we see a rising chloride concentration at the west boundary of the Haarlemmermeer from 2750 B.C. until current time frame. A similar increase in chloride concentration also takes place at the east boundary of the Haarlemmermeer but starts from 1500 A.D. until 2000 A.D. The appearance of high chloride concentrations at the east side of the Haarlemmermeer coincide with elevation change of the landscape (see Figure 3.1). These changes resulted in more seepage and higher flow rates there. Also the upward movement of the fresh-brackish interface is visibly related to man made water management systems that appeared in 1885 A.D. at the Haarlemmermeer. The drainage made by men also shows a remarkable removal of solutes near the Utrechtse Heuvelrug and Zandvoort, which have a more freshwater concentration from 1885 A.D. onwards. From 1885 A.D. the fresh-brackish interface below the dunes moves upwards until current situation in 2000 A.D. i.e. due to land subsidence by drainage and due to the formation of deep ploders. Also a horizontal movement of the west side of the freshwater lens below the dunes is visible in time frame 1885 A.D. The west boundary of the freshwater lens underneath the dunes coincides well with the chloride data points from DINO. Also the majority of the data points from DINO are in agreement with the simulated chloride concentrations at the east side of the profile, unlike the chloride concentration below Haarlemmermeer, which are higher when compared to the data points and lower when compared to simulated values near Abcoude. The position of the main fresh-brackish interface, i.e. the interface between the east boundary of the
Haarlemmermeer till Abcoude, stops moving to the east from 1500 A.D., hereafter the interface even moves back to the west.

For hypothesis two, we increased the starting chloride concentration for time frames 5000 B.C. and 3850 B.C. at the then existing coast up to 5000 mg/l, changes are visible in the aforementioned time frames, near Abcoude where there is saline water infiltration (see Figure 4.2). Also for this hypothesis we see that there is no infiltration of saline water below the North Sea at places with low permeable sediments in the midsection, therefore a fresh-brackish water lens stays in existence up to a depth of 100 meters below O.D. and saline water infiltrates at the boundaries of this fresh-brackish water lens. The infiltrating saline water near Abcoude expands to the east and west to eventually merge with saline water from the west at a depth of 70 m below O.D. The area near and below Abcoude stays more saline, around 1000 mg/l, than hypothesis one until 100 A.D., whereafter there is a freshening of brackish water in the remaining time frames. The west side of the profile has the same patterns and development of chloride distribution as hypothesis one for all the time frames with the exception of the east side of the Haarlemmermeer. We see the same increase in chloride concentration at the east Haarlemmermeer boundary but for hypothesis two this increase starts in time frame 1500 B.C. and has a larger width with a position more to the east. The final frame of 2000 A.D. shows a more eastward and upward position of the main fresh-brackish interface, than hypothesis one (see Figure 4.2). Also the values for freshwater sites below the Utrechtse Heuvelrug and dunes are higher than hypothesis one. The resemblance of the simulated chloride concentration for hypothesis two deviate more than results from hypothesis one. Especially in the freshwater sites, though they are more near the measured data point near Abcoude.
Figure 4.1: Results for chloride distribution evolution throughout the time frames for hypothesis one. Arrows in the figures indicate seepage (arrow upward) or infiltration (arrow downward). Size of the arrows indicate a big or small rate of seepage or infiltration compared to one another. Arrows of time frame 2000 A.D. have the same orientation as time frame 1885 A.D. with more seepage arrows between Abcoude and Utrechtse Heuvelrug. Circles in time frame 2000 A.D. give measured chloride data points from DINO database.
For hypothesis three in which the starting concentration of Maassluis formation had a value of 5000 mg/l, we see a fresh-brackish water lens up to a depth of 75 meters below O.D. between Abcoude and Haarlemmermeer in the first two time frames. This freshwater lens is surrounded by brackish water at the east side near Abcoude and saline water at the west side. This is noticeable since this area is part of the North Sea in this time frame. The western pattern evolution of the chloride distribution is the same as hypothesis one and two, with the exception of the brackish lens below Zandvoort which was a freshwater lens in the previous two hypotheses. The area below Abcoude is more saline with values of 1000 mg/l more than hypothesis one for
the periods until 100 A.D. After 100 A.D. this area becomes fully fresh-brackish except for the high concentrations to the east of Haarlemmermeer in 1500 A.D. and onwards. The final position of the main fresh-brackish interface in time frame 2000 A.D. is at the same position as hypothesis two with the same concentrations but with a larger width (see Figure 4.3). Noticeable is that for this hypothesis the concentrations for the Haarlemmermeer are higher than hypothesis one, therefore deviating even more from observed data points. But the freshwater pattern near Utrechtse Heuvelrug resemble that of hypothesis one. For all hypotheses the simulated concentrations are higher than observations at Haarlemmermeer and lower than those of Abcoude at a depth of 50 meters below O.D.
Figure 4.3: Results for chloride distribution evolution throughout the time frames for hypothesis three. Arrows in the figures indicate seepage (arrow upward) or infiltration (arrow downward). Size of the arrows indicate a big or small rate of seepage or infiltration compared to one another. Arrows of time frame 2000 A.D. have the same orientation as time frame 2000 A.D. of hypothesis one. Circles in time frame 2000 A.D. give measured chloride data points from DINO database.
5. Discussion

The aim of this thesis was to understand the influence of landscape changes and antropogenic changes on the chloride distribution evolution during the Holocene coastal development in the North-West coastal region of the Netherlands. This because there is a gap in our knowledge concerning the evolution of chloride distribution toghether with landscape changes and antropogenic changes. Therefore we tested three hypotheses based on our interpretation of the landscape evolution during the Holocene, with forward modelling using SEAWAT and MODFLOW. Results from the hypotheses were in line with conclusions from many studies such as, Post, 2004; Appelo and Geirnaert, 1991 and Stuyfzand, 1993., regarding the origin of saline groundwater in the Dutch groundwater, namely Holocene transgression. This because our results showed that the majority of the salinization of the Dutch coastal groundwater took place during the first two time frames, which was during the Holocene transgression (see Figure 4.1). During these time frames the surface was inundated by the North Sea and seawater infiltration occurred through free convection in areas with high permeable sediments (see Figure 4.1). Free convection is the transporting mechanism here since saline water reached the Pleistocene layer within 100 years. If diffusion were to be the transporting mechanism it would have taken a longer time for the saline water to reach a depth of 50 meters according to Post, Plicht and Meijer, 2003. In areas below low permeable sediments results showed a retardation of salinization during transgression and these also caused fingered flow. Salinization in these layers occurred most possibly through diffusion (Post, 2004). The presence of saline water below low permeable layers was due to discontinuity of the low-permeable layer and horizontal migration of intruding seawater which is visible in Figure 4.1 time frame 5500 B.C., these finding are in agreement with the study by Post, 2004. The theory that salinization of the upper layers was from connate seawater from Maassluis was proven not to be likely, but not fully disregarded as seen from simulations of hypothesis three. Connate seawater from Maassluis formation did cause higher chloride concentrations throughout the simulations in the midsection of the profile and did reach the Holocene confining layer, but did not have an extreme influence on the chloride evolution pattern, since the results showed the same chloride concentration patterns as the other hypotheses (see Figure 4.3). It is not fully understood how connate seawater could have reached the Holocene confining layer.
except that the topography (see figure 3.1 surface of 5500 B.C.) seems to have played a significant part in causing high seepage rates, related to advection, near Abcoude. Nevertheless it is indeed visible that Maassluis did have an influence on the salinization of layers above the Maassluirs formation. Although all the hypotheses sustain the theory of Holocene transgression none of the hypotheses could explain the high chloride concentration below Abcoude and surroundings.

From the results it was also clear that changes in landscape affected the groundwater flow patterns and therefore also the chloride distribution. This was visible in the development of a fresh-brackish water lens under the dunes, which is well represented and agrees with measured data points in that area (see Figure 4.1). And also changes in hydraulic gradient due to elevation differences in surface level which caused higher seepage rates. Human changes through drainage, land reclamation and groundwater extraction caused shrinkage of freshwater lenses making the fresh-brackish interface to move upwards. From this it followed that the lithology and landscape changes influenced the chloride distribution. The hypotheses presented the evolution of the chloride distribution well for the west side of the profile in contrast to the east side of the profile, where results did not represent the measured data well. Also the comparison of our results for the east side of the profile with interpolation maps of Post (2004) and Minnema et al. (2004) (see Figure 1.1 and 2.5), did not coincide well.

That being said, it should be pointed out that measured data points and interpolated maps do not coincide and can have errors due to outdated measured points or estimation errors of the interpolated map. Also our classification of what should be freshwater bodies as fresh-brackish should be pointed out, but is most likely the effect of poor removal of solutes in the model at the eastern side and surface level. Nonetheless they are more fresh than brackish and therefore these results coincide well with measured data points.

The higher chloride concentration in the subsurface of Abcoude and surroundings was not explained by the three hypotheses therefore raising the hypothesis of another source of chloride. Since other processes for possible sources were already disregarded by Post (2004), such as aerosols, evaporates, anthropogenic pollution etcetera, the source had to be from another saline water body. Possible explanation for higher chloride concentration below Abcoude is that there was saline water inflow from the north side, the former Zuiderzee. Inflow of chloride could be caused by
reclamation of land, which caused a head gradient or seawater intrusion during the past.

The over-estimation of chloride concentration below Haarlemmermeer can be caused by four reasons. First, sediment conductivities still form a big uncertainty in groundwater modelling. Interpolated data from GeoTOP and REGIS II for the hydraulic conductivities give a good representation but might still fail in smaller scale variations of the subsoil. The second reason may be related to the assumption that the boundaries stayed the same throughout the model run per time frame. A third reason is that there might have been a bigger freshwater lens there caused by a higher peat dome or localized higher potentiometric heads or more recharge which was not well captured because of the assumption of one uniform recharge. The fourth reason as was already mention in chapter 3.1 is the choice of a two-dimensional model, that could not capture a different direction of groundwater flow that might have been important for the outflow of saline water. Nevertheless a two-dimensional model was good enough to give an idea of the influence of the processes that affect the evolution of chloride distribution and also to prove that forward modelling gives a good representation of the evolution of chloride distribution. Our results gave a good representation of the chloride distribution in the west side of the profile and can therefore be used in coastal models to represent the position of the brackish-salt interface and its evolution. The method used here needs to be improved for more inland studies with the incorporation of a third dimension and can then be used in other models to predict future and or past chloride concentration evolutions.
6. Conclusions

The overall conclusion of this research is that the main processes that affected the chloride distribution evolution were the Holocene transgression, lithology and landscape changes. The Holocene transgression had an extensive impact on the Dutch groundwater causing salinization in the west region of the profile where there was sediment with a high permeability. Localized differences in lithology caused the most important source of differences in chloride concentration distribution. Hence causing retardation of salinization below aquitards or fast salinization in highly permeable sediments. Landscape changes formed an important component in the chloride distribution through the development of a freshwater lens below the dunes, freshening of the subsoil after the closure of the barriers, and the creation of hydraulic gradients by surface elevation changes through managed groundwater levels and peat excavations. The latter caused strong seepage rates that pulled the fresh-brackish interface upwards. The main conclusion was formulated based on the conclusions of the sub-questions.

- What processes affect and/or cause the chloride distribution?
 It follows that the main processes causing chloride distribution in the Dutch coastal region are: free convection a density driven process, advection a hydraulic head gradient driven process and diffusion, a solute driven process. Free convection took place in high permeable sediments and diffusion in sediments with low permeability. Also horizontal migration of intruding seawater in areas of less permeable layers, contributed to the chloride distribution.

- How does the geological setting affect the chloride concentration distribution?
 Low permeable sediments caused a retardation for the movement of chloride, protecting underlying sediments from salinization for a longer period. Though this effect was sometimes countered by the discontinuity of the low permeable layer causing partly salinization in the underlying layer which migrated horizontally below the low permeable layer.

- How did landscape changes/developments influence the chloride distribution?
 Landscape changes provided elevation differences on the surface which led to hydraulic head gradients that caused strong seepage or infiltration in various
parts of the profile. These strong gradients moved solutes through advection therefore also moving the fresh-brackish interface.

- What are the causes of differences between the model output with the observed chloride distribution?

 It is difficult to pinpoint the cause for this. Candidates for these differences are wrong assumptions about boundaries, neglect of inflow from the northern and eastern regions and the uncertainty of model parameters.

The results give a good representation of the chloride concentration distribution below the dunes but needs to be revised with regard to the east side of the profile. High chloride concentrations from measurements and interpolated maps for the east side of the profile were not visible in the results of the hypotheses. This might be due to the neglect of northern inflow or because of the use of a two-dimensional model. Also the choice for boundary conditions like surface elevation, drainage position around the Haarlemmermeer in prior times needs to be studied further. Nevertheless results from this study gave a good representation of the evolution of chloride concentration distribution along the Dutch coast.
References

