SWIBANGLA

On modeling salt water intrusion

Managing Salt Water Impacts in Bangladesh

Project duration May 2013 up to September

OUR FINAL MODELING GOAL SWIBANGLA

To build a reliable 3D variable-density groundwater flow model of the coastal zone of Bangladesh which can be used as a decision support tool to secure drink water supply, now and in the future

- Introduction
- Modelling examples
- Input data
- Some results
- Concluding remarks

A MODEL:

Only a simplification of the reality

A MODEL:

Only a tool, no purpose on itself

A MODEL:

Makes analysis of very complex systems possible

A MODEL:

can be used as a database to store your different types of data

A MODEL:

makes simulation of the future system possible

A MODEL:

Garbage in=Garbage out: -> (field)data essential!

A MODEL:

perfect fit measurement and simulation is suspicious

A MODEL:

Tool of communication between scientist and stakeholder

Errors in modelling

Wrong model concept

Important resistance layer not considered

Incomplete equations

decay term of solute transport not considered

• Inaccurate parameters and variables solute mixing parameters (dispersivities), interaction with surface water

- Errors in computer code
- Numerical inaccuracies

 Δx , Δt , numerical dispersion, oscillation

DIFFERENT MODEL CELL SIZES TO CONSIDER SEVERAL PHENOMENA

Sub-local: fingering, salty sand boils Sri Lanka (Tsunami 2004), Zandmotor cell size=1cm-1m

Local: rainwaterlenses, heat-cold Tholen, Schouwen-Duiveland cell size=5-25m

Regional: Zeeland, Gujarat/India, Philippines cell size=100m

Goal:

To take largest cell size possible to accurately model relevant salinisation processes

National: salt load Zuid-Holland, NHI cell size=250m-1km

EXAMPLE 1: EFFECT OF SIZE MODEL CELL ON PHYSICAL PROCESS

Size of cell has a large effect on modelling result!

X= LOUSY models for predicting exact number of salt water fingers

Size of cell has a large effect on modelling result!

All models are GOOD for predicting moment of touching bottom!

Size of cell has a **large** effect on modelling result!

EXAMPLE 2: CASE ON A LOCAL 3D MODEL

Local model: 3D, MOCDENS3D salt-fresh 5*5m2 cells

201/072/ CE/M/MD

De Louw et al., Hydrol. Earth Syst. Sci. Discuss., 8, 7657-7707, 2011.

shallow fresh water lens

drains

0.5 - 1.5 m

Resistivity (Ohm-m)

50-60 60-70

70-80

80-90

90-100

A'

0

125

250 m

green is too salty to grow fresh crops

CREEKRIDGE INFILTRATION SYSTEM: AQUIFER STORAGE SYSTEM

Modelling result

Monitoring result

STAKEHOLDER PARTICIPATION AND KNOWLEDGE TRANSFER

<u>Geohydrological</u> <u>Opportunities</u> for <u>FRESH</u> Water Supply

potatoes

EXAMPLE 3: UPCONING OF BRACKISH-SALINE GROUNDWATER

Jahangirnagar Universi

লাহাঙ্গীরনগর বিশ্ববিদ্যালয<u>়</u>

Stuyfzand, 1993

SALTWATER INTRUSION IN THE DUTCH COASTAL ZONE

SALTWATER INTRUSION IN THE DUTCH COASTAL ZONE

Enabling Delta Life

EXAMPLE 4 3D FRESH-SALT MODEL PROVINCE ZUID-HOLLAND

MODELSTUDY ZUID-HOLLAND

- 100km * 92.5km * 300m depth
- ~4 million active cells
- Land subsidence
- Sea level rise
- Change in natural groundwater recharge

Utrecht

ZONE OF INFLUENCE OF SEA LEVEL RISE

ZONE OF INFLUENCE OF SEA LEVEL RISE

ZONE OF INFLUENCE OF SEA LEVEL RISE

Case 1 with subsoil parameters

$$\Delta \phi(\mathbf{x}) = \phi_0 e^{-\mathbf{x}/\lambda}$$
$$\Delta q(\mathbf{x}) = \Delta \phi(\mathbf{x})/c$$

 λ = sqrt(kDc)

ZONE OF INFLUENCE OF SEA LEVEL RISE:

Case 2 with subsoil parameters

kD = 5000 m2/dag c1 = 5000 dag c2 = 50 dag

GOOD PERMEABLE AQUITARD

EXAMPLE 5 SALINISATION AND FRESHENING UNDER GLOBAL STRESSES

SWIBANGLA **EXAMPLE 6**

Thé Dutch Integrated Modelling Example

The Netherlands Hydrological Instrument

THE NETHERLANDS HYDROLOGICAL INSTRUMENT

Main goals for water management of our national government:

- To protect The Netherlands from flooding
- To make Fresh Water Supply Climate Change Proof

They needed a model that can assess the effects of:

- Droughts (water demands) = main goal of NHI
- Sea level rise and precipitation pattern
- Land subsidence
- Adaptive and mitigative strategies
- Changing water management (lake saline again, lake higher water level)
- Coming years: nutrient emissions and pesticide leaching, etc.

So we made NHI! First model dates from 2006.

THE NETHERLANDS HYDROLOGICAL INSTRUMENT

 $\Delta x=250m$ 1200 columns 1300 rows 7 layers ~2.5M stresses

COMPONENTS

water balance of sub-catchments and main surface waters

salt in surface water system

SWIBANGLA

fluxes and heads in unsaturated and saturated groundwater

salt concentration in saturated groundwater and salt flux to surface water.

COMPONENTS

SWIBANGLA

Domain	Computation	Unit	Time	Scale of	Purpose	Present
	Unit	size	step	process		name
			1-	Nationwid		
Surface Water	Node-node	1-25km	10day	е	Optimization of water distribution	DM
				Nationwid		
Surface Water	Line	0.5km	1day	е	Flow and Transport	LSM
		05	1-	Subcatchm	Distribution to users of	
Surface Water	Polygon	5km2	10day	ent	groundwater & surface water	Mozart
Soil Vegetation				Plot,	Transfer of Water in root zone, soil	
Atmosphere	Grid cell	250m	1day	colomn	water deficit	MetaSWAP
						MODFLOW-
Groundwater	Grid cell	250m	1day	Regional	Flow and Transport	SEAWAT

De Lange et al., 2014. An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: The Netherlands Hydrological Instrument. Environmental Modelling & Software 59, 98–108.

NUMERICAL MODELLING OF SALT WATER INTRUSION

Characteristics:

- variable-density groundwater
- fresh, brackish and saline
- 3D, non-steady
- coupled solute transport
- heat transport

Assess combined effects:

- past land subsidence polders
- sea level rise
- changing recharge pattern
- land subsidence
- changing extraction rates
- adaption measures

Software (MODFLOW family): SEAWAT, MOCDENS3D MT3D, iMOD, link NHI, etc.

3D REGIONAL COASTAL GROUNDWATER MODEL STUDIES

Netherlands, Zeeland

Modelling:

• variable-density groundwater flow, coupled solute transport

Simulating effects of:

- autonomous processes (change extraction rates)
- sea level rise, changing recharge pattern
- land subsidence

Quantifying:

- hydraulic head
- saline seepage / infiltration
- fresh groundwater resources

Singapore

Nile Delta, Egypt

NUMERICAL MODELLING FRESH-SALT GROUNDWATER IN NL

TWO APPROACHES OF MODELLING DELTAIC AREAS

2D Conceptual modelling

- Improves conceptual understanding of the groundwater system
- Scientific papers

3D Variable-density groundwater flow modelling

- Often actual situation in the field
- Real problems under pressure
- Focus on case studies with impact analysis

QUESTIONS TO BE ANSWERED

- Where are the present fresh-saline interfaces?
- How will these interfaces evolve in the following decades?
- What is the effect of the extractions in the vertical distribution of the salinity?
- Guiding the positioning of monitoring and data collection
- Guiding the positioning of (new) extraction wells

WHY A 3D VARIABLE-DENSITY SWIBANGLA GROUNDWATER MODEL

- To better understand and visualize the groundwater dynamics and relevant salinity processes:
 - lateral surface salt water intrusion
 - lateral salt groundwater intrusion
 - vertical up-coning under extractions and low-lying areas
 - infiltration of salt water due to inundations caused by storm surges.
- To provide Bangladeshi water managers and universities with an instrument for their mandates on secure water supply, now and in the future
- To assess the impact of global and climate change (including the effect of sea level rise)
- To give future local models correct boundary conditions

SALINIZATION PROCESSES

Salt water intrusion surface water (and groundwater)

Salt water intrusion groundwater

and saline seepage

Upconing low-lying area

Upconing under groundwater extraction

Shallow vertical salt water intrusion after flooding event (storm surge)

COMPUTER CODE

- 3D numerical variable-density groundwater flow and coupled salt transport model of the central coastal zone of Bangladesh
- Built in SEAWAT (="MODFLOW-MT3DMS-density")
- Extended with iMOD functionality

SALINIZATION PROCESSES IN THENGLA COASTAL ZONE

MODEL GEOMETRY: MODEL EXTENT

Bottom boundary: Boka Bil formation hydrological base (no flow)

Input from Holly Michael & Cliff Voss focus on top 500m East -3000 m

THE MODFLOW GRID

Recharge to Layer 1 = 3X10-8 ft/s

Between layers 1 and 2 vertical hydraulic conductivity divided by thickness = 2X10⁻⁸/s

Between layers 2 and 3 vertical hydraulic conductivity divided by thickness = 1X10-8/s

SWIBANGLA

N-S CROSS-SECTIONS OF BAGERHAT, IT IS AANGLA PATHY COMPLEX GEOLOGIC SYSTEM

GEOLOGY

Source: Dr. Bashar

 K_h =hor. cond. [m/d]

K_v=vert. cond. [m/d]

SURFACE LEVEL (DEM)

Sources: CEGIS, BGS, DPHE, 2001

SUBSURFACE MODEL

MODELLING RECHARGE

Recharge: the RCH package Q_{RCH}

$$Q_{RCH} = Q_{i,j,k}$$

So 1 map needed: Map of recharge rates

SWIBANGL

NET GROUNDWATER RECHARGE

- Interpolation measured data (source CEGIS): •
- 4 monitoring stations for evapotranspiration •
- 96 monitoring stations for precipitation •
- $\pm 1990 2011$ •

0.87 - 1.0

Data averaged per stress period:

1. Cold and dry Nov - Feb

2. Hot and humid Mar - May

3. Monsoon season June - October

SWIBANGLA

MODELLING SURFACE WATER: RIVER PACKAGE

$$Q_{riv} = C_{riv}(\phi_{riv} - \phi_{i,j,k})$$

Special case: if $\phi_{i,j,k} < RBOT$, then

$$Q_{riv} = C_{riv} (\phi_{riv} - RBOT)$$

So 3 maps needed:

- 1. Map of river stages
- 2. Map of river conductances
- 3. Map of river bottoms

SURFACE WATER: SALINITY LEVELS IN RIVER PACKAGE

Source:

Daily water level data from BWBD (126 locations on river levels)

CEGIS, completed by data from DIVA-GIS (84 monitoring stations on salinity values)

GROUNDWATER EXTRACTIONS

Domestic&Industrial

- based on population size (cf Michael and Voss, 2009)
- total (domestic + industrial) demand 50 L/day per capita (WARPO, 2000)
- assumed constant throughout the year

Legend (m3 day-1 km-2) stw dry

Irrigation for agricultural purposes

- known is area per irrigation type, on district level
- distinction between wet season and dry season
- irrigation Shallow Tube Well : 10-60m depth
- irrigation Deep Tube Well: 60-100m depth

Source: depth based on the well data of DPHE

shallow, dry

Extractions: the Well package Q_{well} $Q_{wel} = Q_{i,j,k}$ So one map needed: Map of well locations with extraction rates

Domestic and Industrial

MODELLING RECHARGE

Q_{well} (m³/(day*km²) = Population size * growth rate* Water demand Upazila surface area

Agricultural

Q_{well} (m³/(day*km²) = Irrigated area * withdrawal rate district surface area

iMOD-SEAWAT TO BUILD A 3D VARIABLE-DENSITY GRW. MODEL

MASS BALANS GROUNDWATER

Recharge to Layer 1 = 3X10* m/s

IN	DRY SEASON	WET SEASON
via boundaries	2%	0%
via wells	0%	0%
via river	98%	0%
via recharge	0%	100%
OUT		
via boundaries	0%	1%
via wells	54%	4%
via river	0%	95%
via evapotranspiration	46%	0%

MODEL RESULTS: HEADS

MODEL RESULTS: HEADS

SWIBANGLA

MODEL RESULTS: HEADS

MODEL RESULTS: SEEPAGE/INFILTRATION BANGLA

MODEL RESULTS: 3D-SALINITY

MODEL RESULTS: 3D-SALINITY

MODEL RESULTS: 3D-SALINITY

CONCLUDING REMARKS

- 1. The 3D model of variable-density groundwater flow and coupled salt transport model is operational in its present base form
- 2. The used iMOD-SEAWAT modelling tool is OPEN SOURCE
- 3. The initial fresh-brackish-salt distribution has been improved by the additional data
- 4. The complex hetereogeneous system can be modelled with the code without numerical problem
- 5. Different concepts have been tested

Recommendations for improvements:

- Calibration on heads and salinity distribution
- Simulation of non-steady state seasonal groundwater flow

After implementation of these suggestions, the model is suitable to simulate global change scenarios on extraction rates, land subsidence and climate change (sea level rise).

SVIBANGLA 5

Thank you for your attention!

