

www.openda.org

Calibration of an estuary with Delft-3D flow

Martin Verlaan, Firmijn Zijl Stef Hummel, Julius Sumihar, Nils van Velzen, Albrecht Weerts, Ghada El Serafy, Herman Gerritsen, ... Deltares, TU Delft, VORtech

Installation Delft3d v4 and OpenDA v2.1 for Windows

- Unpack delft3d license file (and remember where to)
- Start delft3d installer and install all items (skip manuals)
 - Give default answers everywhere
 - Select license file that you just unpacked when asked
- Make a shortcut for quickplot to the desktop (from C:\Program Files (x86)\Deltares\Delft3D 4.01.00.rc.09\win32\quickplot\bin)
- Unpack openda v2.1 for windows to c:\openda (or somewhere else as long as it has no spaces in the path)
- Unpack the delft3d-plugin for openda to the same location. NOTE: the bin-folders and their contents should merge to the same place.
- Make a shortcut for oda_rungui.bat to de desktop

- One dimensional model
- Tidal boundary M2 (12h25min) and S2 (12h)
- Constant slope depth
- Constant river inflow
- 3 Observation locations
- Observations are not real but generated with 'truth' model.

- Download estuary.zip from http://www.openda.org/course and unpack
- Install openda_d3d_plugin.zip in the OpenDA bin-directory
- Run the simulation with OpenDA, using the main OpenDA file simulate.oda
- Prepare some time-series plots with quickplot
 - Start matlab in direcory src/tools_lgpl/matlab/quickplot/progsrc and run d3d_qp
 - the observations are available as tekal file, for including them in the plots (use add to plot and change the color)
 - Output can be found in estuary/work/work0
- What are the most likely causes of differences between observations and model?

Initial performance

Initial performance

Initial performance

- Run the calibration for a globally constant change to the bathymetry (experiment DEP)
 - Start OpenDA with estuary/calibration.oda
 - Look at the output in the control tab and output tab
 - The output of each of the runs can be found in work/work<number>
 - Plot the time-series with quickplot.
- Is this what you expected?

Calibration Depth

DEP output Station 2

DEP output Station 3

- Add the calibration (experiment DEP+M2)
 - Uncomment M2 section in stochModel/D3DStochModel.xml
 - Run calibration

Questions

- Look at the output and plot the time-series.
- Is this what you expected?

Calibration Depth+M2

DEP+M2 output Station 2

DEP+M2 output Station 3

The output looks nice. The cost-function is much lower, but there is still a problem...

- Make a longer run with the final run of experiment DEP+M2
 - Modify work/work<last_number>/estuary.mdf and change the Tstop = 2.3040000e+004 which is 17-1-1991 0:00h; alternatively use the delft3d-gui.
 - Run deltares_hydro.exe for this case
 - Make time-series plots
 - What is wrong?

Long run for DEP+M2 result

The error in S2 was attributed to M2. Let's make fix this with a longer simulation and adding S2 to the calibration

- Add S2 to calibration and lengthen simulation experiment DEP+M2
 - Modify input_d3d/estuary.mdf and change the Tstop = 2.3040000e+004 which is 17-1-1991 0:00h; see also estuary_long.mdf
 - Lengthen the observations in stochobserver/noosObservations.xml to 17-1-1009 0:00h; see noosObservations_long.xml
 - Uncomment S2 section in stochModel/D3DStochModel.xml
 - Run calibration with OpenDA
- What would go wrong if we would use only 3 days of observations for calibration of S2 and M2?

Calibration DEP+M2+S2

Name	First guess	DEP+M2+ S2
Station 1		0.9cm
Station 2		0.7
Station 3		0.2
Cost	5281	1.5

Parameter	Final value (change)	True values	
M2.Amplitude	0.1 cm	0.0 cm	
M2.Phase	0.4 degr	0.0 degr	
S2.Amplitude	10.1 cm	10.0 cm	
S2.Phase	0.3 degr	0.0 degr	
Depth	-92cm	-100cm	enDA

And much more

- Calibration of roughness
- Calibrate blocks of the grid for depth or roughness
- Proportional instead of additive modification of parameters
- Make subselections of observations
- Restarts
- Parallel computing
- Output formats and selection
- Try other algorithms
- Calibration of other models, such as sobek, swan or waqua
-

