

www.openda.org

OpenDA application to operational forecasting of storm-surges and waves

Martin Verlaan

Martin.Verlaan@deltares.nl

Outline

- Operational forecasting of storm-surge and waves
- Modelling and observations of storm-surges
- Calibration of tides
- Kalman filtering for storm surges
- Wave model
- Kalman filtering for waves
- What is next?

Storm surges

Waves

Storm impact

Surge

Numerical grids

2D hydrodynamic model

Conservation of mass

Inflow

Level rise

$$\Delta t H(u(x) - u(x + \Delta x)) \Delta y = \Delta h \Delta x \Delta y$$

$$\frac{\Delta h}{\Delta t} + \frac{H(u(x + \Delta x) - u(x))}{\Delta x} = 0$$

$$\frac{\partial h}{\partial t} + \frac{\partial H u}{\partial x} + \frac{\partial H v}{\partial y} = 0$$

2D hydrodynamic model

Conservation of momentum in x-direction

$$\frac{\partial u}{\partial t} + g \frac{\partial h}{\partial x} - f v + \frac{c u}{H} + \frac{\partial \Phi'}{\partial x} = 0$$

$$M a = F$$

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} + f v - \frac{c u}{H} - \frac{\partial \Phi'}{\partial x}$$

- Tidal potential
- Friction
- Coriolis 'force'
- Surface slope

Tides in North Sea

Tide gauges

Altimeter observations

Calibration of tides

Calibration of tides

- More than 100 tide gages used
- Around 100 parameters for friction and 100 parameters for depth Efficient optimization methods with restarting and parallel computing

Results calibration DCSM-v6

	RMSE tides	RMSE surge	RMSE sea-level
Before calibration	6.6	9.7	11.7
After calibration	3.7	6.9	7.8

Surge before calibration

Surge after calibration

Real-time data-assimilation

Kalman filter for storm-surge model

- Compute Kalman gain with EnKF
 - > 100 members
 - Near linear storm-surge model
 - > Stochastic forcing from wind-stress and boundaries
 - > Spurious correlations:
 - Schur product
 - > Temporal averaging (Sorensen & Madsen 2004)
- Use steady-state Kalman gain for operational computations
 - > Very efficient

Selection of assimilation locations

NORTHCMRT	CADZD	HUIBGT
WICK	WESTKPLE	NEWLN
ABDN	EURPFM	NEWHVN
LEITH	BROUWHVSGT08	DOVR
NORTHSS	LICHTELGRE	VLISSGN
WHITBY	HOEKVHLD	ROOMPBTN
CROMR	SCHEVNGN	DENHDR
LOWST	IJMDBTHVN	OUDSD
Oostende	K13APFM	VLIELHVN
Westhinder	TERSLNZE	EEMSHVN
Zeebrugge	WIERMGDN	

Ensemble Kalman filter

Examples of Kalman gain (DCSMv6, 100 members with localization)

Results (-6 - 0 h)

Results

Impact during a storm

Forecast for Vlissingen at Dec 5 13h

vlissingen : waterlevel : observed

vlissingen : waterlevel_astro : observed

vlissingen : waterlevel : dcsm_v6_kf_hirlam : 20131205 0600

Impact during a storm

Forecast for Vlissingen at Dec 5 19h

vlissingen : waterlevel : observed

ulissingen : waterlevel_astro : observed

vlissingen : waterlevel : dcsm_v6_kf_hirlam : 20131205 1800

Observation sensitivity

Langland and Baker (2004), Errico(2007), Gelaro et. al. (2007)

Common $J=(x^f-x^a)'C(x^f-x^a)$ We use:

$$J = (y - Hx^f) R^{-1} (y - Hx^f)$$

Selection of assimilation stations

Selection of assimilation stations

Simulating Waves Near-shore SWAN

EnKF for SWAN wave model

Twin experiment 1D

EnKF for SWAN wave model

Twin experiment 1D

Assimilation of Hs at the 4 buoy locations

Adjustment of boundary wave conditions and of the 2D spectra at each computational grid location

EnKF for SWAN wave model

Twin experiment 1D

Assimilation of Hs at the 4 buoy locations

Adjustment of boundary wave conditions and wind input and of the 2D spectra at each computational grid location

Challenges

- Improve robustness of DUD algorithm (eg with constraints)
- Design good parallel calibration algorithms
- Parallel computing for analysis in EnKF
- Application to unstructured grid models
- Strengthen variational methods in OpenDA

Global Tide model Regions This Dflow-FM grid uses triangles and rectangles for local grid refinement

www.openda.org

The end