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ABSTRACT
The paper describes the process of induction of equations for the description of vegetation-induced roughness from several angles. Firstly, it describes
two approaches for obtaining theoretically well-founded analytical expressions for vegetation resistance. The first of the two is based on simplified
assumptions for the vertical flow profile through and over vegetation, whereas the second is based on an analytical solution to the momentum balance
for flow through and over vegetation. In addition to analytical expressions the paper also outlines a numerical 1-DVk–ε turbulence model which
includes several important features related to the influence plants exhibit on the flow. Last but not least, the paper presents a novel way of applying
genetic programming to the results of the 1-DV model, in order to obtain an expression for roughness based on synthetic data. The resulting expressions
are evaluated and compared with an independent data set of flume experiments.

RÉSUMÉ
L’article décrit le processus de formulation des équations qui traduisent la rugosité due à la végétation, sous plusieurs angles. Premièrement, il décrit
deux approches permettant théoriquement d’obtenir des expressions analytiques bien fondées pour la résistance due à la végétation. La première des
deux est fondée sur des hypothèses simplifiées pour le profil vertical d’écoulement à travers et au-dessus de la végétation, tandis que la seconde est
basée sur une solution analytique de l’équilibre des quantités de mouvement pour cet écoulement. En plus des expressions analytiques, l’article décrit
également un modèle numérique de turbulencek–ε 1-DV qui inclut plusieurs caractéristiques importantes liées à l’influence sur l’écoulement des
plantes exposées. Enfin et surtout, le papier présente une nouvelle façon d’appliquer la programmation génétique aux résultats du modèle 1-DV, afin
d’obtenir une expression de la rugosité basée sur des données synthétiques. Les expressions résultantes sont évaluées et comparées à un ensemble
indépendant de données expérimentales en canal.

Keywords: Vegetation, roughness, resistance, genetic programming, knowledge discovery.

1 Introduction

Proper modelling of the flow resistance of wetlands and vegetated
floodplains is of great practical importance. Many research initia-
tives have been undertaken in order to improve on the description
of the relationship between flow resistance and the presence and
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spatial distribution of vegetation. Both analytical and experi-
mental studies of vegetation-related resistance to flow and the
equivalent resistance coefficients have shown that the resistance
coefficients are water depth dependent. Consequently, the tra-
ditional approach of using a single resistance coefficient fails
to correctly describe the physics of the phenomenon. One way
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of improving upon this description is updating the equivalent
resistance coefficient based on the computed water depth. In
order to do so, a relation between vegetation characteristics, bed
resistance, water depth and equivalent resistance coefficient is
needed.

In this paper, four different methods to obtain such a relation
are elaborated. The first is based on a simple analytical descrip-
tion of the division in discharge through and over submerged
vegetation. The second is based on an analytical solution to the
momentum balance of flow through and over vegetation. The
third is based on a numerical 1-DV model and finally, the fourth
is based on data mining.

Data mining is concerned with extracting useful information
from data. However, mining the dataalone is not the entire story.
Scientific theories encourage the acquisition of new data and this
data in turn leads to the generation of new theories. Traditionally,
the emphasis is on a theory, which demands that appropriate
data be obtained through observation or experiment. In such an
approach, the discovery process is what we may refer to astheory-
driven. Especially when a theory is expressed in mathematical
form, theory-driven discovery may make extensive use of strong
methods associated with mathematics or with the subject matter
of the theory itself. The converse view takes a body of data as
its starting point and searches for a set of generalizations, or a
theory, to describe the data parsimoniously or even to explain it.
Usually such a theory takes the form of a precise mathematical
statement of the relations existing among the data. This is the
data-driven discovery process.

We believe that the most appropriate way for scientific appli-
cations of data mining is to combine the better of the two
approaches:theory-driven, understanding-rich withdata-driven
discovery process. Clearly, there is an enormous amount of
knowledge and understanding of physical processes that should
be incorporated in the discovery process. The work described
here is part of a research effort aiming at providing new hypothe-
ses built from data. The ultimate objective is to build models
which can be interpreted and further manipulated by the domain
experts. Once a model is interpreted, it can be used with confi-
dence. It is only in this way that one can take full advantage of
knowledge discovery and advance our understanding of physical
processes, of, in this case, vegetation resistance.

2 Background

The effect of vegetation on flow is generally expressed as an effect
on the hydraulic roughness. Early measurements (18th century)
of flow velocities in channels revealed that the depth-averaged
flow velocity (m/s) was a function of the water level slopei (m/m)
and the hydraulic radiusR (m). In 1776 Antoine de Chézy pub-
lished a simple equation that includes an engineering factorC,
the Chézy value, which was at first thought to be a constant
(Vernon-Harcourt, 1896). The well-known Chézy formula is:

ū = C
√

Ri (1)

In this equationC is a parameter that expresses the hydraulic
roughness of the bed and banks of a channel (m1/2/s). Further
investigations, by Nikuradse (1930), revealed that the roughness
of the bed affects the roughness lengthz0 (m) in the logarithmic
velocity profile for a fully rough bed derived by, among others,
Prandtl and Von Kármán:

u(z) = u∗
κ

ln

(
z

z0

)
(2)

Nikuradse showed that for hydraulically rough walls, the rough-
ness length of the logarithmic velocity profile can be expressed
as kN/30, wherekN is the Nikuradse equivalent roughness
(Nikuradse, 1930). Calculating the depth-averaged velocity, and
applying the Chézy formula and the Nikuradse roughness height
yields the White–Colebrook formula for the Chézy value:

C = 18 log

(
12R

kN

)
(3)

With an increasing roughness height the value forC decreases.
Various alternative expressions for flow resistance exist, for
example those of Strickler or Manning, which can all be mutually
converted. Essentially, in using a single roughness equation such
as the White–Colebrook formula, vegetation is treated as large
bed structures with a logarithmic flow profile above them. In
reality, however, there is flow over and through submerged vege-
tation, and the vertical flow profile deviates from the logarithmic
one. A typical time-averaged velocity profile for submerged veg-
etation is shown in Fig. 1. Four distinct zones can be identified in
the time-averaged vertical velocity profile for flow through and
above submerged vegetation:

1. In the first zone, near the bed, the velocity is highly influ-
enced by the bed, and its vertical profile joins the logarithmic
boundary layer profile.

2. In the second zone, which corresponds to the zone inside the
vegetation sufficiently away from the bed and from the top of
the vegetation, the velocity is uniform.

3. In the third zone, near the top of the vegetation, there is a
transitional profile between the uniform velocity inside the

Figure 1 Four zones in the vertical profile for horizontal velocity,u(z),
through and over vegetation,h = water depth (m),k = vegetation
height (m),d = zero-plane displacement (m).
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vegetation and the logarithmic profile above it. The profile in
this zone can be approximated by an exponential function.

4. Finally, the fourth zone corresponds to the zone above the
vegetation, where a logarithmic profile is observed, which
has a zero-plane displacement below the top of the vegetation
layer.

The White–Colebrook formula fails here and another type of
resistance formula should be sought for. A considerable amount
of research has been carried out on the effects of vegetation on
the hydraulic resistance, extending the basic ideas of Nikuradse
(1930). Early work includes Einstein and Banks (1950), Kouwen
et al. (1969), Kouwen and Unny (1973), Klaassen and Van der
Zwaard (1974) and Petryck and Bosmajian (1975). In a study by
Dawson and Charlton (1988), a literature search has been car-
ried out on the hydraulic resistance of vegetation, resulting in
over 360 publications. Since then, many more publications have
followed. A limited overview of recent research includes studies
on the improvement of flow resistance formulae (Darby, 1999;
Hasegawaet al., 1999; Meijer andVanVelzen, 1999; Stephan and
Gutknecht, 2002; Järvelä, 2002, 2004; Masonet al., 2003; James
et al., 2004), on analytical approaches for the vertical profile of
horizontal velocity (Klopstraet al., 1997; Carolloet al., 2002;
Katul et al., 2002), on biomechanics and streamlining of vege-
tation (Fathi-Maghadam and Kouwen, 1997) and on turbulence
characterisation for submerged rods and vegetation (Shimizu and
Tsujimoto, 1994; Ikeda and Kanazawa, 1996; Nezu and Naot,
1999; Nepf and Vivoni, 2000; Ikedaet al., 2001; Fisher-Antze
et al., 2001; López and García, 2001; Ghisalberti and Nepf, 2002;
Righetti andArmanini, 2002; Wilsonet al., 2003; Ghisalberti and
Nepf, 2004). However, no acceptable formulation for roughness
induced by submerged vegetation, valid for a wide range of veg-
etation properties and water depths has been found as of yet. This
is the main inspiration for the present work.

3 Theoretical, analytical formulations of resistance
due to vegetation

In this section, approaches for obtaining vegetation-related resis-
tance using theory-based formulae are described. The formulae
were derived from basic physical concepts on flow through and
above vegetation.

Modelling flow through a porous medium, such as vegetation,
in principle involves a correction for the presence of vegetation
within the volume of water. A common way to deal with this is to
introduce the dimensionless parameterAp, the solidity, which is
defined as the fraction of horizontal area taken by the cylinders
(Li and Shen, 1973; Tayloret al., 1985; Stone and Shen, 2002;
Hoffmann, 2004):

Ap = 1

4
πD2m (4)

The solidity can be introduced to calculate the pore, or micro-
scopic velocity in between the vegetation, which determines the
resistance force of the vegetation. In addition, the solidity can
be used to correct for the available volume, or available hori-
zontal area in the calculation of the fluid shear stress or the bed

shear stress, respectively. However, various authors report dif-
ferent theoretical approaches to determine the pore velocity, the
drag coefficient associated with this pore velocity, or the cor-
rection for available volume or area. None of the approaches
are underpinned in a satisfactory manner with experimental evi-
dence. More importantly, experimental evidence has shown that
this correction term can be neglected to calculate vegetation resis-
tance in natural circumstances with no significant loss of accuracy
(Jameset al., 2004). Consequently it can be concluded that the
solidity can be disregarded in simple analytical expressions for
flow through and over vegetation, especially in the light of the
uncertainties introduced by describing vegetation properties in
terms of stem density, height and diameter.

3.1 Case of non-submerged vegetation

Non-submerged flow conditions can be successfully treated ana-
lytically. The balance of horizontal momentum in uniform steady
flow conditions through non-submerged vegetation expressed as
cylinders dictates that total shear stress is equal to the sum of the
bed shear stress and the equivalent shear stress due to vegetation
drag:

τt = τb + τv (5)

whereτt denotes the total fluid shear stress:

τt = ρ0ghi (6)

τb denotes the bed shear stress:

τb = ρ0g
u2

C2
b

(7)

andτv is the vegetation resistance force per unit horizontal area:

τv = 1

2
ρ0CDmDhu2 (8)

The vegetation resistance force is thus modelled as the drag force
on a random or staggered array of rigid cylinders with uniform
properties. The uniform flow velocity through non-submerged
vegetation follows from the momentum balance and is given by:

ucb =
√

hi

1/C2
b + (CDmDh)/(2g)

(9)

The discharge per unit width through the vegetation is given by:

q = hucb (10)

From the discharge through the vegetation the representative
Chézy value for non-submerged vegetation is calculated as:

C = q

h
√

hi
(11)

Therefore, the representative Chézy value for non-submerged
vegetation becomes:

Ck =
√

1

1/C2
b + (CDmDh)/(2g)

(12)
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When the bed resistance is negligible with respect to the
drag force of the vegetation, the resistance coefficient can be
reduced to:

Ck =
√

2g

CDmDh
(13)

3.2 Case of submerged vegetation

Two different methods to derive theoretical resistance formulae
for submerged vegetation were applied by Baptist (2005), i.e.
the “method of effective water depth” and a method utilizing an
analytical derivation of the momentum balance for flow through
vegetation.

3.2.1 Submerged vegetation — method of effective
water depth

The “method of effective water depth” is inspired by earlier
approaches by Hong (1995), Campana (1999) and Stone and
Shen (2002). In this method, the four zones in the velocity pro-
file of flow through and above vegetation are represented in a
simplified way and reduced to two flow zones:

1. A uniform flow velocity,uc, inside the vegetation, and
2. A logarithmic flow profile,uu, above the vegetation, with

zero-plane displacement at heightk and with an additional
slip velocity of sizeuc.

This simplified velocity profile is presented in Fig. 2. The flow
velocity in the vegetated section follows from the momentum
balance for flow through vegetation. The flow velocity in the
uniform part of the profile is, therefore, given by the formula
for flow through fully submerged vegetation, which resembles
Eq. (9):

uc =
√

hi

1/C2
b + (CDmDk)/(2g)

(14)

Figure 2 Representation of the vertical velocity profile in two zones
for the method of effective water depth,h = water depth (m),
k = vegetation height (m),uc = uniform flow velocity profile (m/s),
uu = logarithmic flow velocity profile (m/s).

The logarithmic velocity profile above the vegetation (uu) is
given by:

uu(z) = u∗
κ

ln

(
z − k

z0

)
+ uc (15)

Note that the uniform flow velocity through the vegetation,uc, is
added to the logarithmic velocity as a constant “slip velocity” to
match both profiles atz = k.

The height-averaged velocity above the vegetation then
becomes:

ūu = 1

h − k

∫ h

k

uu(z)dz

= u∗
κ

ln

(
h − k

z0
− 1

)
+ uc = u∗

κ
ln

(
h − k

ez0

)
+ uc (16)

wheree is the base of the natural logarithm.
In the method of effective water depth, the discharge per unit

width through and over the vegetation is distributed by their
respective water depths. The addition of the slip velocity to
the logarithmic flow profile results in a distinction in two flow
parts (see Fig. 2). Part 1 contains the uniform flow velocity over
the entire water depthh and Part 2 contains a logarithmic flow
velocity over the heighth–k:

q = kuc + (h − k)ūu = huc + (h − k)ūu − (h − k)uc (17)

Therefore:

q = h

√
hi

1/C2
b + (CDmDk)/(2g)

+ (h − k)

√
g(h − k)i

κ
ln

(
h − k

ez0

)
(18)

From the discharge relationship, Eq. (11), the representative
Chézy value follows as:

Cr =
√

1

1/C2
b + (CDmDk)/(2g)

+ (h − k)3/2(
√

g/κ) ln((h − k)/ez0)

h3/2
(19)

Note that the first term on the right-hand side equals the rep-
resentative roughness of non-submerged vegetation forh = k,
Eq. (12). Note further that part of the second term on the
right-hand side can be approximated by the White–Colebrook
formula:

√
g

κ
ln

(
h − k

ez0

)
≡ 18 log

(
12(h − k)

kN

)
(20)

wherekN, the equivalent Nikuradse roughness height of the top
of the vegetation layer (m), is taken equal to 30z0 (Nikuradse,
1930). This approach presents one unknown variable:z0 being the
roughness height of the top of the vegetation layer. In Sec. 3.2.2
an analytical expression forz0 will be derived.
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3.2.2 Submerged vegetation — analytical method
In the analytical method the velocity profile inside the vegetation
layer is obtained by analytically solving the momentum equation:

∂τxz

∂z
− ρ0g

∂h

∂x
− 1

2
ρ0CDmDu2(z) = 0 (21)

Using Boussinesq’s eddy viscosity approach, the Reynolds stress
τxz is:

τxz = ρ0νT
∂u

∂z
(22)

Klopstraet al. (1997) derived an analytical method approximat-
ing the eddy viscosity,νT, by the formula:

νT(z) = α · u(z) (23)

whereα is a characteristic length scale to be determined. Baptist
(2005) derived a similar analytical method, but applying the
mixing-length theory for the eddy viscosity:

νT(z) = 	
√

kT (24)

Assuming that the turbulence inside the vegetation is governed
by the stem turbulence, the mixing length is equal to the available
length scale for eddies between the vegetationLp:

	 = Lp = c	

(
1 − Ap

m

)1/2

(25)

wherec	 is a coefficient that affects the geometrical length scale
and can be used for calibration, but is taken to be 1, andAp is the
solidity, which is included here for completeness. The turbulent
kinetic energy,kT, is determined by the local mean velocity, it
then follows from Eq. (24) that the eddy viscosity becomes:

νT(z) = cp	u(z) (26)

where the coefficientcp is the turbulence intensity, height-
averaged over the vegetation heightk:

cp = (1/k)
∫ k

0

√
k(z) dz

(1/k)
∫ k

0 u(z) dz
(27)

The mixing length	 and the coefficientcp are assumed constant
over the vegetation height in our analytical approach resulting in
the following ordinary differential equation:

1

2
cp	

d2u2

dz2
− 1

2
CDmDu2 = gi (28)

This differential equation has an analytical solution:

u(z) =
√

u2
s0 + a exp

( z

L

)
+ b exp

(
− z

L

)
(29)

with uniform flow over part of the cylinder heightus0 (m/s) and
length scaleL(m):

us0 =
√

2gi

CDmD
(30)

L =
√

cp	

CDmD
(31)

The integration constantsa andb should be determined by impos-
ing boundary conditions. The flow profile as depicted by Eq. (29)

describes zones 1–3 of Fig. 1. However, for the purpose of obtain-
ing an expression for the equivalent resistance coefficient, Baptist
(2005) simplified Eq. (29) to:

uv(z) =
√

u2
s0 + a exp

( z

L

)
(32)

This simplified profile only describes zones 2 and 3 of Fig. 1,
where zone 2 reaches down to the bed. In this way, this expression
cannot represent properly the velocity profile near the bed, where
u must vanish, but this expression allows for the calculation of the
resistanceC, since it can be integrated over the depth. Above the
vegetation, in zone 4 of Fig. 1, the following logarithmic velocity
profile is assumed:

uo(z) = u∗
κ

ln

(
z − d

z0

)
(33)

whered is the zero-plane displacement (m), which is located at
a distance from the bed inside the vegetation. Note that we now
disregard a slip velocity. The shear velocity is given by:

u∗ = √
g(h − k)i (34)

Note further that the definition for a logarithmic velocity pro-
file in a hydraulically rough turbulent boundary layer is strictly
followed. In this definition, the level of the shear velocity is deter-
mined at that height above which the flow is not affected directly
by individual roughness elements (Jackson, 1981). This equals
the levelz = k, the average height of the roughness forming
elements.

The expression for the integration constanta follows from the
boundary condition that at the top of the vegetation the shear
stress of the overlying flow must equal the shear stress of the
flow inside the vegetation layer. The shear stress at heightk from
the profile inside the vegetation layer is given by:

τxz(k) = ρ0cp	uv(k)
∂uv

∂z
(k) = ρ0cp	a exp(k/L)

2L
(35)

The shear stress at heightk from the profile above the vegetation
layer is given by:

τxz(k) = ρ0g(h − k)i (36)

By equalling Eqs. (35) and (36)a is obtained as:

a = 2Lg(h − k)i

cp	 exp(k/L)
(37)

Since bothus0 anda include the water level slope in their formu-
lations, and the water level slope is an unknown variable closely
related to the resistance coefficient, Eq. (32) is rewritten as:

uv(z) =
√

i
(
u2

v0 + av exp
( z

L

))
(38)

with:

uv0 =
√

2g

CDmD
(39)

and Eq. (37) is rewritten as:

av = 2Lg(h − k)

cp	 exp(k/L)
(40)
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Now the equivalent Chézy resistance coefficientCr can be
calculated as:

Cr = k ūv + (h − k)ūu

h
√

hi
(41)

where ūv is the height-averaged velocity inside the vegetation
layer, andūo is the height-averaged velocity above the veg-
etation layer. These height-averaged velocities are calculated
analytically as:

ūv = 1

k

∫ k

0
uv(z)dz

ūv = L
√

i

k


2

(
uvk −

√
av + u2

v0

)

+ uv0 ln


 (uvk − uv0)

(√
av + u2

v0 + uv0

)
(uvk + uv0)

(√
av + u2

v0 − uv0

)





(42)

ūo = 1

h − k

∫ h

k

uo(z)dz

ūo =
√

g(h − k)i

κ(h − k)

[
(h − d) ln

(
h − d

z0

)

− (k − d) ln

(
k − d

z0

)
− (h − k)

]
(43)

whereuvk is the flow velocity at the top of the vegetation, heightk,
following from the flow profile inside the vegetation. The for-
mula for the equivalent Chézy resistance coefficient follows from
Eq. (41) and becomes:

Cr = 1

h3/2




L


2

(
uvk −

√
av + u2

v0

)

+ uv0 ln


 (uvk − uv0)

(√
av + u2

v0 + uv0

)
(uvk + uv0)

(√
av + u2

v0 − uv0

)





+
√

g(h − k)

κ(h − k)

[
(h − d) ln

(
h − d

z0

)

− (k − d) ln

(
k − d

z0

)
− (h − k)

]
(44)

In order to describe the vertical velocity profile given by the com-
bination of Eqs (32) and (33), and therefore, to determine the
resistance of the submerged vegetation, three unknown param-
eters need to be determined, the zero-plane displacementd, the
roughness heightz0 and the closure coefficientcp for the mean
turbulence intensity.

The expression ford follows from the definition of
Thom (1971):

d =
∫ k

0 (dτxz(z)/dz)zdz∫ k

0 (dτxz(z)/dz)dz
(45)

which has been further extended by Jackson (1981) and can be
written as (Baptist, 2005):

d = k −
∫ k

0

τxz(z)

τxz(k)
dz (46)

Substitution of Eq. (35) yields:

d = k −
∫ k

0

exp(z/L)

exp(k/L)
dz = k − L

(
1 − exp

(
− k

L

))
(47)

The expression forz0 is found by the boundary condition that at
the top of the vegetation the flow velocity of the vegetation pro-
file, uv(k), equals the flow velocity of the overlying logarithmic
profile,uo(k):√

u2
s0 + a exp

(
k

L

)
=

√
g(h − k)i

κ
ln

(
k − d

z0

)
(48)

Substituting Eq. (30) forus0 and Eq. (37) fora, and rewriting
using Eq. (31) forL, yields:

z0 = (k − d) exp

(
−κ

√
2L

cp	

(
1 + L

h − k

))
(49)

This expression forz0 can be applied in the method of effective
water depth, Eq. (19), as well yielding an analytical estimate
for the roughness height of the top of the vegetation, depen-
dent on known vegetation properties, water depth and the closure
coefficientcp for the mean turbulence intensity.

The formulae for the vegetation-related resistance coefficient
for flow through submerged vegetation can be applied for known
vegetation characteristics: diameterD, densitym, bulk drag coef-
ficientCD and the water depthh. The bulk drag coefficient for flow
through vegetation is a parameter that is difficult to determine,
and many researchers have been working on it, for instance Li and
Shen (1973) and Neary (2003). In this study we take the theoret-
ical viewpoint that vegetation can be modelled as rigid cylinders
and we simply apply a drag coefficient of 1.0, disregarding the
placement of the cylinders or the flow Reynolds number.

The formulae for submerged vegetation include one additional
parameter that cannot be measured directly in the field, nor easily
estimated: in both methods the mean turbulence intensitycp is
needed. Van Velzenet al. (2003) compared experimental flume
data on submerged reed with the results of the analytical equa-
tion of Klopstraet al. (1997) and found an adequate expression
for the characteristic length scale of turbulent eddies inside the
vegetation,α (which equals tocp	). The turbulence intensitycp

is given by:

cp = 0.015
√

hk

	
(50)

The value forcp affects the length scaleL and, therefore, the
zero-plane displacementd given by Eq. (47). To validate this
expression forcp, a comparison is made with flume data from
Nepf and Vivoni (2000). In their experiment with flexible plastic
plants they carefully measured the vertical profiles of Reynolds
stress and calculated the zero-plane displacement by applying
Eq. (45). The vegetation characteristics are:D = 0.0167 m,
m = 330 m−2 (yielding mD = 5.5 m−1), CD = 1.0 and
k = 0.16 m. For increasing depth ratios ofh/k, Nepf and Vivoni
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Figure 3 Comparison between measured and modelled dimensionless zero-plane displacement,d/k.

(2000) found decreasing ratios ford/k. Figure 3 presents the
comparison of the measurements with the results of the analyti-
cal equation ford. The left panel shows that by applying Eq. (47)
in combination with Eq. (50) for thecp-value, the fit is not very
good. Subsequently, various dimensionally correct formulae for
cp were tried and as a result the following formula forcp gave a
reasonable fit:

cp = 1

20

h − k

	
(51)

This comparison with data demonstrates that Eq. (47) seems a
valid approximation for the zero-plane displacement, but to sim-
ulate the zero-plane displacement, and therefore, the physical
processes, accurately, the closure coefficient for the turbulence
intensity, cp, needs to be fitted. Thecp-coefficient is depen-
dent on the submerged water depth (h–k) and mixing length
	, and may be different for flexible vegetation than for rigid
vegetation.

Finally, Fig. 4 presents the equations for the zero-plane dis-
placement and the roughness height for the top of the vegetation in
graphical form, as a function of the plant characteristicsCDmD,
for an arbitrary vegetation height and water depth. The value
for cp is given by Eq. (51). It can be seen that with increas-
ing vegetation density the zero-plane displacement increases, in
other words, the penetration of overlying eddies diminishes. The
roughness height of the vegetation shows a more complex rela-
tionship with the vegetation density, showing a maximum at a
relatively low density. Typical ranges formD for natural vege-
tation are 0.1–1.0 m−1 for open herbaceous and marsh types of
vegetation, and 10–15 m−1 for natural grasslands. Furthermore,
Fig. 4 shows that the often used estimated = (2/3)k (Garratt,
1992) is within the valid range, but the exact value ford is
dependent on the vegetation properties.
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Figure 4 The dimensionless zero-plane displacement,d/k (left axis),
and the roughness height for the top of the vegetation, z0 (right axis), as
function of CDmD. h = 2 m,k = 0.5 m, CD = 1.

4 1 DV turbulence model

Another way of obtaining a detailed description of resistance of
flow through and above vegetation, is to perform detailed numer-
ical simulations based on a 1-DVk–ε turbulence model that has
been developed by Uittenbogaard (2003). This model is a sim-
plification of the full 3-D Navier–Stokes equations in order to
account for horizontal flow conditions only. The model describes
vegetation as rigid cylinders, similar to the previous approaches.
At the same time and in order to include the effects of vegetation
into thek–ε turbulence closure, the following modifications have
been included: (i) the decrease of the available cross-section for
the vertical exchange of momentum, turbulence kinetic energy
and turbulent dissipation, (ii) the drag force exerted by the plants
in the horizontal direction, (iii) an additional turbulence produc-
tion term due to vegetation, and (iv) an additional turbulence
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dissipation term due to vegetation. The 1-DV model assumes
uniform flow in horizontal direction. The momentum equation
reads:

ρ0
∂u(z)

∂t
+ ∂p

∂x

= ρ0

1 − Ap(z)

∂

∂z

(
(1 − Ap(z))(ν + νT(z))

∂u(z)

∂z

)

− F(z)

1 − Ap(z)
(52)

whereF is the drag force of the vegetation per unit volume
(Nm−3):

F(z) = 1

2
ρ0CD(z)D(z)m(z)u(z)|u(z)| (53)

The pressure gradient is constant along the water depth, according
to the hydrostatic pressure assumption, and is either provided as
input to the model, or numerically adjusted to satisfy a given
depth-averaged bulk velocityU. The bulk velocity is defined by
the volume flux of water divided by the channel’s wetted cross-
section and relates to the pore velocity by:

U = 1

h

∫ h

0
(1 − Ap)u(z)dz (54)

The continuity equation is given by:

∂u

∂x
= 0 (55)

The k–ε turbulence model provides a closure for the eddy vis-
cosity, relating it to the turbulent kinetic energy,kT (m2/s2) and
its dissipation rate,ε (m2/s3):

νT = cµ

k2
T

ε
(56)

wherecµ is a constant (with the standard value of 0.09). The
kT-equation in thek–ε turbulence model is modified to take into
account the effect of vegetation on the additional production
of turbulence and on the vertical diffusion of turbulent kinetic
energy:

∂kT

∂t
= 1

1 − Ap

∂

∂z

(
(1 − Ap)

(
ν + νT

σk

)
∂kT

∂z

)
+ T + Pk − Bk − ε (57)

The first term in the right-hand side of Eq. (57) is the vertical
diffusion of turbulent kinetic energy by its own mixing action,
corrected for the specific area,(1 − Ap). A closure coefficient
of σk = 1.0 was applied. The second term,T , denotes the addi-
tional turbulence generated by the vegetation. Considering fully
turbulent flow, all the work done by the fluid against the plants
drag force is converted into turbulent kinetic energy, making the
expression forT :

T(z) = F(z)u(z) (58)

For transient or laminar flow, part or all of this power would be
transferred into heat by work against viscous forces and correc-
tion terms depending on Reynolds number would be needed. The

third term in the right-hand side,Pk, is the turbulence production
in shear flows:

Pk = νT

(
∂u

∂z

)2

(59)

The fourth term,Bk, is the buoyancy term which represents the
conversion of turbulent kinetic energy into gravitational energy
according to:

Bk = −νT

σk

g

ρ0

∂ρ

∂z
(60)

Finally, the last term,ε, corresponds to the dissipation rate of the
turbulent kinetic energy. This is modelled by theε-equation:

∂ε

∂t
= 1

1 − Ap

∂

∂z

(
(1 − Ap)

(
ν + νT

σk

)
∂ε

∂z

)

+ Pε − Bε − εε + c2ε

T

τeff
(61)

The first term in the right-hand side of Eq. (61) represents the
vertical diffusion ofε by the turbulent eddies. For the closure
coefficient,σε = 1.3 is applied. The next three termsPε, Bε and
εε, correspond to the production, buoyancy and dissipation of
ε, respectively, and are related to the production, buoyancy and
dissipation ofkT by the expressions:

Pε = c1ε

ε

kT
Pk (62)

Bε = c1ε(1 − c3ε)
ε

kT
Bk (63)

εε = c2ε

ε2

kT
(64)

wherec1ε = 1.44, c2ε = 1.92 andc3ε = 0 or 1 (depending
on stratification). Universal values for closure coefficients, as
derived by Launder and Spalding (1974), have been applied.

The important part is in the last term in the right-hand side,
which corresponds to the dissipation rate of turbulence produced
by vegetation. This dissipation rate depends on the effective
turbulence dissipation time scale (τeff)and it is affected by the clo-
sure coefficientc2ε. To obtainτeff , Uittenbogaard (2003) related it
to the different length scales that control turbulence inside vegeta-
tion. First of all, at sufficient distance from the bed as well as from
the top of the vegetation, the length scale of internally generated
turbulence is smaller than the available fluid space inside the veg-
etation, and therefore the relevant time scale of this small scale
turbulence corresponds to the intrinsic turbulence time scale:

τint = kT

ε
(65)

This time scale is adopted as an effective time scale by Shimizu
and Tsujimoto (1994) and López and García (2001). It is here
where the turbulence model of Uittenbogaard (2003) differs from
that of previous authors. Uittenbogaard includes the penetration
of shear turbulence from above the vegetation into the top layer
of the vegetation. Above the vegetation a shear layer is formed by
the vertical exchange of horizontal momentum with the retarded
flow inside the vegetation. The large eddies that are advected
from above the vegetation have to be squeezed into smaller-scale
eddies of the length scale of the available pore space inside the
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vegetation. In this way, the relevant time scale for the dissipation
is determined by the geometrical properties of the vegetation,
according to:

τgeom =
(

L2
p

c2
µT

)1/3

(66)

whereLp is the available length scale for eddies between the
vegetation:

Lp(z) = c	

(
1 − Ap(z)

m(z)

)1/2

(67)

in which c	 is a coefficient that affects the geometrical length
scale. For cylinders, it is assumed thatc	 = 1, but it is noted that
for real vegetation with twigs and foliagec	 might be smaller
(Baptist, 2005). The 1-DV model computes both time scalesτint

andτgeom over the vertical and evaluates the effective time scale
by a MAX-operator:

τ−1
eff = max

(
τ−1

int , τ
−1
geom

)
(68)

Finally, the representative roughness is obtained from the 1-DV
model by calculating the energy slope,i:

i = ∂p/∂x

ρ0g
(69)

and subsequently applying Chézy’s relationship. The validity
of the 1-DV model has been demonstrated by comparing the
outcome with measurements of vertical profiles for flow and tur-
bulence by Meijer andVanVelzen (1999), Nepf andVivoni (2000)
and López and García (2001), and will be demonstrated in a later
section of this paper.

5 Equation building with genetic programming

When refining a model of a physical process, a scientist focuses
on the agreement of theoretically predicted and experimentally
observed behaviour. If these agree in some accepted sense, then
the model is “correct” within that context. In the process of mak-
ing sense of experimental data it is generally desirable to express
the relation between the variables in a symbolic form: an equa-
tion. In this work we consider the problem inverse to verification
of theoretical models: how can we obtain the governing equations
directly from measurements? To do this, we will apply genetic
programming.

5.1 Dimensionally aware genetic programming

Genetic programming (GP) is a technique that can be used to
find the symbolic form of an equation, including a set of coeffi-
cients. One of the advantages of genetic programming over other
methods for regression is the symbolic nature of the solutions
that are produced. This is especially pronounced in empirical
modelling of unknown phenomena where an underlying theoret-
ical model is not known. For a detailed description of genetic
programming from a water resources perspective the interested
reader is referred to Babovic and Abbott (1997) and Babovic and

Keijzer (2000). Inspired by Koza’s (1992) pioneering work on GP
and in order to improve performance of his standard approach,
an augmented version of GP has been proposed — dimension-
ally aware GP (Keijzer and Babovic, 1999) — which is arguably
more useful in the process of scientific discovery. Dimension-
ally aware genetic programming (Keijzer and Babovic, 1999)
differs from the standard approach in that the raw observations
are used together with their units of measurement. The system of
units of measurement can be viewed as a typing scheme and as
such can be used in some form of typed genetic programming.
The dimensionally aware approach proposes what can be called
a weakly typed or implicit casting approach. Here dimensional
correctness is not enforced, but promoted. An extra objective
for selection, goodness-of-dimension, is introduced that is used
next to a goodness-of-fit objective. These two objectives are then
used in a multi-objective optimization routine using the concepts
of dominance and Pareto optimality. Goodness-of-dimension is
measured by calculating how many constants with appropriate
units should be introduced to render an equation dimensionally
correct. The result of a single run of such unit typed genetic pro-
gramming is a number of equations — a so-called Pareto front of
non-dominated solutions — that balance dimensional correctness
(goodness-of-dimension) with goodness-of-fit.

5.2 Determination of a vegetation-related resistance
formula for submerged vegetation using
genetic programming

Dimensionally aware genetic programming was applied to a set
of 990 results of the 1-DV model for submerged vegetation. These
990 cases were chosen to represent a wide variety of vegetation
properties and water depths for cylinders that represent pioneer
species, (stiff) grasses, herbaceous vegetation, reed and bushes.
The input variables are presented in Table 1.

For purposes of dimensional consistence a slightly adapted
Chézy coefficient was used:

C′ = C√
g

(70)

By virtue of using such a dimensionless coefficient, time-related
units are avoided and the resistance coefficient became solely a
function of the geometry of the system. GP was employed in a
multi-objective sense, so that the following three objectives were
simultaneously optimized: (i) root mean square error (RMSE):
measure of overall accuracy of the formula, (ii) coefficient of
determination (CoD): measure of the goodness of the shape of

Table 1 Inputs to the 1-DVk–ε model

Input Dimension Description

D L Diameter of the stems
m L−2 Number of stems per square metre
k L Vegetation height
CD — Bulk drag coefficient
Cb L0.5/T Bed Chézy resistance coefficient
h L Water depth
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the formula and (iii) dimensional error: measure of dimensional
consistency of the formulae.

The GP induction system was run many times with different
parameters using various subsets of the 990 cases. Subse-
quently the front of non-dominated solutions for all the runs
was examined to find a suitable formula. Genetic programming
results provided a dimensionally consistent formula that had both
smallest RMSE and the highest CoD:

Cr√
g

=
√

2

cDmDk
+ ln

{(
h

k

)2
}

(71)

This formula can be rearranged to:

Cr =
√

2g

cDmDk
+ 2

√
g ln

(
h

k

)
(72)

Clearly, the relationship of the resistance coefficientCr and the
water depthhconsists of ah-independent term plus ah-dependent
logarithmic term. Forh = k, the logarithmic term reduces to zero,
making the resistance equivalent to the resistance for flow through
non-submerged vegetation, for maximally flooded conditions,
h = k, see Eq. (13). Having found this, it would be better to have
an expression compatible with the more accurate expression for
resistance for non-submerged conditions that includes the bed
resistance, as well, Eq. (12) for fully submerged conditions:

Ck =
√

1

(1/C2
b) + (CDmDk/2g)

(73)

Finally, replacing the constant value of 2 with the more theo-
retically founded Von Kármán’s constant 1/κ ≈ 2.5, the final
expression was determined to be:

Cr =
√

1

(1/C2
b) + (CDmDk/2g)

+
√

g

κ
ln

(
h

k

)
(74)

Although fractionally more complicated than the original for-
mulation, expression (74) was found to be in good agreement
with the data, especially in regions with higher Chézy values
(Fig. 5d). Furthermore, it is theoretically well founded, com-
bining the resistance for the flow inside the vegetation with the
observed logarithmic profile above the vegetation.

Table 2 Root mean squared errors (RMSE) and coefficients of determination (CoD) for the four
formulations of the resistance coefficients, including the 1-DV model which was used for generation
of training data, compared with the 1-DV model results

Equation RMSE 1-DV data (m1/2/s) CoD 1-DV data (–)

Method of effective water depth, Eq. (19) 1.3048 0.97485
Analytical solution method, Eq. (44) 1.4705 0.93724
Original GP-formula, Eq. (71) 0.9746 0.97065
Modified GP-formula, Eq. (74) 1.2061 0.97579
1-DV numerical model 0 1.00

Subsequent research on the formulation revealed an agreement
with the work by Kouwenet al. (1969), where a general formula
for resistance induced by vegetation was proposed as:

Cr = C1 +
√

g

κ
ln

(
h

k

)
(75)

Kouwen et al. proposed several relationships forC1, but no
definitive conclusions were drawn. Equation (74) gives an exact
formulation forC1 and as such presents a step forward in the
modelling of resistance. Note that the final formulation is a com-
bination of a computer induced expression that fits the data well,
and theoretically based modifications to fit the theory. Further
analysis reveals that the equation is equivalent to the equation
produced by the method of effective water depth, Eq. (19) if, (i)
the depth balance is ignored (i.e., the factorsk and(h − k) are
considered equal toh), and (ii) the roughness lengthz0 is set to
k/e wheree is the base of the natural logarithm. This leads to
the assumption that the resistance is mainly governed by a loga-
rithmic flow profile over the submerged depth, with a boundary
condition at the level of zero intercept, which is at the top of the
vegetation. Note further that Eq. (74) is obtained by integrating
the differential equation:

∂Cr

∂h
=

√
g

κh
(76)

with the boundary condition ofC = Cref ath = href. In this case
the logical boundary condition ishref = k.

6 Comparison of the formulations

There are several ways to evaluate the formulations. First and
foremost is the ability to model the data under study. This is
evaluated by comparing the results of the analytical formulations
with those of the 1-DV numerical model. Evaluation parameters
are the RMSE:

RMSE=
√√√√ 1

N

N∑
i=1

(xOi − xMi)2 (77)

whereN is the number of observations, andxOi and xMi are
the observed and modelled values, respectively, and the CoD,
which in this linear regression case equalsR2, whereR is the
correlation coefficient. Results are presented in Table 2. It can
be seen that the expressions based on the genetic programming
results are in better agreement with the synthetic dataset than the
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Figure 5 Scatter plots for the four equations on 1-DV data. (a) upper left: method of effective water depth, Eq. (19), (b) upper right: analytical solution
method, Eq. (44), (c) lower left: original GP-formula, Eq. (71) and (d) lower right: modified GP-formula, Eq. (74).

manually induced formulations. There is a small level of system-
atic error, but the GP-formulae model the variance admirably.
Even though the modified GP-formula has a higher RMSE than
the original GP-formula, the scatter plot in Fig. 5 reveals that
the improved formulation removes the large residuals associated
with high Chézy values, and thus is more reliable over the entire
domain than the original formulation.

Up to this point, both training and comparisons were per-
formed on synthetic data, generated by the 1-DV model. To
ultimately test our approaches, 177 experimental runs based on
laboratory flume experiments were collected from 10 indepen-
dent studies. These data were not used in the equation building
process, but kept aside to validate the equations induced.

These studies include rigid and flexible, artificial and natu-
ral vegetation types from Kouwenet al. (1969), Ree and Crow
(1977), Murotaet al. (1984), Tsujimoto and Kitamura (1990),
Tsujimotoet al. (1993), Ikeda and Kanazawa (1996), López and
García (1997, 2001), Meijer (1998a, b) and Järvelä (2003). The
data contained all input information, except the bed roughnessCb,
which was assumed to be negligible in the experiments for smooth
flume beds, whereupon it was set to 60 m1/2/s. In cases where the
drag coefficient was not defined it was assumed to be 1.0. For
flexible vegetation experiments, the deflected height was applied

in the formulations. An overview of the data of the 177 experi-
ments is given in Appendix A of Baptist (2005). It is noted that
although the range in parameter values in these experiments is
quite large, in comparison with natural vegetation types, flume
experimental data are not covering the full range of existing types.

For this particular dataset it was possible to also test the per-
formance of the 1-DV model itself. Results for the comparison
can be found in Table 3 and Fig. 6, and it can be seen that the
genetic programming induced equations give a highly competi-
tive agreement with the data. What is particular startling is that
their performance is even competitive with the 1-DV model the
equations are based upon.

Finally, Fig. 7 presents a comparison between the improved
genetic programming equation and the original 1-DV model, both
applied to the validation set of flume experiments. No serious dis-
crepancies between the dynamical model and the simple equation
are observed.

From the perspective of simplicity of the equations, it might be
enlightening to compare the apparatus of expressions (Eqs (5)–
(49)) that leads to the definition of Eqs (19) and (44), with the
conciseness and elegancy of the genetic programming induced
Eq. (71) and its human-manipulated variant, Eq. (74). The genetic
programming induced equations are based purely on the 1-DV
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Table 3 Root mean squared errors (RMSE) and coefficients of determination (CoD) for the four formulations of
the resistance coefficients, including the 1-DV model which was used for generation of training data, compared
with flume experiments

Equation RMSE flume experiments (m1/2/s) CoD flume experiments (–)

Method of effective water depth, Eq. (19) 2.7187 0.83594
Analytical solution method, Eq. (44) 2.2796 0.81325
Original GP-formula, Eq. (71) 2.1093 0.83737
Modified GP-formula, Eq. (74) 2.1826 0.87418
1-DV numerical model 1.8600 0.87300
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Figure 6 Scatter plots for the four equations for experimental flume data. (a) upper left: method of effective water depth, Eq. (19), (b) upper right:
analytical solution method, Eq. (44), (c) lower left: original GP-formula, Eq. (71) and (d) lower right: modified GP-formula, Eq. (74).

model data, and yet ignore considerations about turbulence length
scales and turbulence intensity. They focus primarily on obtaining
good agreement with the data, and in this case, the problem-
atic interplay between the vegetation and the turbulence induced
by the vegetation apparently are of secondary importance to the
simple logarithm on the ratio of water depth over plant height.

7 Discussion

This paper reports the comparison of four different methods
for calculating flow resistance due to vegetation. In particular,

a GP algorithm showed to induce an appropriate equation for
vegetation resistance from the output of a 1-DV numerical model.
In comparison to a variety of flume data, a modified version of
this equation is shown to provide the best fit with minimized
residuals over the whole data range. The induced equation is suffi-
ciently simple to be applied to wide-area depth-averaged models,
to calculate, for example, flow over vegetated floodplains.

The main limitation of the study is the assumption that
vegetation can be represented as rigid cylinders. In vegetated
floodplains, several vegetation types, such as herbs and grasses
will bend due to the force of the flow. Bending of vegeta-
tion decreases the frontal area for drag, introduces lift forces
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Figure 7 Direct comparison between the 1-DV model (circles) and the
modified GP-formula, Eq. (74) (plusses), using experimental flume data
(i.e. out of sample validation).

and furthermore, swaying vegetation may introduce additional
resistance. It has been found that for rigid vegetation the linear
relation between force and the square of velocity holds, as
depicted in this paper, but for flexible plants a linear increase
of drag force with flow velocity is observed (Armaniniet al.,
2005). This implies that the equation for resistance found is less
suitable for flexible vegetation, although the comparison with
flume data, which included flexible vegetation as well, showed a
reasonable fit.

Testing expressions for their ability to model a phenomenon
such as resistance induced by vegetation requires experimen-
tal data. Particularly when using data driven methods, data are
needed for steering the error minimization process. For equations
induced by scientists such data is needed to test the proposed
equation for its capacity to model the phenomenon under study.

Even though the variables for this relationship should be mea-
surable in wetlands and vegetated floodplains, this cannot yet be
accomplished for resistance coefficients measured at a fine scale,
at different water depths and with different types of vegetation.
Obtaining data at such a fine scale in realistic circumstances is
prohibitive in terms of effort and cost. Instead, we here chose to
use a fine-scaled numerical 1-DV model, describing turbulence
and flow properties to generate data. Such a model employs avail-
able knowledge about characteristics of vegetation, turbulence
induced by vegetation, and resistance caused by the drag forces
on the plants. Determining values of the resistance coefficients
from such a microscopic model is trivial, and can be understood
as a noise free approximation of the phenomenon under study.
However, a compact expression describing the phenomenon is
not readily available from a numerical 1-DV model.

It could be argued that using synthetic data defeats the pur-
pose of finding an equation. If a dynamic model exists, why not
simply use that one instead of going the laborious route of finding
a compact equation. The purpose of finding a compact equation
lies in the type of modelling that it enables. Vegetation resis-
tance is a typical three-dimensional problem due to the spatial
heterogeneity of vegetation and the water depth dependency of

submerged or non-submerged vegetation.A full dynamical model
thus operates on a 3-D grid, which is computationally expensive.
An analytical solution to the problem of resistance induced by
vegetation, which includes water depth dependency, makes two-
dimensional, depth-averaged modelling possible, allowing for
faster model computations and the possibility to apply the model
to larger areas. In addition, an analytical expression can also be
used in 1-DH computations, or even in spreadsheet models.

A difficulty of the approach, even in simple models, is that
floodplains have inhomogeneous vegetation types with a com-
plex structure (Baptistet al., 2005). This shifts the modelling
problem from estimating an equivalent bed roughness value to
estimating plant properties for density, diameter, height and drag
coefficient. In principle it is possible, although not easy, to obtain
the complete horizontal and vertical structure of grasses, herba-
ceous vegetation, bushes, floodplain forests and other vegetation
types. The drag coefficient, however, is a property that cannot be
measured directly in the field. In principle, the drag coefficient for
smooth cylinders is known from experimental studies and theory
and is dependent on the value for the Reynolds number of the flow
and the spatial arrangement of the cylinders. In applications on
vegetation roughness this coefficient is usually estimated or used
as a calibration parameter, for example in an effort to account for
rough surfaces or for the foliage. Given Eq. (74), and calibrated
on the drag coefficient, its main advantage over just calibrating
a value forCr directly, is that it gives a relationship with water
depth.

8 Conclusions

Four formulations for water depth-related resistance induced by
vegetation were studied and compared. Two of the equations stud-
ied here were created through analysis and a process of derivation
by a scientist. One equation was derived by dimensionally aware
genetic programming, and finally one expression was created
by manually analyzing and improving the genetic programming
equation. It was found that the genetic programming equations
were superior to the manually derived equations, both on their
performance on synthetic training and laboratory testing data, and
in the economy of detail that needs to be modelled. The manu-
ally improved expression was found to be in good agreement with
previous expressions found in the literature, and performed com-
petitive on experimental data with the detailed numerical model
that was used to generate the training data.

This paper presented a case study in the use of genetic
programming as a hypothesis generator for use in scientific
discovery. Not only does it show that genetic programming
is capable of producing equations that are comparable or per-
haps better than their human derived competitors, it produces
expressions that are amenable to further analysis and manual
improvement. This is potentially a much more useful result, as it
shows that the symbolic nature of genetic programming can be
used to build up knowledge in a problem domain. In contrast with
many machine learning algorithms, where the trained model is
the end result of a problem statement, the genetic programming
induced expressions can be used to start a new cycle of inquiry.
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The elegant Eq. (74) that was induced with genetic pro-
gramming is both theoretically and experimentally justified, and
can be used to estimate the resistance coefficient of submerged
vegetation.

Notation

a = Integration constant (m/s2)
Ap = Solidity; the fraction of horizontal area taken by

the cylinders
av = Integration constanta divided byi (m/s2)
b = Integration constant (m/s2)

Bk = Buoyancy of turbulence (m2/s3)
Bε = Buoyancy of turbulence dissipation (m2/s4)
C = Chézy coefficient (m1/2/s)
cµ = Constant
c1ε = Closure coefficient
c2ε = Closure coefficient
c3ε = Closure coefficient
Cb = Chézy coefficient of the bed (m1/2/s)
CD = Bulk drag coefficient
Ck = Representative Chézy value for non-submerged

vegetation (m1/2/s)
c	 = Coefficient for the geometrical length scale
cp =Turbulence intensity, height-averaged over the

vegetation height
Cr = Representative Chézy value for vegetation

(m1/2/s)
D = Cylinder diameter (m)
d = Zero-plane displacement in the logarithmic

velocity profile (m)
F = Drag force of the vegetation per unit volume

(N/m3)
g = Gravitational acceleration (m/s2)
h =Water depth (m)
i = Energy gradient or water level slope
k =Vegetation height (m)

kN = Nikuradse equivalent roughness (m)
kT =Turbulent kinetic energy per unit mass (m2/s2)
L = Length scale (m)
	 = Mixing length (m)

Lp =Available length scale for eddies between the
vegetation (m)

m = Number of cylinders per m2 horizontal area
(m−2)

p = Pressure (N/m2)
Pk =Turbulence production in shear flows (m2/s3)
Pε = Production of turbulence dissipation (m2/s4)
q = Discharge per unit width (m2/s)
R = Hydraulic radius (m)
t =Time (s)

T =Turbulence generated by vegetation (m2/s3)
u =Velocity (m/s)
U = Depth-averaged bulk velocity (m/s)

u∗ = Shear velocity (m/s)
uc = Uniform flow velocity through fully

submerged vegetation (m/s)
ucb = Uniform flow velocity through

non-submerged vegetation (m/s)
uo =Velocity above the vegetation layer

(without slip velocity) (m/s)
ū = Depth-averaged velocity (m/s)

ūo = Height-averaged velocity above the
vegetation layer (m/s)

us0= Uniform flow velocity over part of the
cylinder height (m/s)

uu =Velocity above the vegetation layer
(including slip velocity) (m/s)

uv =Velocity inside the vegetation layer (m/s)
ūv = Height-averaged velocity inside the

vegetation layer (m/s)
uv0 = Uniform flow velocity over part of the

cylinder height divided byi (m/s)
uvk = Flow velocity at the top of the vegetation,

uv(k) (m/s)
x = Horizontal coordinate (m)
z =Vertical coordinate (m)

z0 = Roughness height in the logarithmic
velocity profile for a fully rough bed (m)

Greek symbols

α = Characteristic length scale (m)
ε = Turbulence dissipation rate per unit

mass (m2/s3)
εε = Dissipation rate of turbulence

dissipation (m2/s4)
κ = Von Kármán constant
ν = Kinematic viscosity of water (m2/s)

νT = Eddy viscosity (m2/s)
ρ0 = Fluid density (kg/m3)
σk = Closure coefficient
σε = Closure coefficient
τb = Bed shear stress (N/m2)

τeff = Effective turbulence dissipation time
scale (s)

τgeom= Geometric turbulence dissipation time
scale (s)

τint = Intrinsic turbulence dissipation time
scale (s)

τt = Total fluid shear stress (N/m2)
τv = Vegetation resistance force per unit

horizontal area (N/m2)
τxz = Reynolds stress or shear stress (N/m2)
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