

INSTREAM WETLANDS IN SINGAPORE: OPTIMIZING PARTIALLY VEGETATED FLOWS FOR BIOREMEDIATION IN A TROPICAL URBAN CONTEXT

Ellis Penning, Jasper Dijkstra, Sheela Reuben, Seng-Keat Ooi, Petra Schmitter, Joshi Umid Man, Carol Han Ping, Lora Buckman, Wim Uijttewaal

About Singapore

Island with limited water resources
Population 5.3 million
716 km²

Every drop counts

4 taps strategy:

Local catchment water

2. Imported water

3. NEWater

4. Desalinisation

(20%, 2340 mm of rainfall a year)

(40%; agreement with Malaysia to 2016)

(30% = 55% in 2060)

(10% => 25% in 2060)

Singapore ABC waters

- Active
- Beautiful
- Clean

* Bishan Park, Ang Mo Kio

'A City in a Garden'

Instream wetlands

Can you construct a bioremediation wetland in a stormwater drainage channel?

Bioremediation wetland must:

- Reduce nitrogen, phosphorus and TSS concentrations of base flow
- Add aesthetic value
- Not pose additional flood risk
- Serve as pilot for future projects

=> Design faces a number of challenges

Tropical urban stormwater drainage channels

Test site = 'average drainage channel'
Heavy downpoor on a daily/weekly basis (approx. 1 hour event)
Quick drainage is essential, space is limited

 $T = 0 \min$

T = 10 min

T= 30 min

Base flow Q=60 L s⁻¹

High flow $Q = 20 \text{ m}^3 \text{ s}^{-1}$ Design flow $Q = 63 \text{ m}^3 \text{ s}^{-1}$

Challenges for instream wetlands

Create sufficient residence time for adequate TSS and nutrient removal during base flow

- Plant selection
- Substrate selection
- Flow design

No increased risk of upstream flooding during high flow

Avoid risk of damage to the wetland

- Forces on during high flow plants
- Clogging

Virtually no data at the start of the project Wetland must not exceed 4x50x1m dimensions

Approach

Interdisciplinary study

- Field measurements during base flow and high flow of the basics (water quality, water quantity, bathymetry)
- Flume experiments for base flow and high flow situations
- 1D and 2D modelling (SOBEK and 2d D-FM)

Integration of above in an optimal design

Automated WQ sampling

Catchment identification

Field measurements

Baseflow is ~ 7000L/day
Water quality is of 'average-to-good quality' in Singapore standards

	Base flow	High flow
Total Nitrogen (mg L-1)	0.72	1.41
Total Phosphorus (mg L-1)	0.05	0.17
Total Suspended Solids (mg L-1)	49	126

- ⇒ The wetland needs to deal with low concentrations yet high daily loads
- ⇒ Affects the choice of substrate for the wetland body

NUS Deltares

Remediation – Bioflume Experiments

Sedimentation tank

Substrate

- Plants acclimatized in waterlogged conditions for one month
 - 1) Pandanus amaryllifolius
 - 2) Echinodorus palaefolius
 - 3) Hymenocallis speciosa
 - 4) Acorus gramineus
 - 5) Cyperus haspan
- Influent from canal water @ Sungei Ulu Pandan (non-rain event)
- Turbidity reduction –av. 45%
- TSS reduction av. 70%
- Nutrient reduction Pending

■ Inflow
■ Outflow

Replicates

10

- 70 ha paved
- 80 ha unpaved

Lateral exchange

- Flow through vegetation slows
- Flow in open channel becomes faster
- Velocity difference between channels causes formation
- of shear layer
 - Rotation of fluid in 2D turbulent eddies
 - Mixing layer width = $\delta_I + \delta_O$

Splitter plate

Top view (source: Zong & Nepf, 2010)

Methods

Adding a splitter plate helps reduce max. force

Modelling the effect of the wetland on high flow

Choice of model:

- 1. A realistic representation of vegetation in the hydrodynamic model;
- 2. A realistic representation of altered channel cross-sections;
- 3. A set of equations and a numerical scheme that can simulate the flow in a steep channel with transcritical flow.

1+2: Delft3D OK, but was not intended for extreme situations like our channel

2+3: new Flexible Mesh model (2D, no vegetation included, only altered roughness, yet validated for alike channels in Hong Kong)

http://oss.deltares.nl/web/delft3d/d-flow-flexible-mesh

2D Delft-Flow Flexible Mesh modelling

- Empty channel validated with measured high discharges and water levels (Q=20 m3/s)
- Vegetation parameters from selected plants included via trachytope approach (Baptist et al 2007)
- Used for the design discharge of Q = 63 m3/s

=> no additional flood risk

Final design

- Addition of a sedimentation pond with a wedge structure that is self cleaning during high flow
- 10 cm high wall along the wetland to reduce forces on plants
- Most robust plants on the outside shelter other plants
- Adjustable weirs at in- and outlet of wetland to optimize and adjust head if needed
- Pipe in lowest drainage layer for additional flushing in case of clogging

And now?

- Construction planned for this summer
- Monitoring of water quantity, water quality and plants when in place
- Guidelines on these types of instream wetlands for Singapore

Take-home message:

Interdisciplinary state-of-the- art research and monitoring equipment, and basic engineering helped to reach an optimized design

Knowledge gained from ecohydraulic research is being used for dayto-day water management even in urban tropical systems

Thank you!

Delft Software Days 2014: 27 Oct. – 7 November http://schedule.delftsoftwaredays.nl/

Mean Stem Drag Force, fd

Introduction

- · In-stream wetland
- Research Objectives
- Approach

Methods

Experiments

Findings

- Flow characteristics
- Stem drag forces
- Effects of turbulence
- Estimation of stem force

Conclusions

Estimations derived from momentum balance within standard error of the mean of the measurements Stem Drag Force Profiles

