Systemic approach in a Marine Protected Area
Strait of Bonifacio – South of Corsica

Modeling and currentology for applied research
(larval dispersion, marine litter, chlorophyll).

O. GERIGNY , S. COUDRAY, P-A. BISGAMBIGLIA , C. LAPUCCI, D. LE BERRE, F. GALGANI.

JONSMOD Bruxelles, may 2014
Introduction: Strait of Bonifacio

Mediterranean Sea – North-west basin, South of Corsica

Marine Protected Area (RNBB, future international marine park)

Many activities: tourism, fishing

Ecological heritage: legacy species

Marine complex ecosystem => exposed at many pressures
Introduction : Context of the study

1- Better understand of the local hydrodynamic processes

2- To study the interactions with the biologic level

Several team are working together :

- University of Corsica: Sustainable Technologies for Littorale Aquaculture and Marine Research (Stellamare) project, to study the distribution of larvae communities.

- Lamma consortium (Italia): to monitor coastal water (Inter-regional project SICOMAR), founded by Europe.
Materials and Methods - 1. Systemic approach in a MPA

Structures identification

Oceanic Model

• Atmospheric forcing
• Regional Corsica model

Hydrodynamic Processes

• Currentology (ADCP)
• Hydrology (CTD)
• Meteorology (local station)

Validation

Larval dispersion

• Recruitment
• Connectivity
• Management

Microparticle Chlorophyll

• Concentration
• Dispersion

Systemic approach

ChlA gives model for larval distribution

Lagrangian transport estimation

Structures observation by satellite & in-situ syst.
Materials and Methods - 2. Mars3D Model – CORSE 400m

Mars3d-MENOR (1.2 km)
North-west Mediterranean model
3D free-surface, hydrostatic
Atmospheric forcing MM5
(now MF-ARPEGE 3 km)

CORSICA regional model (400m)
Open boundary conditions given by MENOR
+ Zoom on Bonifacio strait to identify mesoscale structures
Planning of the waypoints (in red) was done following the previously identified hydrodynamic structures and main fluxes

Grid step calculated in order to:
- cut the main structures (B and C) with ADCP profiles
- do samples of plankton and micro-particles along the same transects

- Direction were chosen according to wind conditions (west-east)
- CTD profiles were planned at the end of each segment
Materials and Methods – 4. Current’s measurement

Ship « Tethys II » from INSU, equipped with
- fixed ADCP on hull,
- T°/salinity surface TSG system,
- meteorological station.
⇒ Data given a posteriori
⇒ Frequency data recording : 1 minute.
⇒ Adcp standard Bottom Track mode = 300m / 30 cells.

Mobile ADCP towed on a « fish »
- deployed along the ship and 3meters under the surface
- Same axe as the ship
⇒ Frequency data recording : 30 seconds.
⇒ Data controlled onboard in Real Time via RDI-software
⇒ Adcp customized Bottom Track mode = 100m / 60 cells.
Materials and Methods – 5. Larval and microparticles data

36 sampling stations

Microparticles

Plankton

Bongo net (200 & 500 µm)
Zooplankton & Ichtyoplankton

- Volume count
- Depth measurement
- Slanting profil

=> integrated on water column

Manta net
- during 30 min at the surface
Results - 1. Atmospheric forcing

- **Model** used during the cruise: MM5, 3km resolution (in grey)

- **In-situ data** coming from MeteoFrance Pertusato semaphore (in black)

⇒ Wind direction is constrained by a **bi-modal system**
⇒ Direction has switch during the cruise giving us an **ideal configuration**
Results – 2. model validation by CTD (hydrological parameters)

CTD4 profile in the channel:

- Thermocline is 10 m higher in the model
- Bias of 0.3 psu is detected on salinity

CTD profiles intercomparison:

- Temperatures are better estimated along the coast (in black & blue) where thermocline is less important

⇒ Model’s vertical scheme or viscosity needs to be verified
⇒ Salinity needs a systematic correction (bad IR forcing)
On the east part of the strait, a Venturi effect, both atmospheric and hydrodynamic, appears due to the contraction of the channel near Bonifacio.

\[p_2 \quad v_2 \]

⇒ Acceleration of the flux is evident on model results
⇒ Measured at about 50 cm/s during our campaign
⇒ Well-known by navigators (danger)
⇒ Aspiration phenomenon when wind is blowing from the west
Focus has been given on the west part of the strait

P12 profile: cutting the channel from North to South
Surface (0-20m) : North-west current (Red/pink)
Mid layer (20-40m) : South (green) & East (blue) current

P14 profile: shows a complex stratified situation after 30mn
South part : North-west current turning east (yellow/red/pink/blue)
North part : East current stronger at the bottom (blue)
Results – 3. Currentology: process analysis by ADCP

Mesoscale system observed in the west part of the strait

P1-P2-P3 profiles: Water column is quasi-homogeneous. Current is first North (pink), turning East (blue), and then towards South (green) => showing vortex activity.
Results – 4. Current’s synthetic view above the thermocline

- **Cyclonic-Anticyclonic system** appears, due to the MAW current coming along the rift

- **A channel** (in green) formed by the bathymetric relief follows the Corsica south coast when wind is blowing from the East.

- Local and **smaller structures** appear along the shore creating two secondary bassins
Results – 4. Current’s synthetic view under the thermocline

- The already mentioned channel (in green) crosses the exiting flux => **stratified** water column

- The entering flux goes along the Corsica coast
Results – 5. Currentology: process validation by drifters

Mesoscale systems were observed in spatial-temporal mode by using 15m deep lagrangian drifters.

- First drifter n°256 shows very well the coupled vortex system D, B and A.
- Second drifter n°257 shows flux along the coast and then, coming back, the big vortex D.
- Third drifter n°258 shows a small vortex E linked to the Venturi effect along the east coast.
Application: Larval dispersion (Gérigny and Koeck)

Connectivity & Identification of preferred habitats installation

Inputs

- **Scenari 1: Theorical**
 - PLD, release in MPA area

- **Scenari 2: Empirical**
 - Stella Mare predicted distribution of larvae
 - **Definition**
 - « real release zone » of larvae

Outputs

- **Hydrodynamic Corse400 m Model**
- **Individual Based Model**
 - **Inputs**
 - **Outputs**
 - Transport sucess
 - Recruitment sucess
 - **Matrix of connectivity**

Application: Larval dispersion (Gérigny and Koeck)
Application: Chlorophyll A concentrations (Lapucci, Gérignon)

08/2012

ChlA data (mg/m3) in oligotrophic conditions:

- obtained by MODIS satellite (spatial resolution 1km)
- treated by OC5 algorithm – IFREMER / LAMMA

=> During summer 2012, higher concentrations in ChlA in eddy structures

=> Long term and pluri-annual recurrence of eddies is confirmed on other periods
Application : Marine Litter (O.Gérigny, F.Galgani, M.Henry)

StellaMare cruise results :

Marine litter distribution obtained after microparticles counting

Concentrations are higher along the path of the main current.

Accademia leviatano (italy) results:

Observation made from the ferry, averaged data on one year

Higher concentration of marco marinelitter => localisation of vortex
Mesoscale (~10 km) Structures identified thanks to the model

Validation

Larval dispersion
Chl A images
Marine litter counting

Approximation

Check the presence of these structures with coupled measurements

Verification
Conclusion

Main goals have been reached:

Hydrodynamic model:

- Data recorded during campaign at sea give us a good validation of our hypothesis
- Knowledge of the circulation is now more accurate

Larval dispersion:

- Connected to Ichtyop, the tool can be operated for new scenarii
- New applications can be developed to support Marine Protected Areas
Thank you for your attention !!!!!
Conclusion: Further work

WaveGlider trials =>

- Low cost and more flexible ADCP transects
- Wider grids
- Litter counting by subsurface video

ESA Sentinel Satellites => launched 04/2014, 2015, 2016
- More accurate images (SST, roughness, water colour)

Larval dispersion => Refine our process knowledge and get more data as input for biological simulation