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Corals can travel from reef to reef
(but only during the larval phase...)

   – Adult coral are physically attached to their home 
reef

   – But populations can migrate between reefs. How?

Ensures genetic mixing of 
separate sub-populations Allows reefs to repopulate each other after 

local disasters (e.g. cyclones, bleaching)

→ Corals release sperm & eggs (or larvae) into the water
    in large-scale spawning events

→ Larvae are transported by marine currents for (up to) 
          days or weeks before settling onto a reef

→ Potential for long-distance travel! (100s km)

→ Sperm fertilise eggs to form coral larvae

Coral larval dispersal:

Image credit: National Geographic

Acropora millepora spawning larvae
Coral larvae “slick”

Image credit: Marine Savers

Aim: Model this process numerically

Marine currents act to connect separate coral 
populations on different reefs
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The GBR's bathymetry is 
very complex ...

Many reefs/reef passages 
at scale of ~200-1000m

Water depth: 0 (blue) to 150m (red)

Small-scale flow around reefs 
& islands significantly affects 
large-scale circulation

We need to resolve 
flow at the reef scale

Small-scale features 
strongly affect 
dispersal of larvae
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… so a multi-scale 
model is needed

→ Shallow water equations
→ Unstructured mesh

→ Reef-scale max. resolution 
(~200m)

→ Finite-element ocean model: SLIM 
(www.climate.be/slim)

→ Element size is a function of: 
        → bathymetry 
        → distance to the nearest reef
        → distance to coastlines

→ Mesh extends from shore to shelf 
break (200m isobath)

→ Sample mesh for central GBR 
simulations (left): 650,000 elements

→ Model forcings:
Tides: Topex satellite data
Wind: Reanalysis data from 

NOAA/OAR/ESRL PSD
Mean residual current: data 

from satellite altimetry



Validation of hydrodynamics

Compared model predictions to observed data at various mooring sites in GBR:

Elevation:
Data from the GBR Ocean Observing System 
(GBROOS) run by the Australian Institute for 
Marine Science (AIMS).

Blue: observed, Green: SLIM prediction

Currents:
Compared mean currents and variance with 
GBROOS mooring data.
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The Individual Based Model produces a 
huge amount of data...

 Millions of particles released

 1000+ reefs in domain

 1 million+ potential reef-to-reef connections to 
consider

How can we extract useful 
information from this data?

Statistical analysis
– Proportion of self-recruitment
– Average connection length

Spatial analysis
– Network Science tools
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Reefs are colour-coded by their community

Definition:
 
Reef community: a cluster of 
reefs whose members are strongly 
connected with each other, and 
weakly connected with reefs 
outside their community

The GBR can be represented as a 
large network

→ Can partition the network into reef 
communities by having recourse to 
network science

→ Community detection tools

Reef “communities” = ecologically 
isolated groups of reefs (very little 
transport between them)
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2. The average connection strength between any 2 reefs in different 
communities is less than 

→ members of the same community are highly connected amongst 
themselves (on average)

→ members of different communities are isolated from each other (on 
average)

is a threshold value which controls how strongly defined the community 
boundaries are
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So  represents a “threshold” level of 
connectivity...

Low- communities High- communities:

% of larvae leaving 
natal community

We can identify stronger and weaker “barriers to dispersal” 
by changing this parameter

– Very few larvae exchanged between 
communities
– Almost all larvae settle inside their 
natal community

– A greater proportion of larvae settle 
outside their natal community
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Communities for A. humilis in the southern 
GBR (high )

1% of larvae settle outside 
their natal community

Numbers show average 
dispersal distance in each  
community

Note:
Connectivity length-scales are 
very different in each 
community!

Ecological implication:
MPA spacing may need to vary from 
community to community to ensure 

MPA-to-MPA connectivity



Self-recuitment rates are also different in 
each community …

1% of larvae settle outside 
their natal community

Numbers show percentage of 
larvae settling over same 
reef they were released on
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Why are communities shapes so irregular?

We might naïvely expect larvae to disperse equally in all directions ...

→ … this would result in equally-sized, 
~circular communities

→ But this is not the case

Why? 

→ Hydrodynamics

→ Community boundaries often represent boundaries between 
different circulation regimes ...
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Strong central current

Strong inter-reef currents

Weak nearshore currents

Currents averaged over length 
of simulation (1 month)

Communities are 
stretched out along the 

NE-SE axis

Self-recruitment is 
lowest in offshore reefs

Dispersal distances are 
lowest in these 
nearshore reefs
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Formation of reef wake eddies enhances 
self-recruitment

+12hrs

+24hrs

+36hrs

+48hrs



Some other ecological questions we can 
attempt to answer ...



Are connectivity patterns different for 
different species?

G. RetiformisA. Millepora

(long pre-competency period) (very short pre-competency period)

Average length of 
connections in 

each reef 
community (km)



Are connectivity patterns different for 
different species?

G. RetiformisA. Millepora

Answer: Yes!

(long pre-competency period) (very short pre-competency period)

Average length of 
connections in 

each reef 
community (km)
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Do connectivity patterns vary from year to 
year?

Currents on GBR shelf strongly wind-driven
        → high annual variability possible

But strongest currents are tidal } Impact on larval 
dispersion/connectivity?

Simulations for 4 different years in central GBR:
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Wind-driven currents affect dispersal distance 
more than self-recruitment

(Tides: OSU Tpxo 7.2 -- Wind: NCEP CFSR reanalysis -- Coral Sea in/outflow: constant)
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Other questions to address:

Impact of climate change on larval dispersal/connectivity

→ Strengthening East Australia Current (western boundary current)

→ Warming seas       larvae develop faster/acquire competency more rapidly

Dispersal patterns of deep reef corals (30m < Depth < 100m)

→ Can deep reefs repopulate shallow reefs?

→ 3D model needed
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Summary of the modelling process

 Unstructured-grid ocean model + particle-tracker: 
 essential for modelling inter-reef transport in a large, multi-scale region

Increasing 
simplification

 Model output: large connectivity network

 Need simplification strategy to extract useful information:

        1– get global connectivity statistics
→ dispersal distances, % self-recruitment etc.

       2– represent reef populations as a network
 → detect communities of highly connected reefs

       3– study connectivity at the community scale 
 → get connectivity length-scales for each community, 

    self-recruitment per community etc.

Reference:
C. Thomas, J. Lambrechts, E. Wolanski, V.A. Traag, V.D. Blondel, E. Deleersnijder, E. Hanert (2014) 
Numerical modelling and graph theory tools to study ecological
connectivity in the Great Barrier Reef, Ecological Modelling 272 160:174

 Tool to study spatial connectivity for different marine species: e.g. 
corals, fish, seagrass



Thank you for your attention

Questions …?

Www.climate.be/slim
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