Biophysical modelling to study multi-scale ecological connectivity in the Great Barrier Reef

<u>Christopher J. Thomas</u>, Eric Deleersnijder, Emmanuel Hanert Université catholique de Louvain, Louvain-la-Neuve, Belgium

JONSMOD Conference Brussels, May 2014

Australia:

The Great Barrier Reef is here!

Image credit: Yahoo

Australia:

The Great Barrier Reef is here!

→ Longest and most complex coral reef ecosystem in the world

Image credit: Yahoo

Australia:

The Great Barrier Reef is here!

→ Longest and most complex coral reef ecosystem in the world

→ Over 2,600km long and up to 200km wide

Image credit: Yahoo

Australia:

The Great Barrier Reef is here!

→ Longest and most complex coral reef ecosystem in the world

→ Over 2,600km long and up to 200km wide

→ Composed of ~3000 islands and reefs, varying in size from 0.01 to 100km²

Image credit: Yahoo

Australia:

Zooming in ...

Image credit: Yahoo

→ Reefs can be considered isolated "oases" of marine life surrounded by open sea

- → Reefs can be considered isolated "oases" of marine life surrounded by open sea
- → Marine currents transport living organisms between different reefs

- → Reefs can be considered isolated "oases" of marine life surrounded by open sea
- → Marine currents transport living organisms between different reefs

Phytoplankton bloom being transported through the GBR

- → Reefs can be considered isolated "oases" of marine life surrounded by open sea
- → Marine currents transport living organisms between different reefs

Phytoplankton bloom being transported through the GBR

Zooming in ...

Lady Musgrove Island (Image credit: 1770 Great Barrier Reef Cruises)

Lady Musgrove Island (Image credit: 1770 Great Barrier Reef Cruises)

Image credit: National Geographic

- Adult coral are **physically attached** to their home reef
- But populations **can** migrate between reefs. How?

Image credit: National Geographic

- Adult coral are **physically attached** to their home reef
- But populations **can** migrate between reefs. How?

Image credit: National Geographic

- Adult coral are **physically attached** to their home reef
- But populations **can** migrate between reefs. How?

Coral larval dispersal:

→ Corals release **sperm & eggs** (or larvae) into the water in large-scale spawning events

Image credit: National Geographic

- Adult coral are **physically attached** to their home reef
- But populations **can** migrate between reefs. How?

- → Corals release **sperm & eggs** (or larvae) into the water in large-scale spawning events
- \rightarrow Sperm fertilise eggs to form **coral larvae**

Image credit: National Geographic

- Adult coral are **physically attached** to their home reef
- But populations **can** migrate between reefs. How?

- → Corals release **sperm & eggs** (or larvae) into the water in large-scale spawning events
- \rightarrow Sperm fertilise eggs to form **coral larvae**
- → Larvae are transported by marine currents for (up to) days or weeks before settling onto a reef

Coral larvae "slick"

Image credit: Marine Savers

- Adult coral are **physically attached** to their home reef
- But populations **can** migrate between reefs. How?

- → Corals release **sperm & eggs** (or larvae) into the water in large-scale spawning events
- → Sperm fertilise eggs to form **coral larvae**
- → Larvae are transported by marine currents for (up to) days or weeks before settling onto a reef

Coral larvae "slick"

Image credit: Marine Savers

- Adult coral are **physically attached** to their home reef
- But populations **can** migrate between reefs. How?

- → Corals release **sperm & eggs** (or larvae) into the water in large-scale spawning events
- → Sperm fertilise eggs to form **coral larvae**
- → Larvae are transported by marine currents for (up to) days or weeks before settling onto a reef
- \rightarrow Potential for **long-distance travel**! (100s km)

Image credit: Marine Savers

- Adult coral are **physically attached** to their home reef
- But populations **can** migrate between reefs. How?

Coral larval dispersal:

- \rightarrow Corals release **sperm & eggs** (or larvae) into the water in large-scale spawning events
- \rightarrow Sperm fertilise eggs to form **coral larvae**
- → Larvae are **transported by marine currents** for (up to) days or weeks before settling onto a reef
- \rightarrow Potential for **long-distance travel**! (100s km)

Marine currents act to connect separate coral populations on different reefs

Coral larvae "slick"

Coral larvae "slick"

- Adult coral are **physically attached** to their home reef
- But populations **can** migrate between reefs. How?

Coral larval dispersal:

- \rightarrow Corals release **sperm & eggs** (or larvae) into the water in large-scale spawning events
- \rightarrow Sperm fertilise eggs to form **coral larvae**
- → Larvae are **transported by marine currents** for (up to) days or weeks before settling onto a reef
- \rightarrow Potential for **long-distance travel**! (100s km)

Marine currents act to connect separate coral populations on different reefs

Allows **reefs to repopulate each other** after local disasters (e.g. cyclones, bleaching)

- Adult coral are **physically attached** to their home

The GBR's bathymetry is very complex ...

Ν

250

0

500 km

Water depth: 0 (blue) to 150m (red)

The GBR's bathymetry is very complex ...

Many reefs/reef passages at scale of $\sim 200-1000$ m

500 km

N

250

Ν

250

The GBR's bathymetry is very complex ...

Many reefs/reef passages at scale of ~200-1000m

500 km

Small-scale flow around reefs & islands significantly affects **large-scale** circulation

Ν

250

The GBR's bathymetry is very complex ...

Many reefs/reef passages at scale of ~200-1000m

500 km

Small-scale flow around reefs & islands significantly affects **large-scale** circulation

Small-scale features strongly affect **dispersal of larvae**

Water depth: 0 (blue) to 150m (red)

250

The GBR's bathymetry is very complex ...

Many reefs/reef passages at scale of ~200-1000m

500 km

Small-scale flow around reefs & islands significantly affects **large-scale** circulation

Small-scale features strongly affect **dispersal of larvae**

We need to resolve flow at the reef scale

Water depth: 0 (blue) to 150m (red)

 \rightarrow Finite-element ocean model: **SLIM** (www.climate.be/slim)

 \rightarrow Shallow water equations \rightarrow Unstructured mesh

→ Finite-element ocean model: **SLIM** (www.climate.be/slim)

- \rightarrow Shallow water equations
- \rightarrow Unstructured mesh

 \rightarrow Mesh extends from shore to shelf break (200m isobath)

→ Finite-element ocean model: **SLIM** (www.climate.be/slim)

- \rightarrow Shallow water equations
- \rightarrow Unstructured mesh

 \rightarrow Mesh extends from shore to shelf break (200m isobath)

- → **Element size** is a function of:
 - \rightarrow bathymetry
 - \rightarrow distance to the nearest reef
 - \rightarrow distance to coastlines

→ Finite-element ocean model: **SLIM** (www.climate.be/slim)

- \rightarrow Shallow water equations
- \rightarrow Unstructured mesh

 \rightarrow Mesh extends from shore to shelf break (200m isobath)

→ **Element size** is a function of:

- \rightarrow bathymetry
- \rightarrow distance to the nearest reef
- \rightarrow distance to coastlines

 \rightarrow Sample mesh for central GBR simulations (left): 650,000 elements

→ Finite-element ocean model: **SLIM** (www.climate.be/slim)

- \rightarrow Shallow water equations
- \rightarrow Unstructured mesh

 \rightarrow Mesh extends from shore to shelf break (200m isobath)

→ **Element size** is a function of:

- \rightarrow bathymetry
- \rightarrow distance to the nearest reef
- \rightarrow distance to coastlines

 \rightarrow Sample mesh for central GBR simulations (left): 650,000 elements

\rightarrow Reef-scale max. resolution (~200m)

→ Finite-element ocean model: **SLIM** (www.climate.be/slim)

- \rightarrow Shallow water equations
- \rightarrow Unstructured mesh

 \rightarrow Mesh extends from shore to shelf break (200m isobath)

→ **Element size** is a function of:

- \rightarrow bathymetry
- \rightarrow distance to the nearest reef
- \rightarrow distance to coastlines

 \rightarrow Sample mesh for central GBR simulations (left): 650,000 elements

\rightarrow Reef-scale max. resolution (~200m)

 \rightarrow Model **forcings**:

Tides: Topex satellite data **Wind**: Reanalysis data from NOAA/OAR/ESRL PSD **Mean residual current**: data from satellite altimetry

Validation of hydrodynamics

Compared model predictions to observed data at various mooring sites in GBR:

<u>Elevation:</u> Data from the GBR Ocean Observing System (GBROOS) run by the Australian Institute for Marine Science (AIMS).

Blue: observed, Green: SLIM prediction

<u>Currents:</u> Compared mean currents and variance with GBROOS mooring data.

$\frac{\text{2D Random walk formulation of}}{\text{advection-diffusion equation:}}$ $\mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{v}_n \Delta t + \frac{\mathbf{R}_n}{\sqrt{r}} \sqrt{2K\Delta t}$

$$\mathbf{v}_n = \left(\mathbf{u} + \frac{K}{H}\nabla H + \nabla K\right) \Big|_{\mathbf{x}_n}$$

 $\boldsymbol{x}_{\boldsymbol{n}}$: particle position at time index \boldsymbol{n}

∆t: time step

 \boldsymbol{R}_{n} : array of random numbers with variance r

K: horizontal diffusivity coefficient

H: water depth

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- **x**_n: particle position at time index n
- Δt : time step
- \mathbf{R}_{n} : array of random numbers with variance r
- K: horizontal diffusivity coefficient
- u: depth-averaged water velocity (provided by SLIM)
- H: water depth

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- **x**_n: particle position at time index n
- Δt : time step
- \mathbf{R}_{n} : array of random numbers with variance r
- K: horizontal diffusivity coefficient
- u: depth-averaged water velocity (provided by SLIM)
- H: water depth

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- **x**_n: particle position at time index n
- Δt : time step
- \mathbf{R}_{n} : array of random numbers with variance r
- *K*: horizontal diffusivity coefficient
- u: depth-averaged water velocity (provided by SLIM)
- H: water depth

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- Assume neutrally buoyant larvae (ok for most coral species)

- $\boldsymbol{x_n}$: particle position at time index n
- *∆t*: time step
- \mathbf{R}_{n} : array of random numbers with variance r
- K: horizontal diffusivity coefficient
- u: depth-averaged water velocity (provided by SLIM)
- H: water depth

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- Assume neutrally buoyant larvae (ok for most coral species)

- Larvae undergo simple **biological processes:**

\rightarrow mortality

 \rightarrow after 3-4 days larvae acquire **competency to settle**

- $\boldsymbol{x_n}$: particle position at time index n
- *∆t*: time step
- \mathbf{R}_{n} : array of random numbers with variance r
- K: horizontal diffusivity coefficient
- u: depth-averaged water velocity (provided by SLIM)
- H: water depth

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- Assume neutrally buoyant larvae (ok for most coral species)

- Larvae undergo simple **biological processes:**

\rightarrow mortality

→ after 3-4 days larvae acquire **competency to settle**

 \rightarrow larvae **settle** onto first reef they travel over once they have become competent

- $\boldsymbol{x_n}$: particle position at time index n
- *∆t*: time step
- \mathbf{R}_{n} : array of random numbers with variance r
- K: horizontal diffusivity coefficient
- u: depth-averaged water velocity (provided by SLIM)
- H: water depth

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- Assume neutrally buoyant larvae (ok for most coral species)

- Larvae undergo simple **biological processes:**

\rightarrow mortality

 \rightarrow after 3-4 days larvae acquire

competency to settle

 \rightarrow larvae settle onto first reef they travel over once they have become competent

Connectivity between two reefs:

Sample run over the southern GBR:

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- Assume neutrally buoyant larvae (ok for most coral species)

- Larvae undergo simple **biological processes:**

 \rightarrow mortality

 \rightarrow after 3-4 days larvae acquire competency to settle

 \rightarrow larvae **settle** onto first reef they travel over once they have become competent

Connectivity between two reefs:

Sample run over the southern GBR:

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- Assume neutrally buoyant larvae (ok for most coral species)

- Larvae undergo simple **biological processes:**

- \rightarrow mortality
- \rightarrow after 3-4 days larvae acquire competency to settle

 \rightarrow larvae **settle** onto first reef they travel over once they have become competent

Connectivity between two reefs:

Sample run over the southern GBR:

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- Assume neutrally buoyant larvae (ok for most coral species)

- Larvae undergo simple **biological processes:**

 \rightarrow mortality

 \rightarrow after 3-4 days larvae acquire competency to settle

 \rightarrow larvae **settle** onto first reef they travel over once they have become competent

Connectivity between two reefs:

Sample run over the southern GBR:

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- Assume neutrally buoyant larvae (ok for most coral species)

- Larvae undergo simple **biological processes:**

 \rightarrow mortality

 \rightarrow after 3-4 days larvae acquire competency to settle

 \rightarrow larvae **settle** onto first reef they travel over once they have become competent

Connectivity between two reefs:

Sample run over the southern GBR:

- Transport of larvae modelled using a **Lagrangian** approach (advective component from SLIM + random component representing diffusion)

- Millions of larvae released over all reefs in domain **(1000s)**

- Assume neutrally buoyant larvae (ok for most coral species)

- Larvae undergo simple **biological processes:**

 \rightarrow mortality

 \rightarrow after 3-4 days larvae acquire competency to settle

 \rightarrow larvae **settle** onto first reef they travel over once they have become competent

Connectivity between two reefs:

- Millions of particles released
- 1000+ reefs in domain
- 1 million+ potential reef-to-reef connections to consider

- Millions of particles released
- 1000+ reefs in domain
- 1 million+ potential reef-to-reef connections to consider

How can we extract useful information from this data?

- Millions of particles released
- 1000+ reefs in domain
- 1 million+ potential reef-to-reef connections to consider

How can we extract useful information from this data?

Statistical analysis

- Proportion of self-recruitment
- Average connection length

- Millions of particles released
- 1000+ reefs in domain
- 1 million+ potential reef-to-reef connections to consider

How can we extract useful information from this data?

Statistical analysis

- Proportion of self-recruitment
- Average connection length

Spatial analysis

Network Science tools

nodes = reefs

lines = connections between two reefs

NB: connections are directed and weighted (not shown)

Definition:

Reef community: a cluster of reefs whose members are strongly connected with each other, and weakly connected with reefs outside their community

Definition:

Reef community: a cluster of reefs whose members are strongly connected with each other, and weakly connected with reefs outside their community

 \rightarrow Can partition the network into reef communities by having recourse to **network science**

→ **Community detection** tools

Definition:

Reef community: a cluster of reefs whose members are strongly connected with each other, and weakly connected with reefs outside their community

 \rightarrow Can partition the network into reef communities by having recourse to **network science**

\rightarrow **Community detection** tools

Reef "communities" = ecologically isolated groups of reefs (very little transport between them)

– The community detection method partitions the network into **a set of communities**

- The community detection method partitions the network into **a set of communities**

- Communities are defined in such a way as to maximise the extent to which **two key properties are satisfied**:

– The community detection method partitions the network into **a set of communities**

- Communities are defined in such a way as to maximise the extent to which **two key properties are satisfied**:

The average connection strength between members of the same community is greater than γ
→ members of the same community are highly connected amongst themselves (on average)

- The community detection method partitions the network into **a set of communities**

- Communities are defined in such a way as to maximise the extent to which **two key properties are satisfied**:

 $\label{eq:gamma} \begin{array}{l} \gamma: a \ user-defined \ \textit{``resolution} \\ parameter'' \end{array}$

1. The average connection strength **between members of the same** community is greater than γ \rightarrow members of the same community are highly connected amongst themselves (on average)

- The community detection method partitions the network into **a set of communities**

- Communities are defined in such a way as to maximise the extent to which **two key properties are satisfied**:

 $\label{eq:gamma} \begin{array}{l} \gamma: a \ user-defined \ \textit{``resolution} \\ parameter'' \end{array}$

1. The average connection strength **between members of the same** community is greater than γ \rightarrow members of the same community are highly connected amongst

themselves (on average)

2. The average connection strength between any 2 reefs in different communities is less than γ

→ members of different communities are isolated from each other (on average)

- The community detection method partitions the network into **a set of communities**

- Communities are defined in such a way as to maximise the extent to which **two key properties are satisfied**:

 $\label{eq:gamma} \begin{array}{l} \gamma: a \ user-defined \ \textit{``resolution} \\ parameter'' \end{array}$

1. The average connection strength **between members of the same** community is greater than γ \rightarrow members of the same community are highly connected amongst

themselves (on average)

2. The average connection strength between any 2 reefs in different communities is less than γ

→ members of different communities are isolated from each other (on average)

 γ is a threshold value which controls how strongly defined the community boundaries are

So γ represents a "threshold" level of connectivity...

Low-γ communities:

- Very few larvae exchanged between communities

– Almost all larvae **settle inside their natal community**

So γ represents a "threshold" level of connectivity...

<u>Low-γ communities:</u>

<u>High-γ communities:</u>

- Very few larvae exchanged between communities
- Almost all larvae **settle inside their natal community**

– A greater proportion of larvae settle outside their natal community

So γ represents a "threshold" level of connectivity...

<u>Low-γ communities:</u>

<u>High-γ communities:</u>

We can identify **stronger** and **weaker** "barriers to dispersal" by changing this parameter

 Very few larvae exchanged between communities

– Almost all larvae **settle inside their natal community**

- A greater proportion of larvae settle outside their natal community

Communities for A. humilis in the southern GBR (low γ)

Communities for A. humilis in the southern GBR (high γ)

1% of larvae settle outside their natal community

Numbers show average dispersal distance in each community

Communities for A. humilis in the southern GBR (high γ)

Communities for A. humilis in the southern GBR (high γ)

Self-recuitment rates are also different in each community ...

1% of larvae settle outside their natal community

Numbers show percentage of larvae settling over same reef they were released on

We might naïvely expect larvae to disperse equally in all directions ...

We might naïvely expect larvae to disperse equally in all directions ...

- \rightarrow ... this would result in equally-sized, $\sim circular$ communities
- \rightarrow But this is not the case

We might naïvely expect larvae to disperse equally in all directions ...

- \rightarrow ... this would result in equally-sized, $\sim circular$ communities
- \rightarrow But this is not the case

Why?

We might naïvely expect larvae to disperse equally in all directions ...

 \rightarrow ... this would result in equally-sized, $\sim circular$ communities

 \rightarrow But this is not the case

Why?

\rightarrow Hydrodynamics

→ Community boundaries often represent boundaries between different circulation regimes ...

Strong inter-reef currents

+12hrs

+12hrs +24hrs

+12hrs +24hrs +36hrs

+12hrs +24hrs +36hrs +48hrs Some other ecological questions we can attempt to answer ...

Are connectivity patterns different for different species?

A. Millepora

(long pre-competency period)

G. Retiformis

(very short pre-competency period)

Are connectivity patterns different for different species?

<u>A. Millepora</u>

(long pre-competency period)

G. Retiformis

(very short pre-competency period)

Currents on GBR shelf strongly wind-driven \rightarrow high annual variability possible

But strongest currents are **tidal**

Impact on larval dispersion/connectivity?

Currents on GBR shelf strongly **wind-driven** \rightarrow high annual variability possible

But strongest currents are **tidal**

Impact on larval dispersion/connectivity?

Simulations for 4 different years in central GBR:

(Tides: OSU Tpxo 7.2 -- Wind: NCEP CFSR reanalysis -- Coral Sea in/outflow: constant)

Currents on GBR shelf strongly wind-driven \rightarrow high annual variability possible

But strongest currents are **tidal**

Impact on larval dispersion/connectivity?

Simulations for 4 different years in central GBR:

(Tides: OSU Tpxo 7.2 -- Wind: NCEP CFSR reanalysis -- Coral Sea in/outflow: constant)

Proportion of self-recruitment by year on emergent reefs

Currents on GBR shelf strongly **wind-driven** \rightarrow high annual variability possible

But strongest currents are **tidal**

Impact on larval dispersion/connectivity?

Simulations for 4 different years in central GBR:

(Tides: OSU Tpxo 7.2 -- Wind: NCEP CFSR reanalysis -- Coral Sea in/outflow: constant)

Proportion of self-recruitment by year on emergent reefs

Dispersal distance by year on emergent reefs

Currents on GBR shelf strongly **wind-driven** \rightarrow high annual variability possible

But strongest currents are **tidal**

Impact on larval dispersion/connectivity?

Simulations for 4 different years in central GBR:

(Tides: OSU Tpxo 7.2 -- Wind: NCEP CFSR reanalysis -- Coral Sea in/outflow: constant)

Other questions to address:

Other questions to address:

Impact of **climate change** on larval dispersal/connectivity

 \rightarrow Strengthening East Australia Current (western boundary current)

 \rightarrow Warming seas \implies larvae develop faster/acquire competency more rapidly

Other questions to address:

Impact of **climate change** on larval dispersal/connectivity

 \rightarrow Strengthening East Australia Current (western boundary current)

 \rightarrow Warming seas \Longrightarrow larvae develop faster/acquire competency more rapidly

Dispersal patterns of **deep reef corals** (30m < Depth < 100m)

- \rightarrow Can deep reefs repopulate shallow reefs?
- \rightarrow 3D model needed

- Unstructured-grid ocean model + particle-tracker:
 - \rightarrow essential for modelling inter-reef transport in a large, **multi-scale** region

- Unstructured-grid ocean model + particle-tracker:
 - \rightarrow essential for modelling inter-reef transport in a large, **multi-scale** region
- Model output: large connectivity network

- Unstructured-grid ocean model + particle-tracker:
 - \rightarrow essential for modelling inter-reef transport in a large, **multi-scale** region
- Model output: large connectivity network
- Need **simplification** strategy to extract useful information:
 - 1- get global connectivity **statistics** \rightarrow dispersal distances, % self-recruitment etc.
 - 2- represent reef populations as a **network** → detect **communities** of highly connected reefs
 - 3- study connectivity at the community scale
 - \rightarrow get connectivity length-scales for each community, self-recruitment per community etc.

- Unstructured-grid ocean model + particle-tracker:
 - \rightarrow essential for modelling inter-reef transport in a large, **multi-scale** region
- Model output: large connectivity network
- Need **simplification** strategy to extract useful information:
 - 1– get global connectivity **statistics** \rightarrow dispersal distances, % self-recruitment etc.
 - 2- represent reef populations as a **network**
 - \rightarrow detect **communities** of highly connected reefs
 - 3- study connectivity at the community scale
 - \rightarrow get connectivity length-scales for each community,

Increasing simplification self-recruitment per community etc.

- Unstructured-grid ocean model + particle-tracker:
 - \rightarrow essential for modelling inter-reef transport in a large, **multi-scale** region
- Model output: large connectivity network
- Need **simplification** strategy to extract useful information:
 - 1- get global connectivity **statistics** \rightarrow dispersal distances, % self-recruitment etc.
 - 2- represent reef populations as a network
 - \rightarrow detect **communities** of highly connected reefs
 - 3- study connectivity at the community scale
 - \rightarrow get connectivity length-scales for each community,
 - self-recruitment per community etc.
- Increasing simplification
 - Tool to study spatial connectivity for different marine species: e.g. corals, fish, seagrass

- Unstructured-grid ocean model + particle-tracker:
 - \rightarrow essential for modelling inter-reef transport in a large, **multi-scale** region
- Model output: large connectivity network
- Need **simplification** strategy to extract useful information:
 - 1- get global connectivity **statistics** \rightarrow dispersal distances, % self-recruitment etc.
 - 2- represent reef populations as a **network**
 - \rightarrow detect **communities** of highly connected reefs
 - 3- study connectivity at the community scale
 - \rightarrow get connectivity length-scales for each community,

self-recruitment per community etc.

- Increasing simplification
 - Tool to study spatial connectivity for different marine species: e.g. corals, fish, seagrass

Reference:

C. Thomas, J. Lambrechts, E. Wolanski, V.A. Traag, V.D. Blondel, E. Deleersnijder, E. Hanert (2014) Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef, Ecological Modelling 272 160:174

Thank you for your attention

Questions ...?

Www.climate.be/slim