

Preliminary results of an unstructured-mesh model of the Congo River, estuary and ROFI JONSMOD2014

Valentin Vallaeys¹, Yoann Le Bars¹, Eric Deleersnijder^{1,2}, Emmanuel Hanert²

> ¹Institute of Mechanics, Materials, and Civil engineering ²Earth and Life Institute Université catholique de Louvain Louvain-la-neuve, Belgium

> > 13th May 2014

Project funded by

Motivation

Oil producers need good models of the Congo River ROFI

The Congo River is the second largest river in terms of discharge and watershed size

- Very remote region
- Watershed: $\sim 3.7 imes 10^6 \ {\rm km^2}$
 - \blacktriangleright ~ Nile
 - \blacktriangleright ~ 170imes Scheldt
 - \blacktriangleright ~ 121× Belgium
- Average flow: \sim 41,000 m³ s⁻¹
 - $min \sim 23{,}000\,m^3\,s^{-1}{,}\;max \sim 80{,}000\,m^3\,s^{-1}{\,}$
 - ho~15 imes Nile
 - \blacktriangleright > 300× Scheldt
- Length: \sim 4,700 km

Tidal influence: 150 km upstream

Watershed of the Congo River

The multi-scale model SLIM is well suited to this area

Second-generation Louvain-la-Neuve Ice-ocean Model

- Discontinuous Galerkin Finite Element Method
- Multi-rate time stepping
- 2D depth-averaged shallow-water equations
 - Applied to a number of complex environmental flows (Great Barrier Reef, Scheldt River, Mahakam River, Lake Tanganyika, ...)
- 3D baroclinic model under development

Scheldt estuary model

www.climate.be/SLIM

- GSHHG database outside the river
- Nautical charts within the river (with use of GeoDesk)

ylebars.github.io/GeoDesk/

- GSHHG database outside the river
- Nautical charts within the river (with use of GeoDesk)

GeoDesk in use

ylebars.github.io/GeoDesk/

- GSHHG database outside the river
- Nautical charts within the river (with use of GeoDesk)

Commercial nautical chart

vlebars.github.io/GeoDesk/

Vallaeys, Le Bars, Deleersnijder, Hanert (UCL

- GSHHG database outside the river
- Nautical charts within the river (with use of GeoDesk)

Digital coastline

ylebars.github.io/GeoDesk/

• GEBCO in the ocean

• Nautical charts within the river (with use of GeoDesk)

Bathymetry (in m)

ylebars.github.io/GeoDesk/

- GEBCO in the ocean
- Nautical charts within the river (with use of GeoDesk)

Commercial nautical chart

ylebars.github.io/GeoDesk/

- GEBCO in the ocean
- Nautical charts within the river (with use of GeoDesk)

Bathymetry (in m)

ylebars.github.io/GeoDesk/

Vallaeys, Le Bars, Deleersnijder, Hanert (UCL

- GEBCO in the ocean
- Nautical charts within the river (with use of GeoDesk)

Unobserved area

ylebars.github.io/GeoDesk/

- GEBCO in the ocean
- Nautical charts within the river (with use of GeoDesk)

Channel profile (in m)

ylebars.github.io/GeoDesk/

- GEBCO in the ocean
- Nautical charts within the river (with use of GeoDesk)

ylebars.github.io/GeoDesk/

Distance to coastline and bathymetry are then used to produce a multi-scale mesh

www.geuz.org/gmsh

Upstream and downstream boundary conditions

- Upstream to the limit of the tidal influence
 - Imposed discharge at Matadi
- Downstream in open ocean
 - OBC provided by a global ocean tidal model (FES2012) and ocean global circulation (HYCOM) imposed with FRS
 - Wind forcing imposed as a surface stress (ECMWF)

With all these ingedients, the model is finally up and running

Validation with satellite altimetry data M_2 amplitude

Computed tidal amplitude [m]

Absolute error w.r.t altimetry [m]

General error	absolute	relative
mean	1.26 cm	2.53 %
RMS	2.09 cm	4.09 %

Validation with satellite altimetry data $M_{\rm 2\ phase}$

Computed	tidal	phase	[°]
----------	-------	-------	-----

Absolute error w.r.t altimetry [°]

	General error	absolute
-	mean	0.68°
	RMS	1.00°
Le Bars, Deleersnijder, Hanert (UCL	Congo River modelling with SLIM	

The water age is a useful tool to analyze various flow regimes

Water age is the time spent since the particle entered the domain $t - t_{in}$

(Figure courtesy E.J.M. Delhez)

Shen and Haas (2004)

Water age in the Congo River mouth oscillates with tides

Conclusions and outlooks

Conclusions

- We have developed a methodology to model a complex multi-scale area
- We have developed several tools to deal with sparse datasets
- The model has been validated with altimetric data
- Preliminary water age simulations have been performed

Outlooks

- In depth studying of 2D hydrodynamics (impact on oil drilling)
- Apply 3D model to simulate freshwater plume (under heavy development)

Thank you

www.climate.be/SLIM