

# Operational ocean forecasting for German coastal waters











**JONSMOD 2014 – Thorger Brüning – 12.-14.05.2014** 

#### **Overview**



- Introduction
- Model system (at BSH)
- Validation
- Results of actual events
  - Elbe flood 2013
  - Xaver
- Outlook



# Introduction

# Introduction Why do we run operational models?



BSH provides daily forecasts for a variety of customers and applications

#### Main applications:

- water level prediction and storm surge warning service
- drift calculations for oil, other substances & SAR
- offshore industry & coastal engineering
- German navy
- fisheries
- tourism



# **Introduction Model history at BSH**



- Operational modelling (BSHcmod) since the early 80s
- One BSHcmod version has been sent to SMHI -> HIROMB
- Another version has been sent to DMI -> DMIcmod
- Within MyOcean DMIcmod + BSHcmod => HBM



# Model system (at BSH)

#### Operational model system at BSH

Meteorological Models (GME + COSMO-EU)

forecasts up to 7 days

wind, air pressure, air temperature, cloud coverage, specific humidity

Wave Model (EWAM)

forecasts up to 84 hrs

wave data

#### Other forcing data:

tidal predictions, external surges (BSHsmod.na), river input (BfG, SMHI)

external surge, tidal constituents, river runoff

#### **Circulation Model**

(BSHcmod => HBM)

for North Sea and Baltic Sea

(3D, baroclinic) + biochemistry

**Circulation + Wave Model** 

(BSHcmod.w => HBM+CWAM)

for North Sea and Baltic Sea

(3D, baroclinic)

**Surge Model** 

(BSHsmod => HBM)

for North Sea

(2D, barotropic)

**Model data archive:** currents, water levels, eddy coefficients, salinity, temperature, ice data, wave data, meteo. data

**Lagrangian Drift and Dispersion Model** (BSHdmod.L =>

SeatrackWeb)

for oil, drifting objects and conservative substances

**Eulerian Dispersion** 

(BSHdmod.E)

for conservative substances, suspended matter and biochemistry

surge data

**Local Circulation Models** 

(HBM, UnTRIM)

for estuaries

(Elbe, Weser, Ems)





- 3D baroclinic, prognostic
- generalised, adaptive vertical co-ordinates (Kleine, 2004); optionally z-co-ordinates with free surface could be chosen
- 2-way fully dynamical nesting
- k-omega turbulence model
- drying and flooding of tidal flats
- sea ice dynamics (Hibler, 1979 ⇒ going to be replaced by BSH inhouse development) and thermodynamics
- driven by meteo. forecasts of DWD, tides (14 constituents) and river inputs
- obc (T+S sponge layer)

# Grid nesting V4 – part 1



# Grid nesting V4 – part 2









# Validation of BSH-HBM

(period 1.1.2008 - 1.1.2009)





- North Sea
  - Tides
  - High water / Low water (only peaks)
- Baltic Sea
  - Total water level





#### Introduction Model system

| Station   | M2    | M2   | M2    | M2      | S2   | S2   | S2    | S2      |
|-----------|-------|------|-------|---------|------|------|-------|---------|
|           | amp   | amp  | pha   | pha err | amp  | amp  | pha   | pha err |
|           | [cm]  | err  | [deg] | [deg]   | [cm] | err  | [deg] | [deg]   |
|           |       | [cm] |       |         |      | [cm] |       |         |
| Borkum    | 107.6 | 2.8  | 278   | 8       | 28.1 | 1.0  | 338   | 5       |
| Helgoland | 113.2 | 4.6  | 312   | 0       | 30.8 | 1.9  | 13    | -5      |
| Cuhaven   | 147.9 | 13.5 | 340   | -4      | 37.1 | 2.7  | 46    | -7      |
| Buesum    | 154.7 | -1.5 | 341   | 4       | 41.0 | -1.1 | 47    | 0       |



#### Validation – total water level in the North Sea

|           | Total water level |       |           |      |  |  |
|-----------|-------------------|-------|-----------|------|--|--|
| Station   | High              | water | Low water |      |  |  |
| Station   | Bias              | RMSD  | Bias      | RMSD |  |  |
|           | [cm]              | [cm]  | [cm]      | [cm] |  |  |
| Borkum    | -3                | 11    | 10        | 14   |  |  |
| Helgoland | 3                 | 14    | 10        | 11   |  |  |
| Cuxhaven  | 19                | 18    | 5         | 14   |  |  |
| Buesum    | 15                | 18    | 6         | 17   |  |  |





#### After bias correction:

With an error of  $\pm$  10 cm BSH-HBM reproduced 39% of the high and 49% for low waters. With an error of  $\pm$  20 cm BSH-HBM reproduced 69% of the high and 85% for low waters. With an error of  $\pm$  30 cm BSH-HBM reproduced more than 90% of both high and low waters.

## Validation - water level in the Baltic Sea



|               | Water level elevation |           |      |         |      |      |      |  |
|---------------|-----------------------|-----------|------|---------|------|------|------|--|
| Station       | Ok                    | oservatio | ns   | BSH-HBM |      |      |      |  |
| 31411011      |                       | σ         | mean | Bias    | σ    | RMSD |      |  |
|               | Ν                     | [m]       | [m]  | [m]     | [m]  | [m]  | r    |  |
| Kiel-Holtenau | 8158                  | 0.25      | 0.05 | 0.07    | 0.28 | 0.12 | 0.90 |  |
| Koserow       | 8301                  | 0.21      | 0.10 | 0.18    | 0.23 | 0.10 | 0.90 |  |
| Sassnitz      | 5792                  | 0.21      | 0.13 | 0.15    | 0.22 | 0.10 | 0.89 |  |
| Travemuende   | 8472                  | 0.24      | 0.07 | 0.08    | 0.28 | 0.12 | 0.90 |  |
| Warnemuende   | 7477                  | 0.22      | 0.08 | 0.11    | 0.25 | 0.11 | 0.89 |  |







- Very difficult to validate
  - Only few measurements
  - High variability due to local topographic effects -> resolution not sufficient / difficult to find the corresponding grid point
- Data from a few Baltic stations were analysed
  - BSH-HBM reproduces variability of currents rather good (STD of BSH-HBM is nearly the same than STD of measurements)
  - Bias at bottom lower than 10 cm/s at all places
  - Bias at surface lower than 10 cm/s at most stations





## Arkona 54° 53,11' N, 13° 51,64' E, depth: 46m







## Darsser Sill 54° 41,9' N, 12° 42' E, depth: 21m







## Vengeance Grund in the Great Belt



## Validation – sea surface temperature







# Validation – sea surface temperature







Surface:

In all places: Bias and RMSD < 0.7° C, Correlation > 97 %

Depths between surface and 80 m

At most and especially all German stations:

Bias: 0.2 - 2° C, RMSD: 0.5 - 1° C, Correlation: > 90 %

Water depth > 80 m in the Baltic

Bottom temperature at Huvudskar Ost in the central Baltic

Bias: -0.77° C, RMSD: 0.36° C, Correlation: 33 %





### Station UFS Deutsche Bucht in the German Bight / North Sea







#### Station Fehmarn Belt in the Western Baltic







#### Station Huvudskar Ost in the central Baltic







- Only few observations available
- Good agreement in deeper water depths (> 60 m)
- Sufficient correlation at surface, but potential for improvements
- At depths above the permanent halocline and below the surface measurements show generally stronger fluctuations than BSH-HBM

This is most probably owed to a combination of the complicated bathymetry of the Baltic Sea and the (probably too) coarse vertical resolution of the applied model setups





#### Station Fehmarn Belt in the Western Baltic







#### Station Arkona in the Western Baltic







#### Station Huvudskar Ost in the central Baltic



## Validation – Sea Ice





#### Validation - Sea Ice





# Elbe flood

(May / June 2013)

#### Elbe flood



- Heavy rainfall in south-east Middle Europe in May and June 2013 caused a flood at various rivers in that region.
- Along the river Elbe water levels which never occurred before were measured.
- Very high water levels in the tidal influenced part of the Elbe estuary between St.Pauli and the weir in Geesthacht.





- The forecast of the river discharge was characterized by high uncertainties and therefore a high variability from forecast to forecast.
- Best estimate forecast of BSH-HBM works with discharge calculations from water levels in Neu Darchau (outside the ELmodel region).
- Calculated river discharges of more than 4000 m³/s (nearly five times as high as the medium discharge) were also fraught with uncertainty.











# Xaver

(5th to 7th December 2013)

#### **Xaver**



HYDROGRAPHIE

- Very high middle wind speeds between 45 and 55 knots (9-10 Beaufort) from north-westerly directions in the German Bight.
- Up to four storm surges and up to two strong storm surges in a row at almost all German North Sea stations.
- Highest water level elevation at station St.Pauli with 3.98 m above the mean high water, i.e. 6.09 m above mean sea level – a very strong storm surge and the second highest value ever.



### **Xaver**











# Outlook

# Biogeochemical module (under development)



- Internal coupling interface (F90 modules)
- Development in co-operation with DMI
- Combined "North Sea/Baltic Sea model"
  - → Online coupling of HBM + ERGOM (DMU)

Goal: Operational model with data assimilation

Will go pre-operational this summer!!



Development of pre-operational coupled current/wave model system by BSH & DWD

Coupling of

HBM circulation model and

WAM wave model

based on OASIS3 coupler

with 900m resolution

#### products for

- weather
- waves
- Currents+sea level+ice







## Model domain and resolution

Model domain cWAM: 53.2292° N – 56.4458° N

 $6.1736^{\circ} O - 14.9097^{\circ} O$ 







Coarse resolution EWAM ("Europäisches wave model")
Grid spacing:

Lon.: 0.1°, Lat.: 0.05°

fine resolution c(K)WAM ("coastal wave model")
Grid spacing:

Lon.: 0.01388°, Lat.: 0.00833° (ca. 900 m)





# **Prospects**



#### Coupling of COSMO-CLM and HBM via OASIS within the KLIWASproject to

- → Generate a regional coupled atmosphere-ocean-model
- → Extend the multi-model ensemble of coupled atmosphere-oceanmodels
- → Effective and sustainable use of professional expertise at DWD and BSH



## BSH model system: (potential) coupling



# Thank you!



