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The problem

Goal : Understanding the key proccesses controlling the fate of sed-
iment exported by the Burdekin River to the Great Barrier Reef
[Lewis et al. EPSL, 2014]
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= 3D modelling



SLIM 3D : a baroclinic dg-finite element model

Second-generation Louvain-la-Neuve Ice-ocean Model?
e Spatial features

e P; dg-finite element discretisation
e prismatic elements
e ALE formulation on a moving mesh

e Time discretisation
e split-explicit approach
e implicit vertical diffusion on every column

[Karnd et al. OM, 2013]

lyww.climate.be/slim


www.climate.be/slim

Applying SLIM 3D to the Burdekin River Plume dynamics

e Until now:
e Square boxes geometry
e flat or linear bathymetry

e The Challenge:
o Complex geometry
e Complex bathymetry
e Actual forcings

Mesh generated with Gmsh Software?

2yww .geuz.org/gmsh


www.geuz.org/gmsh
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Limiters are necessary !

e Kuzmin [JCAM, 2010], Aizinger [2011]
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e Py values
e Cockburn and Shu [JCP, 1998]
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Limiter principle

e Original value for node #i of Element #e: 5°
e Po value: ||S¢|| =3, S5Fwf

e Choose §f such that: min, < §,-e < maxe

. Se
SE=XeSF+ (11— /\e)Z”?; V‘|/|,-e

e original value

o )\, =1
e )\, = 0: Py value



Cockburn’s limiter

No more overshoots, but it has a cost:

e Invalid lake at rest for a stratified water column.
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e Constant fields on an element where strong gradients appear
= Loss of precision.
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Cockburn’s limiter

No more overshoots, but it has a cost:

e Invalid lake at rest for a stratified water column.
= Choose boundary condition for limiter

Pl

e Constant fields on an element where strong gradients appear
= Loss of precision. = Adaptive mesh

e This can lead to non-physical behaviour for o-layers vertical
discretisation. = Constant depth for upper layers



Burdekin River Plume dynamics

e Burdekin river discharge for 2007 flood season

[m?*/s]
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e Wind forcing
e Tidal forcing

e Varying sediment concentration discharge
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Salinity dynamics

~ 6500 2D-elements

7 vertical layers

dtop = 1.5s, dtgp = 30s

18 times faster than physical time on 11 CPUs
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Salinity dynamics

Salinity : Jan 1
17.5




Sediment model

C : sediment concentration [kg/m3]

e Settling
ws = —min(1072C, 2-107%)

D{C""S(lzz)2

0

[Lambrechts et al., 2010]

[m/s]

if ‘Ub‘ < Up [kg/(m2 S)]

~
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Sediment model

C : sediment concentration [kg/m3] [Lambrechts et al., 2010]
e Settling
ws = —min(1072C, 2-107%)  [m/s]
C % if
D— Ws (1_Td) if lup| < up (ke /(n 5)]
0 ~Y
e Erosion
w3/ Jus|\* A1 <<|“b|)4 _ 1) if lup| > up
con () (2)r a-(r(0
wo Up 0 ~

E=E+E [kg/(m* s)]
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Results

e Only with settling effect :
>50km region : deposit thickness < 0.1mm
= accordance with Lewis et al. [EPSL, 2014]

Sediment deposit thickness

- T | r—
4 2.1074 4.1073 3.1072

<10
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Conclusions and Perspective

e Burdekin River model

e SLIM 3D model
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Conclusions and Perspective

e Burdekin River model

e During a flood event, the sediments do stay in the region
defined by Lewis et al. [EPSL, 2014]
e For a larger simulation, the erosion rate needs to be enhanced.

e SLIM 3D model
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Conclusions and Perspective

e Burdekin River model

e During a flood event, the sediments do stay in the region
defined by Lewis et al. [EPSL, 2014]

e For a larger simulation, the erosion rate needs to be enhanced.

e SLIM 3D model
e SLIM 3D is ready to model actual coastal applications for a
small ratio max(bath)/min(bath)
e For a better accuracy, SLIM 3D needs to be able to manage
z-layers or hanging nodes.
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Conclusions and Perspective

e Burdekin River model

e During a flood event, the sediments do stay in the region
defined by Lewis et al. [EPSL, 2014]
e For a larger simulation, the erosion rate needs to be enhanced.

e SLIM 3D model

e SLIM 3D is ready to model actual coastal applications for a
small ratio max(bath)/min(bath)

e For a better accuracy, SLIM 3D needs to be able to manage
z-layers or hanging nodes.

Thank you for your attention !
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