A 3D baroclinic model of the Burdekin River Plume, Australia

Philippe Delandmeter¹, Jonathan Lambrechts¹, Eric Wolanski², Vincent Legat¹, Eric Deleersnijder¹

> ¹ Université catholique de Louvain, Belgium ² James Cook University, Australia

> > JONSMOD 2014

May 14, 2014

The problem

Goal : Understanding the key processes controlling the fate of sediment exported by the Burdekin River to the Great Barrier Reef [Lewis et al. *EPSL*, 2014]

The problem

Goal : Understanding the key processes controlling the fate of sediment exported by the Burdekin River to the Great Barrier Reef [Lewis et al. *EPSL*, 2014]

 \Rightarrow 3D modelling

SLIM 3D : a baroclinic dg-finite element model

Second-generation Louvain-la-Neuve Ice-ocean Model¹

- Spatial features
 - P₁ dg-finite element discretisation
 - prismatic elements
 - ALE formulation on a moving mesh
- Time discretisation
 - split-explicit approach
 - implicit vertical diffusion on every column

[Kärnä et al. OM, 2013]

¹www.climate.be/slim

Applying SLIM 3D to the Burdekin River Plume dynamics

- Until now:
 - Square boxes geometry
 - flat or linear bathymetry
- The Challenge:
 - Complex geometry
 - Complex bathymetry
 - Actual forcings

Mesh generated with Gmsh Software²

Overshoot problems

Overshoot problems

Limiters are necessary !

• Kuzmin [JCAM, 2010], Aizinger [2011]

- dg nodes
- $\bullet P_0$ values

• Cockburn and Shu [JCP, 1998]

Limiter principle

- Original value for node #i of Element $\#e: S_i^e$
- P_0 value: $\|S^e\| = \sum_i S^e_i w^e_i$
- Choose \hat{S}^e_i such that: $\min_e \leq \hat{S}^e_i \leq \max_e$

$$\hat{S}_i^e = \lambda_e S_i^e + (1 - \lambda_e) \frac{\|S^e\|}{\sum_i w_i^e}$$

- $\lambda_e = 1$: original value
- $\lambda_e = 0$: P₀ value

No more overshoots, but it has a cost:

• Invalid lake at rest for a stratified water column.

No more overshoots, but it has a cost:

• Invalid lake at rest for a stratified water column.

• Constant fields on an element where strong gradients appear \Rightarrow Loss of precision.

No more overshoots, but it has a cost:

• Invalid lake at rest for a stratified water column.

- Constant fields on an element where strong gradients appear \Rightarrow Loss of precision.
- This can lead to non-physical behaviour for σ -layers vertical discretisation.

No more overshoots, but it has a cost:

- Invalid lake at rest for a stratified water column.
 - \Rightarrow Choose boundary condition for limiter

- Constant fields on an element where strong gradients appear \Rightarrow Loss of precision.
- This can lead to non-physical behaviour for σ-layers vertical discretisation. ⇒ Constant depth for upper layers

No more overshoots, but it has a cost:

- Invalid lake at rest for a stratified water column.
 - \Rightarrow Choose boundary condition for limiter

- Constant fields on an element where strong gradients appear \Rightarrow Loss of precision. \Rightarrow Adaptive mesh
- This can lead to non-physical behaviour for σ-layers vertical discretisation. ⇒ Constant depth for upper layers

Burdekin River Plume dynamics

• Burdekin river discharge for 2007 flood season

- Wind forcing
- Tidal forcing
- Varying sediment concentration discharge

Salinity dynamics

• 18 times faster than physical time on 11 CPUs

Salinity dynamics

Sediment model

- C : sediment concentration $[kg/m^3]$ [Lambrechts et al., 2010]
 - Settling

$$w_{s} = -\min(10^{-2}C, 2 \cdot 10^{-4}) \qquad [m/s]$$
$$D = \begin{cases} C \ w_{s} \left(1 - \frac{|\mathbf{u}_{b}|}{u_{d}}\right)^{2} & \text{if } |\mathbf{u}_{b}| < u_{0} \\ 0 & \sim \end{cases} \qquad [kg/(m^{2} s)]$$

Sediment model

- C : sediment concentration $[kg/m^3]$ [Lambrechts et al., 2010]
 - Settling

$$w_{s} = -\min(10^{-2}C, \ 2 \cdot 10^{-4}) \qquad [m/s]$$
$$D = \begin{cases} C \ w_{s} \left(1 - \frac{|\mathbf{u}_{b}|}{u_{d}}\right)^{2} & \text{if } |\mathbf{u}_{b}| < u_{0} \\ 0 & \sim \end{cases} \qquad [kg/(m^{2} \ s)]$$

Erosion

$$E_0 = A_0 \left(\frac{|\mathbf{w}|}{w_0}\right)^3 \left(\frac{|\mathbf{u}_{\mathbf{b}}|}{u_0}\right)^4 F, \qquad E_1 = \begin{cases} A_1 \left(\left(\frac{|\mathbf{u}_{\mathbf{b}}|}{u_0}\right)^4 - 1\right) & \text{if } |\mathbf{u}_{\mathbf{b}}| > u_0\\ 0 & \sim \end{cases}$$
$$E = E_0 + E_1 \qquad [kg/(m^2 s)]$$

Results

 Only with settling effect : >50km region : deposit thickness < 0.1mm ⇒ accordance with Lewis et al. [EPSL, 2014]

• Burdekin River model

• SLIM 3D model

- Burdekin River model
 - During a flood event, the sediments do stay in the region defined by Lewis et al. [*EPSL*, 2014]
 - For a larger simulation, the erosion rate needs to be enhanced.
- SLIM 3D model

- Burdekin River model
 - During a flood event, the sediments do stay in the region defined by Lewis et al. [*EPSL*, 2014]
 - For a larger simulation, the erosion rate needs to be enhanced.
- SLIM 3D model
 - SLIM 3D is ready to model actual coastal applications for a small ratio max(bath)/min(bath)
 - For a better accuracy, SLIM 3D needs to be able to manage z-layers or hanging nodes.

- Burdekin River model
 - During a flood event, the sediments do stay in the region defined by Lewis et al. [*EPSL*, 2014]
 - For a larger simulation, the erosion rate needs to be enhanced.
- SLIM 3D model
 - SLIM 3D is ready to model actual coastal applications for a small ratio max(bath)/min(bath)
 - For a better accuracy, SLIM 3D needs to be able to manage z-layers or hanging nodes.

Thank you for your attention !