A 3D baroclinic model of the Burdekin River Plume, Australia

Philippe Delandmeter1, Jonathan Lambrechts1, Eric Wolanski2, Vincent Legat1, Eric Deleersnijder1

1 Université catholique de Louvain, Belgium
2 James Cook University, Australia

JONSMOD 2014

May 14, 2014
The problem

Goal: Understanding the key processes controlling the fate of sediment exported by the Burdekin River to the Great Barrier Reef [Lewis et al. *EPSL*, 2014]
The problem

Goal: Understanding the key processes controlling the fate of sediment exported by the Burdekin River to the Great Barrier Reef [Lewis et al. *EPSL*, 2014]

⇒ 3D modelling
SLIM 3D : a baroclinic dg-finite element model

Second-generation Louvain-la-Neuve Ice-ocean Model

• Spatial features
 • P_1 dg-finite element discretisation
 • prismatic elements
 • ALE formulation on a moving mesh

• Time discretisation
 • split-explicit approach
 • implicit vertical diffusion on every column

[Kärnä et al. OM, 2013]

1www.climate.be/slim
Applying SLIM 3D to the Burdekin River Plume dynamics

- Until now:
 - Square boxes geometry
 - Flat or linear bathymetry

- The Challenge:
 - Complex geometry
 - Complex bathymetry
 - Actual forcings

Mesh generated with Gmsh Software2

2www.geuz.org/gmsh
Overshoot problems
Overshoot problems
Limiters are necessary!

- Kuzmin [JCAM, 2010], Aizinger [2011]
- Cockburn and Shu [JCP, 1998]
Limiter principle

- Original value for node #i of Element #e: S_i^e
- P_0 value: $\|S^e\| = \sum_i S_i^e w_i^e$

- Choose \hat{S}_i^e such that: $\min_e \leq \hat{S}_i^e \leq \max_e$

$$\hat{S}_i^e = \lambda_e S_i^e + (1 - \lambda_e) \frac{\|S^e\|}{\sum_i w_i^e}$$

- $\lambda_e = 1$: original value
- $\lambda_e = 0$: P_0 value
Cockburn’s limiter

No more overshoots, but it has a cost:

- Invalid lake at rest for a stratified water column.

\[\rho \]

\[-z \]
Cockburn’s limiter

No more overshoots, but it has a cost:

- Invalid lake at rest for a stratified water column.

- Constant fields on an element where strong gradients appear
 \Rightarrow Loss of precision.
Cockburn’s limiter

No more overshoots, but it has a cost:

- Invalid lake at rest for a stratified water column.
- Constant fields on an element where strong gradients appear
 \(\Rightarrow \) Loss of precision.
- This can lead to non-physical behaviour for \(\sigma \)-layers vertical discretisation.
Cockburn’s limiter

No more overshoots, but it has a cost:

- Invalid lake at rest for a stratified water column. ⇒ Choose boundary condition for limiter

- Constant fields on an element where strong gradients appear ⇒ Loss of precision.

- This can lead to non-physical behaviour for σ-layers vertical discretisation. ⇒ Constant depth for upper layers
Cockburn’s limiter

No more overshoots, but it has a cost:

- Invalid lake at rest for a stratified water column.
 \(\Rightarrow \) Choose boundary condition for limiter

- Constant fields on an element where strong gradients appear
 \(\Rightarrow \) Loss of precision. \(\Rightarrow \) Adaptive mesh

- This can lead to non-physical behaviour for \(\sigma \)-layers vertical discretisation. \(\Rightarrow \) Constant depth for upper layers
Burdekin River Plume dynamics

- Burdekin river discharge for 2007 flood season

\[m^3/s \]

- Wind forcing
- Tidal forcing
- Varying sediment concentration discharge
Salinity dynamics

- \(\sim 6500 \) 2D-elements
- 7 vertical layers
- \(dt_{2D} = 1.5s, dt_{3D} = 30s \)
- 18 times faster than physical time on 11 CPUs
Salinity dynamics
Sediment model

C: sediment concentration $[kg/m^3]$

- **Settling**

\[w_s = -\min(10^{-2}C, 2 \cdot 10^{-4}) \quad [m/s] \]

\[D = \begin{cases}
C \ w_s \ (1 - \frac{|u_b|}{u_d})^2 & \text{if } |u_b| < u_0 \\
0 & \text{otherwise}
\end{cases} \quad [kg/(m^2 \ s)] \]
Sediment model

\(C \) : sediment concentration \([\text{kg} / \text{m}^3]\)

- **Settling**

\[
\nu_s = - \min(10^{-2} C, 2 \cdot 10^{-4}) \quad [\text{m/s}]
\]

\[
D = \begin{cases}
C \nu_s \left(1 - \frac{|u_b|}{u_d}\right)^2 & \text{if } |u_b| < u_0 \\
0 & \text{otherwise}
\end{cases} \quad [\text{kg} / (\text{m}^2 \text{s})]
\]

- **Erosion**

\[
E_0 = A_0 \left(\frac{|w|}{w_0}\right)^3 \left(\frac{|u_b|}{u_0}\right)^4 F,
\]

\[
E_1 = \begin{cases}
A_1 \left(\left(\frac{|u_b|}{u_0}\right)^4 - 1\right) & \text{if } |u_b| > u_0 \\
0 & \text{otherwise}
\end{cases}
\]

\[
E = E_0 + E_1 \quad [\text{kg} / (\text{m}^2 \text{s})]
\]

[Lambrechts et al., 2010]
Results

- Only with settling effect:
 >50km region: deposit thickness < 0.1mm
 \[\Rightarrow \text{accordance with Lewis et al. } [EPSL, 2014] \]
Conclusions and Perspective

- Burdekin River model

- SLIM 3D model

During a flood event, the sediments do stay in the region defined by Lewis et al. [EPSL, 2014]. For a larger simulation, the erosion rate needs to be enhanced.

SLIM 3D is ready to model actual coastal applications for a small ratio max(bath)/min(bath). For a better accuracy, SLIM 3D needs to be able to manage z-layers or hanging nodes.

Thank you for your attention!
Conclusions and Perspective

- **Burdekin River model**
 - During a flood event, the sediments do stay in the region defined by Lewis et al. [EPSL, 2014]
 - For a larger simulation, the erosion rate needs to be enhanced.

- **SLIM 3D model**
Conclusions and Perspective

- Burdekin River model
 - During a flood event, the sediments do stay in the region defined by Lewis et al. [EPSL, 2014]
 - For a larger simulation, the erosion rate needs to be enhanced.

- SLIM 3D model
 - SLIM 3D is ready to model actual coastal applications for a small ratio max(bath)/min(bath)
 - For a better accuracy, SLIM 3D needs to be able to manage z-layers or hanging nodes.

Thank you for your attention!
Conclusions and Perspective

- Burdekin River model
 - During a flood event, the sediments do stay in the region defined by Lewis et al. [EPSL, 2014]
 - For a larger simulation, the erosion rate needs to be enhanced.

- SLIM 3D model
 - SLIM 3D is ready to model actual coastal applications for a small ratio $\max(bath)/\min(bath)$
 - For a better accuracy, SLIM 3D needs to be able to manage z-layers or hanging nodes.

Thank you for your attention!